
SSRG International Journal of Computer Science and Engineering Volume 12 Issue 3, 10-16, March 2025

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V12I13P102 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Designing Scalable Multi-Agent AI Systems:

Leveraging Domain-Driven Design and Event Storming

Kunal Nandi1, Kaustav Dey2

1Software Engineer in Test, TikTok USDS.
2Solution Architect, Amazon Web Services.

1Corresponding Author : nandi.kunal@rediffmail.com

Received: 11 January 2025 Revised: 28 February 2025 Accepted: 15 March 2025 Published: 30 March 2025

Abstract - Multi-Agent AI Systems (MAS) are increasingly used to tackle complex real-world problems. By 2025, 82% of

organizations plan to integrate AI agents (1), with 25% already deploying them (2). This paper explores how combining Event

Storming and Domain-Driven Design (DDD) provides a structured approach to designing effective MAS. The integration of

these methodologies enhances scalability, robustness, and domain alignment. We demonstrate this approach using a supply

chain management case study and discuss best practices for scaling and optimizing MAS.

Keywords - Bounded contexts, Domain-Driven Design, Event storming, Multi-Agent Systems, Agent based modelling.

1. Introduction
Agentic AI systems are good at handling complex

probabilistic problems through autonomous decision-

making. Multi-Agent AI Systems (MAS) extend this

capability by enabling multiple intelligent agents to

collaborate on problems that are too complex for individual

agents. These are composed of multiple interacting agents

designed to solve complex problems that individual agents or

monolithic systems cannot efficiently address.

Characteristics of MAS include autonomy, local views,

decentralization, and self-organization. These are widely

used in domains such as autonomous driving, multi-robot

factories, automated trading, and commercial gaming. In

existing software design, handling agent interaction, each

agent’s boundary definition, and MAS system coherence are

impossible. Nevertheless, creating intricate Multi-Agent

Systems (MAS) involves difficulties in modeling

interactions, establishing agent boundaries, and ensuring

system coherence. This paper focuses on how DDD and

Event Storming can address these challenges with a case

study of supply chain management. It also addresses the gap

in traditional software design by proposing an integrated

approach combining Domain-Driven Design and Event

Storming specifically tailored for MAS development.

2. Literature Review
2.1. Evolution of Multi-Agent Systems

Though Multi-Agent Systems related research started in

1980 with distributed artificial intelligence, however early

work by Wooldridge and Jennings (1995) established

foundational principles for agent autonomy and interaction.

Recent advancements by Shoham and Leyton-Brown (2009)

have focused on game-theoretic approaches to multi-agent

coordination.

2.2. Domain-Driven Design in Complex Systems

In 2004, Evans(2004) pioneered Domain-Driven Design

by using domain modeling, then in 2013 Vernon (2013)

extended these concepts to enterprise applications, and

finally, in 2018, Brandolini(2018) connected DDD with

event-driven architectures.

2.3. Event Storming and Collaborative Modeling

Brandolini (2013) developed Event Storming as a

workshop format for exploring complex business domains.

Young (2017) demonstrated its effectiveness in capturing

domain events and workflows in distributed systems.

2.4. Existing Approaches to MAS Design

Current approaches to MAS design include:

• Agent-oriented software engineering (AOSE)

methodologies (Zambonelli et al., 2003).

• BDI (Belief-Desire-Intention) frameworks (Rao &

Georgeff, 1995).

• JADE (Java Agent Development Framework)

methodologies (Bellifemine et al., 2007).

2.5. Research Gap Analysis

While these approaches provide valuable frameworks

for agent implementation, they often lack integration with

domain modeling techniques and collaborative discovery

http://www.internationaljournalssrg.org/
https://www.capgemini.com/wp-content/uploads/2024/07/Generative-AI-in-Organizations-Refresh-1.pdf
https://www.deloitte.com/ro/en/about/press-room/studiu-deloitte-utilizarea-inteligentei-artificiale-generative-va-dubla-consumul-de-energie-electrica-al-centrelor-de-date-la-nivel-global-pana-2030.html?icid=toggle_ro_en

Kunal Nandi & Kaustav Dey / IJCSE, 12(3), 10-16, 2025

11

methods. This paper bridges this gap by combining DDD’s

domain modeling strengths with Event Storming’s

collaborative discovery process to create a comprehensive

MAS design methodology.

