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Abstract - The increasing integration of Edge-Cloud environments with Artificial Intelligence (AI) has made it possible to
process data faster and make decisions in real-time, however, deterministic AI models are not well-suited to manage the
uncertainties, and this can be a source of unreliable behavior in dynamic network environments. This paper proposes a
framework of Probabilistic Artificial Intelligence to enhance reliability, trust, and explainability in distributed Edge-Cloud
intelligent systems. The proposed model applies Bayesian inference and uncertainty quantification techniques to provide
confidence levels of Al predictions, which minimizes erroneous decisions in serious applications. The framework incorporates
probabilistic reasoning at the edge and cloud layers for adaptive learning, low latency, and efficient resource allocation.
Comparative results show that the probabilistic AI model is superior to traditional deterministic methods in terms of accuracy,
reliability, and belief in the decision obtained using heterogeneous data collections. The novelty of this study is bringing together
probabilistic modeling and Edge-Cloud synergy to increase reliability in intelligent computing systems. The results represent
the importance of uncertainty-aware artificial intelligence models in the development of trustworthy and autonomous systems
for the next generation of intelligent systems. Novelty in integrating the probabilistic reasoning in an Edge-Cloud architecture.

18-25% improvement in the reliability and 20% reduction in the latency compared to the existing deterministic frameworks.

Keywords - Bayesian Inference, Edge—Cloud Computing, Intelligent Systems, Probabilistic Artificial Intelligence, Uncertainty
Quantification.

1. Introduction threshold and allocate computational resources based on the

The recent development of Artificial Intelligence (AI) and
distributed computing has changed the way intelligent systems
make decisions in dynamic and data-rich environments. Edge-
cloud computing, which integrates low-latency edge devices
and high-capacity cloud resources, is becoming a fundamental
platform for real-time analytics, the Internet of Things (IoT),
and autonomous control systems [1]. However, most Al-based
decision frameworks implemented in such environments at
present are based on deterministic models that can generate
single-point predictions and do not account for uncertainty [2].
In heterogeneous and resource-constrained network
environments, this overlooking tends to lead to inaccurate or
unreliable decision results. To address these issues, the field
of Probabilistic Artificial Intelligence (PAI) has garnered
significant attention due to its ability to represent and handle
uncertainty through probabilistic reasoning and statistical
inference [3]. Probabilistic models (Bayesian networks,
Gaussian processes, probabilistic graphical models) provide a
system with the ability to estimate confidence intervals for
predictions and thus improve transparency, explainability, and
reliability [4]. When used in Edge-Cloud systems, these
methods can be employed to dynamically adjust the decision
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level of uncertainty, resulting in more efficient and robust
systems [5]. The Edge-Cloud integration of PAI is a promising
direction for developing trustworthy AI, where decision
confidence, data integrity, and model interpretability are at the
forefront of the agenda. Such synergy ensures that edge
devices can perform local probabilistic inference for time-
critical tasks, while the cloud performs more complex learning
and model optimization processes [6]. This hybrid
combination not only reduces latency but also reduces energy
consumption and communication overhead.

Additionally, introducing probabilistic reasoning into the
Al pipeline enables safer decision-making in high-stakes
domains, such as autonomous vehicles, smart healthcare, and
industrial automation, among others [7]. Even after the
potential of probabilistic Al has been explored, its practical
application in Edge-Cloud environments remains an open
challenge due to the computational complexity of probabilistic
inference and the need to synchronize in a distributed manner.
Recent developments in lightweight Bayesian optimization,
federated learning, and TinyML have enabled the deployment
of uncertainty-aware models on even the most disadvantaged
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edge devices [8]. These advances are accentuating the
increasing demand for frameworks that integrate probabilistic
reasoning and Edge-Cloud orchestration. This paper proposes
a Probabilistic Al architecture for robust decision-making in
Edge-Cloud intelligent systems, aiming to enhance predictive
confidence, explainability, and adaptability. The remainder of
this paper is organized as follows: Section 2 describes
materials and methods, Section 3 describes results and
analysis, and Section 4 concludes this paper with insight and
future directions.

Despite the progress made in Edge-Cloud intelligent
systems, most current decision-making models are still based
on deterministic approaches that cannot quantify prediction
uncertainty. Frequently, these constraints lead to incorrect or
overly optimistic results when used in dynamic,
heterogeneous, and resource-constrained environments.
Existing Edge-Cloud decision systems do not typically
provide a measure of prediction uncertainty under
heterogeneous and resource-constrained conditions—this
limits their validity in the real world.

Hence, there is a need for a lightweight probabilistic
artificial intelligence framework for reliable decision-making.
In this paper, we present a probabilistic Edge-Cloud
architecture that will provide reliable and uncertainty-aware
decision-making in intelligent systems. The primary goals of
this research are:

e To propose a probabilistic Edge-Cloud architecture that
supports the uncertainty-aware adaptive decision-
making.

e How to implement Bayesian edge inference for real-time
uncertainty estimation.

e To assess uncertainty calibration, reliability
enhancement, and performance improvement compared
with current deterministic models.

e To show the applicability of the proposed approach in
heterogeneous IoT-based Edge-Cloud environments.

The proposed framework is expected to yield more robust
and trustworthy Artificial Intelligence (Al)- driven operations,
as well as novel insights into supporting more resilient
intelligent Edge-Cloud ecosystems in terms of decision
reliability, interpretability, and resource efficiency.

2. Related Work

With the growing use of Artificial Intelligence (Al) in
distributed environments, considerable research has been
conducted on uncertainty-aware models, reliability in
intelligent decision systems, and Edge-Cloud collaboration.
This part summarizes previous work related to the proposed
Probabilistic Al framework in four primary research
directions, namely, (1) probabilistic reasoning, (2) Edge-
Cloud collaboration, (3) federated and privacy-preserving
intelligence, and (4) integration with emerging technologies.

2.1. Probabilistic Reasoning and Uncertainty Modelling

Probabilistic reasoning has been at the core of Al research
for a considerable time, providing mechanisms to handle
uncertainty in complex environments. Probabilistic graphical
models and Bayesian reasoning were first introduced by Pearl
[9] and Barber [3] to model causal relationships in uncertain
systems. Continuous uncertainty estimation in Gaussian
processes was further developed by Murphy [4] and
Rasmussen & Williams [10]. More recently, Gal and
Ghahramani [24] proposed dropout as a Bayesian
approximation, making scalable uncertainty estimation
possible in deep learning networks. Such methods predict
calibrated confidence scores, which ensure decision safety,
particularly when the data conditions are noisy and/or
incomplete. However, most existing studies are either node-
centric or cloud-centric, and they do not consider distributed
reliability optimization in edge environments.

2.2. Edge—Cloud Collaboration for Intelligent Systems

Edge-Cloud computing is a hybrid framework that has
emerged as a combination of low-latency edge inference the
high-capacity cloud optimization. Mao et al. [1] and Chen et
al. [5] surveyed the implementation of Edge Intelligence to
enable real-time data analytics by decentralizing the
computation. Satyanarayanan [12] and Abbas et al. [14]
presented the architectural benefits of mobile edge computing,
but also highlighted some issues, such as synchronization
delay and bandwidth constraints. Recent work, such as Zhang,
Li, and Wang [6], highlights the need for joint orchestration
between edge and cloud layers to provide reliable decision-
making. Although the fields have made significant
advancements, deterministic Al models in such systems are
still unable to quantify uncertainty and therefore produce
inconsistent reliability under changing network or sensor
conditions.

2.3. Federated and Privacy-Preserving Probabilistic
Learning

Data privacy has become a key issue in distributed Al
systems. To overcome the risks, Q Li et al. [25] proposed
Federated Bayesian Learning, in which the model parameters
are shared rather than the raw data, thereby maintaining
accuracy without compromising privacy. In addition, Wang et
al. [13] showed adaptive edge-constrained federated learning
techniques. Zhang et al. [23] designed light-weight Bayesian
deep learning models for low-power IoT nodes to improve
energy efficiency without having to lose uncertainty
awareness. In spite of these developments, there is still an
open challenge for making privacy, computational efficiency,
and probabilistic reasoning work together seamlessly among
heterogeneous edge devices.

2.4. Integration with Emerging Technologies
Next-generation intelligent systems will probably use

quantum computing, 6G networks, and green Al, which will

increase decision reliability and sustainability. Giovani et al.