3. Core Concepts
3.1. Multi-Agent AI Systems (MAS)

MAS consists of intelligent agents that interact within

an environment to achieve goals. Key characteristics

include:

1. Autonomy of agents

2. Local views (no single agent has full global knowledge)

3. Decentralization

4. Self-organization and self-direction

3.2. Domain-Driven Design (DDD)

DDD is a software development approach that

emphasizes modeling software based on real-world domain

concepts. It aims to:

• Match the mental model of the problem domain.

• Establish a common vocabulary with domain experts.

• Embed domain-specific terminology in the code.

• Protect the domain model from technical complexities.

DDD enables the creation of scalable, maintainable, and

testable systems through well-defined domain models.

3.3. Event Storming

Event Storming is a collaborative modeling method

used to explore domain behavior. Its goals include the

following.

1. First, identifying domain events.

2. Sequencing events chronologically.

3. Establishing system boundaries and communication

patterns.

4. Engaging both developers and domain experts in a

structured discovery process.

Event Storming facilitates business process modeling

and requirements engineering, ensuring a shared

understanding of the system's behavior.

4. Challenges in MAS Designs
4.1. Complexity in System Design

Designing MAS involves several challenges, which are:

1. Defining Agent Boundaries: Here, the team determines

the scope and responsibilities of individual agents.

2. Modeling Complex Interactions: Understanding

communication and influence between agents.

3. Maintaining System Coherence: Ensuring that collective

agent behavior aligns with system objectives.

Traditional software design methodologies struggle to

capture MAS's dynamic and distributed nature.

5. Addressing Design Complexity with DDD and

Event Storming
5.1. Domain-Driven Design Solutions

• Bounded Contexts: Segment the system into

independent domains to manage complexity.

• Ubiquitous Language: Establish a shared understanding

of system goals and terminology.

• Rich Domain Model: Encapsulate business logic within

each domain.

5.2. Event Storming Contributions

• Collaborative Discovery: Facilitates knowledge sharing

between stakeholders.

• Event-Driven Architecture: Aligns with MAS

communication patterns.

• Visual Modeling: Enhances understanding among AI

developers, domain experts, and stakeholders.

5.3. Synergy of MAS, DDD, and Event Storming

• MAS provides the agent framework.

• DDD offers domain modeling techniques.

• Event Storming facilitates collaborative discovery.

This integrated approach ensures scalable, well-

structured MAS that aligns with business requirements.

6. Novelty and Comparison with Existing

Approaches
The proposed methodology differs from existing

approaches in several key aspects:

Aspect Traditional MAS Design Proposed DDD+Event Storming Approach

Domain

Understanding

Often technical-focused with limited

domain expert involvement

Collaborative process with domain experts as

central participants

System Boundaries Typically defined by technical constraints Defined by business domains and bounded contexts

Communication

Model

Often, predetermined communication

protocols

Event-driven communication derived from domain

events

Scalability Approach Usually addressed as a technical concern Built into the design through bounded contexts

Knowledge

Representation

Often uniform across the system Context-specific with tailored knowledge bases

Kunal Nandi & Kaustav Dey / IJCSE, 12(3), 10-16, 2025

12

The novel contributions of this approach include:

• Integration of collaborative domain discovery with agent

design.

• Event-driven communication patterns derived directly

from domain events.

• Context-specific knowledge bases aligned with business

domains.

7. Case Study: AI-Driven Supply Chain

Management System
7.1. Problem Statement

Let us now discuss a case study of a global

manufacturing company that seeks to develop an intelligent

supply chain management system to handle procurement,

production planning, inventory management, logistics, and

customer order fulfilment across multiple countries.

7.2. Applying Event Storming and DDD

7.2.1. Step 1: Preparation

• Assemble a team of domain experts, developers, and AI

specialists.

• Next, begin using a big workspace for mapping events

with colored sticky notes with the team.

7.2.2. Step 2: Domain Event Identification

• Identify significant system events using past-tense

statements.

• Example events: "Raw Material Ordered," "Shipment

Delayed," "Customer Order Received."

7.2.3. Step 3: Event Sequencing

• Arrange events chronologically and identify parallel

processes.

• Example sequences:

o [Raw Material Ordered] -> [Raw Material

Received] -> [Production Batch Started]

o [Customer Order Received] -> [Order Validated] -

> [Discount Applied]

7.2.4. Step 4: Command Identification

Categorize commands as:

1. User-Initiated Commands: Triggered by human

interaction (e.g., "Place Raw Material Order").