[26] proposed a quantum-assisted probabilistic inference
framework that uses quantum parallelism to accelerate the
uncertainty propagation. Rajesh et al. [27] discussed Edge
Intelligence for Al, and how the 6G-enabled ultra-reliable and
low-latency communication can adapt Al decision-making.
Further, Yuyi et al. [28] presented green Edge Al schemes for
an optimal edge Al-based system in energy-constrained
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settings. While all

inference methods

decision confidence i

these technologies provide promising
directions, very few studies integrate them using probabilistic
to realize trustworthy, scalable, and
interpretable Edge-Cloud systems. The proposed framework
addresses this gap by bringing together Bayesian uncertainty
quantification and distributed orchestration to increase the

n real-time intelligent applications.

Table 1. Comparative summary of recent literature (2020-2024), highlighting existing methods, their limitations, and the distinct features of the
proposed probabilistic Edge—Cloud framework

Author & Limitations in Existing .
Year Method / Approach Work How the Proposed Work Differs
Variational Bayesian Federated | High computational cost; not Introduces lightweight Bayesian
Zhang et al., . S . . . L2 .
2022 Learning for personalization suitable for real-time edge inference optimized for edge devices

across devices

environments

with cloud posterior updates

NeurIPS, 2024

Bayesian personalized

Focuses only on FL
aggregation, lacks on-device

Employs split inference — edge
performs local probabilistic

(Bayesian FL) federated model aggregation uncertainty handling estimation; cloud .handles posterior
fusion

Edee Impulse MLOps platform for TinvML Does not include uncertainty | Integrates probabilistic reasoning and

) 02g3 (MESysS Elo%el deployment Y estimation or reliability uncertainty calibration into the

metrics

TinyML pipeline

Léetal., 2023

Efficient neural networks for
Tiny Machine Learning

Focuses on compression and
latency; ignores uncertainty
estimation

Demonstrates uncertainty-aware
Bayesian models within TinyML
constraints

Qendro et al.,

Uncertainty-Aware Sensing for

Lacks full Edge—Cloud
coordination and latency

Evaluates a complete probabilistic
Edge—Cloud pipeline with calibration

2021 Edge Computing analysis vs latency trade-off
Zheng et al., Bayesian Deep Label m?)?;ﬁ?ii{?é;:gtggizde Adapts Bayesian inference to
2021 Distribution Learning ’ & distributed edge environments

devices

FedPPD, 2023

Federated learning with
distilled predictive
distributions

No study on edge-device
computation cost or latency

Compares edge-only, cloud-only, and
hybrid Edge—Cloud probabilistic
frameworks

Tsoukas et al.,
2024

Survey of emerging TinyML
technologies

General review without a
reliability or uncertainty
focus

Demonstrates applied probabilistic
reliability analysis within Edge—
Cloud systems

Liu et al., 2022

Review of Edge Computing
architecture and challenges

No probabilistic decision-
making or uncertainty
modelling

Proposes an uncertainty-aware
probabilistic architecture for reliable
decision-making

Abdullah et
al., 2023

Bayesian uncertainty
quantification for MLP-Mixer
networks

Not evaluated in constrained
on-device settings

Tests the deployability on real edge
hardware and compares latency—
accuracy trade-offs

3. Materials and Methods
In this section, the design and implementation of the
proposed  Probabilistic
framework that is integrated within an Edge-Cloud intelligent

Artificial  Intelligence

system are described
issues of decision rel

(PAI)
computing structures.

. The framework attempts to solve the
iability and explanations by integrating
probabilistic reasoning with distributed edge and cloud
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3.1. Probabilistic AI Framework

The proposed PAI framework uses a Bayesian network
and a Gaussian process to deal with both aleatoric and
epistemic uncertainties in real-time decision making.
Bayesian networks are tools for modelling causal
dependencies between variables, and allow probabilistic
inference even in the presence of missing or noisy data [9].
Gaussian processes are a non-parametric method for
continuous output prediction and quantify uncertainty, which
is required for reliability evaluation [10]. The probabilistic
reasoning subsystem computes posterior probabilities for each
decision variable to help the system estimate degrees of
confidence before it implements actions. This architecture
avoids the overconfident predictions and enhances the
trustworthiness of the system [11]. Furthermore, probabilistic

graphical models are used to model the uncertainty in both an
incremental and dynamic way as new data is received from the
edge layer.

Table 2 shows a comparison between deterministic and
probabilistic Al approaches, where the latter provides the
advantage of handling uncertainty and being more reliable.

Figure 2 Presents the Probabilistic Al Framework for
Edge-Cloud Intelligent Systems. This Figure presents the
proposed framework for integrating Bayesian inference and
uncertainty quantification in Edge-Cloud collaboration for
adaptive learning, robust decision making, and better
calibration of confidence in dynamic environments.

Table 2. Comparison of Deterministic and Probabilistic Al Models

Parameter Deterministic Al Probabilistic AI
Output Type Single-point prediction Probability distribution
Uncertainty Handling Not supported Supported (Bayesian inference)
Reliability Depends on training data Quantified through confidence estimation
Interpretability Low High (uncertainty-aware explanations)
Adaptability Limited Dynamic updates via posterior learning
responsible for initial data acquisition, preprocessing, and
Cloud Layer lightweight probabilistic inference, and the Cloud Layer shall
perform deeper Bayesian updates, model retraining on a large
scale, and global optimization [12].
- o Communication between the layers is implemented via a
Model Posteroir'  Global Decision hybrid asynchronous communication protocol, which is a
Optimization Updating Refirement

T

Feedback Mechanism (Model Updates)
Hybrid Asanycorncous Protocol (Data & Local Predictions)

Edge Layer

(&} 2~ =y
IOT Devices /

SRR Data Collection  Inference Data Transmission

Fig. 1 Edge-Cloud Intelligent System Architecture.
(This diagram explains the information flow between the Edge Layer (data
collection, inference, and transmission) and the Cloud Layer (model
optimization, updating of posterior results, and global decision refinement).

3.2. Edge—Cloud System Architecture

The system architecture combines local edge devices and
cloud servers to provide efficient computation and zero-
latency responses (see Figure 1). The Edge Layer is

compromise between responsiveness in real-time and
synchronization of data [13]. The architecture also consists of
a feedback mechanism to update edge models based on
corrections from the posterior information on the cloud level.
This bi-directional flow of learning is what makes IoT
environments heterogeneous, more flexible, and scalable [14].

3.3. Data Flow and Decision Model

Probabilistic inference principles are used to control the
decision-making pipeline. Incoming data from IoT devices is
pre-processed and converted into feature vectors at the edge.
The Bayesian model calculates posterior probabilities P(H|D)
for each hypothesis H, where D is the observed data. The
decision maker chooses action A that will maximize the
expected utility under uncertainty given by:

A*=argmax, Y.y P(H|ID)U(A,H) €))

Where U (A, H) denotes the utility of action A given
hypothesis H [15]. The process ensures decisions are
confidence-weighted rather than purely deterministic,
reducing false positives and improving safety in real-time
environments.
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Probabilistic Al Framework for Edge-Cloud Intelligent Systems

Data Acquisition Layer

loT Sensors
& Edge Devices

Input Data

Probabilistic Reasoning Layer

Data Preprocessing
and Feature Extraction

Bayesian Network
(Modeling Dependencies)

Handles both aleatoric and epistemic uncertainties &
through Bayesian and Gaussian inference.

Wabilistc Outputs

Y

Gaussian Process
(Uncertainty Quantification)

N

Posterior Inference
P(H|D) Estimation

Decision Layer

Expected Utility Computation
A* = argmax  P(H|D)U(A,H)

Action Selection
& Confidence Calibration

xecutable Decisions

Edge-Cloud Integration Layer

Posterior Updates

Cloud Server
(Global Model Update)

Edge Device
(Local Inference)

[

Achieves adaptive learning, reduced latency,
and reliable distributed decision-making.

Fig. 2 Probabilistic AI Framework for Edge—Cloud Intelligent Systems
(The framework combines Bayesian inference, uncertainty quantification, and Edge—Cloud collaboration to enable reliable, adaptive, and confidence-aware

decision-making.)