2. System-Triggered Commands: Automated responses to

events (e.g., "Send Invoice").

3. Policy-Driven Commands: Business-rule-based or

business-domain-based actions (e.g., "Apply Bulk

Discount").

4. Invariant-Enforcing Commands: Ensure system integrity

(e.g., "Validate Order Total").

7.2.5. Step 5: Establishing Boundaries

Bounded contexts are defined as:

• Supply Chain Context: Inventory management and

procurement.

• Production Context: Manufacturing and quality control.

• Logistics and Order Fulfillment Context: Coordinating

order processing, invoicing, and shipping.

7.2.6. Step 6: Identification of Agents

With our contexts established, we can now identify the

agents responsible for executing commands or generating

events within each context.

Supply Chain Context

• Supply Chain Agent: Responsible for raw material

procurement.

• Inventory Management Agent: Responsible for

inventory management.

Production Context

• Production Agent: Controls manufacturing operation.

Order Fulfillment and Logistics Context

• Order Fulfillment Agent: Manages order processing and

delivery.

• Logistic Agent: For shipping-related tasks

• Invoicing Agent: For Billing related task

• Discount Management Agent: For promotion/ offer

• Order Validation Agent: For validation

Visual representation in Figure 1.

7.2.7. Step 7: Resulting MAS Architecture

The system architecture is structured into independent

bounded contexts, with agents responsible for specific

processes and inter-agent communication defined via

synchronous or event-driven interactions (Refer Table 1).

8. Scaling and Optimizing MAS
8.1. Strategies for Scalability

8.1.1. Hierarchical Agents

It creates a more organized structure. Here, by

implementing supervisory agents, we can manage a group of

lower-level agents.

8.1.2. Dynamic Agent Creation

Allow agents to be instantiated and terminated as

needed.

8.1.3. Load Balancing

Distribute workload across multiple agent instances.

8.2. Testing and Validation

8.2.1. Unit Testing

Verify individual agent behaviors.

8.2.2. Integration Testing

Evaluate interactions within bounded contexts.

8.2.3. System Testing

Simulate end-to-end scenarios.

8.2.4. Chaos Engineering

Introduce controlled failures to test resilience.

Kunal Nandi & Kaustav Dey / IJCSE, 12(3), 10-16, 2025

13

Fig. 1 Identification of Agents

Supply
Chain
Agent

Place Raw

Material
Order
(User)

Receive

Raw
Material
(System)

Raw
Material

Ordered

Raw
Material

Received

Monitor

Inventory
Levels

(Policy)

Trigger

Reorder
Point

(Policy)

Inventory

Level

Critical
Reached

Reorder

Point

Triggered

Inventory

Management

Agent

Production

Agent

Start

Production
Batch
(User)

Receive

Raw
Material
(System)

Production
Batch

Started

Raw
Material

Received

Order
Fulfillment

Agent

Create
Customer

Order
(User)

Fulfill
Customer

Order
(User)

Customer

Order

Received

Order

Fulfilled

Logistics

Agent

Invoicing

Agent

Order

Fulfillment

Agent

Discount

Management

Agent

Ship
Product

(User)

Send
Invoice

(System)

Product

Shipped

Invoice

Sent

Deliver
Product

(System)

Product

Delivered

Validate

Order Total

(Invariant)

Order

validated

Apply

Discount

(Invariant)

Discount

Validated

Production Context: Order Fulfillment and Logistics Content: Supply Chain Contact:

Kunal Nandi & Kaustav Dey / IJCSE, 12(3), 10-16, 2025

14

Table 1. Resulting Mass Architecture

Context Agents Responsibilities Input Events Output Events Knowledge Bases

Supply

Chain

Supply

Chain

Agent

1. Raw material

ordering

2. Inventory

management

3. Reorder

point

triggering

• Inventory

Level

Critical

Reached

• Raw

Material

Received

1. Raw Material

Ordered

2. Reorder Point

Triggered

3. Inventory Updated

• Global Supplier KB

• Inventory Levels KB

Production
Productio

n Agent

1. Production

planning

2. Batch

management

3. Quality

control

• Raw

Material

Received

• Customer

Order

Received

1. Production Batch

Started

2. Production Batch

Completed
• Production Capacity

KB

• Quality Standards KB

Order

Fulfillmen

t and

Logistics

Order

Fulfillme

nt Agent

1. Customer

order

processing

2. Order

fulfillment

• Customer

Order

Received

• Production

Batch

Completed

1. Order Fulfilled

2. Invoice Sent

• Customer Preference

KB

Logistics

Agent

1. Shipping

management

2. Delivery

tracking

• Order

Fulfilled

1. Product Shipped

2. Product Delivered
• Logistics Network

KB

Invoicing

Agent

1. Invoice

generation

2. Payment

processing

• Order

Fulfilled

1. Invoice Sent

• Pricing KB 2.