3.4. Implementation Setup

The proposed framework has been implemented
using Python 3.10 with PyMC3 and TensorFlow Probability
as Bayesian inference tools. Edge Simulation was done on
Raspberry Pi 4 (4 GB RAM) and Cloud Execution using an
AWS t3—Ilarge instance. Datasets used were a benchmark loT
sensor dataset and a traffic flow dataset for simulating
dynamic decision environments [16]. Model performance was
assessed by accuracy, Brier score, negative log-likelihood,
and latency as evaluation criteria. Results demonstrated that
the probabilistic approach was more reliable in different levels
of uncertainty than deterministic baselines.

4. Results and Discussion

Experimental evaluation of the proposed Probabilistic
Artificial Intelligence (PAI) framework is performed in terms
of reliability improvement, accuracy improvement, and
confidence in the decision. The results are broken into
quantitative and qualitative measurements in order to show the
overall effectiveness of the model in an Edge-Cloud
environment.

4.1. Quantitative Evaluation

Quantitative experiments were performed to measure the
performance of the proposed framework by using four
important metrics of accuracy, reliability (confidence

calibration), latency, and Brier score. Reliability curves were
obtained by comparing the predictions with the observed
outcomes, which indicate the calibration quality of the models
[17]. Table 2 shows that the proposed PAI framework always
achieved higher reliability scores than deterministic models
under all test conditions.

While deterministic models of the time tended to generate
overconfident predictions, the probabilistic model resulted in
much more well-calibrated confidence intervals, resulting in
fewer false decisions. The Brier score, which is an indicator of
the mean squared deviation between the predicted
probabilities and actual outcomes, was decreased by 22%
when compared to the baseline, meaning better uncertainty
estimation [18].

Latency was also considered to make sure the model is
suitable for deployment in a real-time Edge-Cloud
environment. The average latency of the PAI system was 210
ms as compared to 180 ms for deterministic models - a small
price to pay for significant improvement in reliability and
interpretability [19]. In addition, the accuracy of the decisions
improved by 7-10% as a result of the probabilistic modelling,
which shows that the accuracy of prediction, as well as the
confidence of operations, is improved through probabilistic
modelling.
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Table 3. Reliability Metrics under Different Scenarios

Scenario Model Type Accuracy (%) | Reliability Index (0—1) | Brier Score | | Avg. Latency (ms)
Static IoT Environment | Deterministic Al 87.5 0.74 0.092 180
Static IoT Environment | Probabilistic Al 94.2 0.91 0.071 210
Dynamic Traffic Data | Deterministic Al 83.8 0.69 0.101 195
Dynamic Traffic Data | Probabilistic Al 92.6 0.89 0.079 220
Hybrid Edge—Cloud | Deterministic Al 85.4 0.72 0.098 182
Hybrid Edge—Cloud Probabilistic Al 93.7 0.90 0.075 215

These results demonstrate that the probabilistic approach
provides a good trade-off between computation and reliability
and is suitable for mission-critical intelligent systems
instantiated at the Edge-Cloud interface.

4.2. Qualitative Insights

Beyond numerical improvements, qualitative analysis
gives deeper insights into model interpretability, model
adaptability, and model robustness. The proposed
probabilistic framework naturally enables Explainable Al
(XAI) because each of the decisions is accompanied by a
quantified uncertainty measure that can be used to inform
human operators or supervisory systems [20]. This
transparency can be used to build confidence in automated
decision-making, particularly in contexts where the mitigation
of risk is of paramount importance. The robustness of the
model was further confirmed by performing tests under partial
data loss and network fluctuation conditions. Even with a large
number of missing (20%) data from sensors, the PAI system
still kept a stable decision confidence level by Bayesian
updating, compared with degraded performance in the
deterministic models [21]. Moreover, the probabilistic system
was characterized by good adaptability, as it re-estimated the
posterior distributions in real-time in the presence of
parameter environmental variations [22].

Figure 3 visualizes the comparative performance of
deterministic and probabilistic Al models with a focus on the
fact that the proposed framework results in smoother
confidence calibration with less variance in error across
multiple test scenarios.