Customer Account

KB

8.3. Best Practices

8.3.1. Domain Event Focus

Prioritize events that are significant to the domain,

avoiding unnecessary technical details.

8.3.2. Define Agent Granularity

Maintain single-responsibility principles.

8.3.3. Adopt Bounded Contexts

Promote modular system design.

8.3.4. Establish Communication Patterns

Use event-driven, publish-subscribe, or request-

response mechanisms.

8.3.5. Implement Security Measures

Protect sensitive data within bounded contexts.

8.3.6. Robust Error Handling

Handling failures and unexpected events.

9. Challenges and Limitations
While combining Domain-Driven Design (DDD) and

Event Storming for Multi-Agent Systems (MAS) offers

numerous benefits, there are scenarios where this approach

may not be optimal:

• Deterministic Components: MAS may not be required

for straightforward, simple automation tasks. A hybrid

approach can be taken, using conventional algorithms for

predictable parts and MAS for adaptive decision-

making.

• Over-engineering Risks: Applying MAS principles to

simple systems can introduce unnecessary complexity.

As a result, it can potentially lead to over-engineering

and increased development time.

• Defining Boundaries: Some agent responsibilities may

overlap, requiring a structured hierarchical approach.

Kunal Nandi & Kaustav Dey / IJCSE, 12(3), 10-16, 2025

15

10. Achieving Better Results: A Comparative

Analysis
The integration of DDD and Event Storming with MAS

design provides several advantages over traditional

approaches:

10.1. Enhanced Domain Alignment

By starting with domain events rather than technical

components, the resulting system more closely aligns with

business requirements. This alignment reduces the risk of

building technically sound but business-irrelevant systems.

10.2. Improved Scalability

The bounded context approach naturally creates modular

subsystems that can scale independently. This is particularly

valuable in MAS, where different agent groups may

experience varying loads.

10.3. Better Stakeholder Communication

The visual and collaborative nature of Event Storming

bridges the gap between technical and business stakeholders,

ensuring shared understanding throughout the development

process.

10.4. Comparison with State-of-the-Art

Unlike traditional agent-oriented methodologies that

often start with technical considerations, this approach begins

with domain understanding. Compared to existing

methodologies like AOSE or BDI frameworks, the proposed

approach achieves:

• More natural alignment with business domains

• Clearer boundaries between agent responsibilities

• Event-driven communication derived directly from

domain events

• Greater involvement of domain experts throughout the

design process

11. Conclusion
The integration of Event Storming and Domain-Driven

Design (DDD) provides a structured methodology for

designing Multi-Agent AI Systems (MAS). Key benefits

include:

• Enhanced domain understanding through collaborative

discovery.

• Scalable architecture using DDD’s bounded contexts.

• Improved communication between technical and non-

technical stakeholders.

• Coherent system design with well-defined agent

responsibilities.

As MAS adoption grows, these methodologies will play

a critical role in building scalable, resilient, and adaptable AI-

driven systems. Future research should explore enhanced

machine learning integration, standardized inter-agent

communication protocols, and security in distributed AI

architectures.

References
[1] “Generative AI in Organizations Report,” Capgemini, pp. 1-76, 2024. [Publisher Link]

[2] Deloitte Study: The Use of Gen AI Will Double Global Data Centers’ Electricity Consumption by 2030, Deloitte, 2025. [Online].

Available: https://www.deloitte.com/ro/en/about/press-room/studiu-deloitte-utilizarea-inteligentei-artificiale-generative-va-dubla-

consumul-de-energie-electrica-al-centrelor-de-date-la-nivel-global-pana-2030.html

[3] Multi-Agent System Architecture, Smythos AI, 2025. [Online]. Available: https://smythos.com/ai-agents/multi-agent-systems/

[4] Jerome Boyer, Event Storming Methodology, IBM Cloud Architecture, 2022. [Online]. Available: https://ibm-cloud-

architecture.github.io/refarch-eda/methodology/event-storming/

[5] Four Design Patterns for Event-Driven, Multi-Agent Systems, Confluent Blog, 2025. [Online]. Available:

https://www.confluent.io/blog/event-driven-multi-agent-systems/

[6] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood, Developing Multi-Agent Systems with JADE, John Wiley & Sons, Ltd,

2007. [CrossRef] [Google Scholar] [Publisher Link]

[7] Alberto Brandolini, Introducing EventStorming: An Act of Deliberate Collective Learning, Leanpub, 2013. [Google Scholar] [Publisher

Link]

[8] Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software,” Addison-Wesley, 2004. [Google Scholar]

[Publisher Link]

[9] Anand S. Rao, and Michael P. Georgeff, “BDI Agents: From Theory to Practice,” Proceedings of the First International Conference

on Multi-Agent Systems, pp. 312-319, 1995. [Google Scholar] [Publisher Link]

[10] Yoav Shoham, and Kevin Leyton-Brown, “Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations,” Cambridge

University Press, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[11] Vaughn Vernon, Implementing Domain-Driven Design, 1st ed., Addison-Wesley, 2013. [Google Scholar] [Publisher Link]

[12] Michael Wooldridge, and Nicholas R. Jennings, “Intelligent Agents: Theory and Practice,” The Knowledge Engineering Review, vol.

10, no. 2, pp. 115-152, 1995. [CrossRef] [Google Scholar] [Publisher Link]

[13] Scott Wlaschin, Domain Modeling Made Functional: Tackle Software Complexity with Domain-Driven Design and F#, Pragmatic

Bookshelf, pp. 1-260, 2017. [Google Scholar] [Publisher Link]

https://www.capgemini.com/insights/research-library/generative-ai-in-organizations-2024/
http://doi.org/10.1002/9780470058411
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Developing+multi-agent+systems+with+JADE&btnG=
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470058411
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introducing+EventStorming%3A+An+Act+of+Deliberate+Collective+Learning&btnG=
https://leanpub.com/introducing_eventstorming
https://leanpub.com/introducing_eventstorming
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Domain-driven+design%3A+Tackling+complexity+in+the+heart+of+software&btnG=
https://www.oreilly.com/library/view/domain-driven-design-tackling/0321125215/?_gl=1*195ftux*_ga*MTE5NDMxNTY3Mi4xNzQzMDcyNjYx*_ga_092EL089CH*MTc0MzA3MjY2MS4xLjEuMTc0MzA3MjY2Ny41NC4wLjA.
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BDI+Agents%3A+From+Theory+to+Practice&btnG=
https://aaai.org/papers/icmas95-042-bdi-agents-from-theory-to-practice/
https://doi.org/10.1017/CBO9780511811654
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiagent+Systems%3A+Algorithmic%2C+Game-Theoretic%2C+and+Logical+Foundations&btnG=
https://www.cambridge.org/core/books/multiagent-systems/B11B69E0CB9032D6EC0A254F59922360
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementing+Domain-Driven+Design&btnG=
https://www.pearson.com/en-gb/subject-catalog/p/implementing-domain-driven-design/P200000009616/9780321834577
https://doi.org/10.1017/S0269888900008122
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+Agents%3A+Theory+and+Practice&btnG=
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/intelligent-agents-theory-and-practice/CF2A6AAEEA1DBD486EF019F6217F1597
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Domain+Modeling+Made+Functional%3A+Tackle+Software+Complexity+with+Domain-Driven+Design+and+F%23&btnG=
https://www.torrossa.com/it/resources/an/5241663

Kunal Nandi & Kaustav Dey / IJCSE, 12(3), 10-16, 2025

16

[14] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge, “Developing Multiagent Systems: The Gaia Methodology,” ACM

Transactions on Software Engineering and Methodology, United States, vol. 12, no. 3, pp. 317-370, 2003. [CrossRef] [Google Scholar]

[Publisher Link]

[15] Yoav Shoham, and Kevin Leyton-Brown, Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, pp. 1-532, 2009.

[Online]. Available: https://www.masfoundations.org/mas.pdf

https://doi.org/10.1145/958961.958963
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Developing+Multiagent+Systems%3A+The+Gaia+methodology&btnG=
https://dl.acm.org/doi/abs/10.1145/958961.958963