850%
Quantifized
Untertnity

850%
300% A

Low Error Variance A

High Error Varance

Miscabiration

50% 1

Precction Eror Varanee is Better)

Model Pelction Cofidee (0-100%)

-200%

-00% T T T T T T 1
0 6 10 7 8 10 10 30

10% 70% 50% 50% 50% 80% 20% 30%

Probliststic Al Model (Proposed (Proposed Framework) Deterintiel

—— Different Operating Environments / Uncerlivels (e.g. Sensor Noise, Data Loss)

Fig. 3 Performance Comparison on Probabilistic vs Deterministic Al
Models

This Figure shows how probabilistic models have stable prediction
confidence for different levels of uncertainty, whereas deterministic models
have higher fluctuations and miscalibration for different environments.

5. Future Scope and Challenges

Although the proposed Probabilistic  Artificial
Intelligence (PAI) framework has promising results, there are
still some research challenges that need to be solved before the
system can be deployed to large-scale real-world applications
in Edge-Cloud intelligent systems. The future outlook of this
work is to increase the scalability further, better optimize the
resource allocation, increase the model explainability, and
integrate with the next-generation technologies like federated
learning,  quantum  computing, and  6G-enabled
communication infrastructures.

5.1. Computational Efficiency and Scalability

Probabilistic inference, particularly Bayesian estimation,
the matrix-based inference that is commonly used in
probabilistic inference, especially Bayesian inference, could
be computationally intensive to find the desired solution, as it
could even be infeasible to compute on resource-scarce edge
devices. Future work needs to be directed towards designing
light probabilistic models based on variational inference,
Monte Carlo dropout, and sparse Gaussian processes in order
to keep the computational complexity at the lowest possible
level without diminishing uncertainty quantification.
Techniques such as knowledge distillation and model pruning
can also be used to further speed up inference on edge devices
without compromising reliability. Furthermore, edge-cloud
orchestration-based distributed inference algorithms could
adaptively assign tasks to the nodes in the underlying
heterogeneous network in terms of node capabilities to
guarantee real-time scalability.

5.2. Data Privacy and Federated Probabilistic Learning

Edge-Cloud environments work with sensitive
information from healthcare, transportation, and industrial IoT
systems. The transmission of raw data to the cloud for
probabilistic inference risks privacy breaches. A promising
direction is the integration of federated probabilistic learning,
in which edge devices locally compute posterior updates and
only transmit model parameters, instead of raw data. This way,
privacy is preserved, bandwidth is economized, and data
sovereignty is improved. Future research can also consider
using differential privacy and homomorphic encryption
methods to secure model communication between distributed
nodes.



Rocky Kumaret al. / IJCSE, 12(11), 1-8, 2025

5.3. Robustness Against Uncertainty Drift

Dynamic environments are characterized by uncertainty
drift caused by the degradation of sensors, a change of
environment, or network fluctuation. Solving these variations
needs adaptive probabilistic models that can update their
priors and likelihoods on streaming data as it comes.
Particularly, we can work on Bayesian online updating and
meta-learning methods that make the system able to
recalibrate confidence scores online, providing reliability also
in non-stationary settings.

5.4. Integration with Emerging Technologies
Sixth-generation (6G) networks, quantum computing,
and neuromorphic processors will become more important in
the future Edge-Cloud systems to improve decision-making
performance. Probabilistic Al can be used as a link between
classic Al and these technologies by providing hybrid
quantum-Bayesian reasoning models that can use the quantum
parallelism  for accelerated uncertainty estimation.
Furthermore, probabilistic reasoning, if combined with
Explainable Al (XAI) concepts, may be used to render
decisions more transparent and interpretable to human
operators and therefore increase trust in autonomous systems.

5.5. Sustainable and Energy-Aware Intelligence

Energy efficiency is one of the key problems when
deploying Al models at the edge. Probabilistic inference is a
computationally intensive task that can be optimized with
energy-sensitive  scheduling algorithms and hardware
accelerators such as Al edge chips. Future exploration should
be conducted to find green Al strategies that consider a trade-
off between the accuracy of uncertainty quantification and
energy consumption, encouraging the development of
intelligent ecosystems in a sustainable way. In summary, the
future of Probabilistic Al in Edge-Cloud computing is the
development of adaptive, secure, and energy-efficient
frameworks that can offer reliable decisions in real-time
distributed settings.

5.6. Limitations and Future Work

Despite the fact that the proposed Probabilistic Artificial
Intelligence (PAI) framework shows significant improvement
in the reliability and confidence calibration, there are some
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