
SSRG International Journal of Computer Science and Engineering Volume 12 Issue 5, 29-34, May 2025

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V12I15P104 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Developing an Attack Warning Feature for Open Source

Code

Thi Ngoc Linh Tran

Faculty of Electronics Engineering, Thai Nguyen University of Technology, Thai Nguyen City, Vietnam.

Corresponding Author : tranngoclinh@tnut.edu.vn

Received: 17 March 2025 Revised: 25 April 2025 Accepted: 13 May 2025 Published: 30 May 2025

Abstract - Network security is a major concern in today's digital era. Computer networks are constantly exposed to risks posed

by hackers. To enhance network security, it is essential to have effective solutions that can scan for and detect signs of potential

attacks. This study focuses on developing an attack alert feature using the open-source platform Nagios, one of the most widely

used network monitoring tools. One of Nagios' key advantages is its open-source nature, which allows users to easily customize,

edit, and add new features. The attack detection feature implemented in this project is based on an anomaly detection algorithm

for TCP connection-oriented protocols. The algorithm is simple, easy to install, and capable of effectively detecting large-scale

attacks using multiple techniques. When abnormal behavior is detected, Nagios sends an alert to the system administrator. With

these capabilities, administrators can respond more proactively to potential threats and address issues at the early stages of an

attack, minimizing damage and maintaining system integrity.

Keywords – Attack Warning Fearture, Open Source Code, Nagios, Network Security, Network Monitoring Tool.

1. Introduction
Cybersecurity is also extremely important in today's

world. With the rapid development of computer networks,

users have gained numerous benefits. However, alongside

these advantages come dangers from hackers. Network

administrators constantly find themselves in a passive position

when facing these threats. They are unable to predict the

timing or method of attacks, so they often cannot respond in a

timely manner. This leads to system disruptions, affects

services, and prevents users from accessing them. One of the

most common forms of attack today is the Denial-of-Service

(DoS) attack on websites. This type of attack comes in many

forms, causes significant damage and loss, and is difficult to

detect, making it a powerful weapon for hackers [1].

The "flood" attack method, which generates a large

number of requests, can slow down the system or even cause

it to become disrupted. Unlike destructive attacks using

viruses, DDoS (Distributed Denial of Service) attacks utilize

a massive number of computers (potentially up to millions) to

send HTTP GET messages that overwhelm the system,

making it difficult to analyze using network administration

tools. Among all types of DDoS attacks, more than 90%

exploit the TCP transport protocol. A common and effective

form of attack takes advantage of the TCP three-way

handshake mechanism [2]. In this method, connections are not

fully established, yet the server is forced to maintain these

half-open connections, which consume resources [3]. When a

SYN packet is received, the server responds with a SYN/ACK

packet at the corresponding service port. Until the server

receives the final ACK packet from the client, it must hold the

half-open connection for a timeout period of approximately 75

seconds. The server stores these half-open connections in

memory until the memory is full, at which point it starts

dropping them [4].

To effectively manage resources and protect the network

system from unpredictable threats, it is necessary to have a

reliable and accurate resource performance evaluation and

monitoring system. With such a system, administrators can

assess server demand, network device usage, and security

status, leading to better, more efficient, and safer resource

utilization strategies that are also cost-effective. Therefore, a

monitoring solution that provides an accurate overview of the

system is essential. A tool with the capability to alert

administrators immediately when signs of an attack are

detected is crucial. This feature helps system administrators

become more proactive in protecting the network, allowing

them to prepare appropriate countermeasures and thereby

enhance the system's ability to deliver services to users [5].

Currently, numerous tools and software solutions are

available for network system monitoring. Choosing a suitable

tool to install on a server—used for observing and storing

information from other servers and network devices—is an

important consideration. With the help of such tools, network

http://www.internationaljournalssrg.org/

Thi Ngoc Linh Tran / IJCSE, 12(5), 29-34, 2025

30

management becomes much simpler [6]. For example,

administrators can easily define policies for each server,

service, device, or user within the monitoring tool and

configure alerts at different levels for the administrators. From

a remote location, administrators can view alerts and take

appropriate measures to address and resolve issues indicated

by those warnings. This includes decisions about resource

replacement based on current conditions, understanding how

applications use system resources, identifying types of attacks

on the system, and determining corresponding

countermeasures. As a result, administrators can make

appropriate configuration recommendations for servers

running software or services, as well as for security devices

that are necessary [7].

The author studies Nagios, an open-source tool that is

highly effective for monitoring network systems. It is suitable

for both large and small network environments. The biggest

advantage of Nagios is its flexibility and extensibility—it can

be used in various ways, and its features can be expanded

according to user needs through the development of plugins.

This study will implement an attack alert feature to be

integrated into Nagios, helping to detect and promptly warn

when the system shows signs of being attacked.

Thanks to this feature, issues within the system can be

addressed in the most efficient manner possible. The primary

purpose of Nagios is to monitor the entire IT infrastructure,

ensuring that systems, applications, security, services, and

processes are functioning correctly. In the event of any

abnormal signs, Nagios will send alerts to administrators,

allowing them to begin the recovery process before an incident

occurs and affects operations or users. The Nagios tool helps

accurately identify issues affecting the critical infrastructure

of the network system.

2. Theoretical Framework
Nagios is known as an open-source program for

monitoring networks, services, and servers [8]. In essence, this

tool serves as a framework for observing devices, allowing

administrators to quickly compile various command lines into

configurations to collect information. There are many external

tools that support Nagios, and it is easy to integrate Nagios

with other monitoring tools, such as NRPE and MRTG [9].

First, it is essential to gather the core information

surrounding the general configuration of Nagios, so it is

necessary to start with basic configuration files related to four

key files: hosts, host groups, contacts, and services [9]. The

default configuration files come with clear descriptions of the

specific functions within each file. These files are located in

Nagios's default installation directory: /usr/local/nagios/etc.

Nagios's configuration is very straightforward [10].

Servers running the same service can be grouped together,

allowing administrators to easily track them in the Nagios web

interface. Similarly, when multiple administrators manage

different services, they can be grouped into contact groups.

Suppose a server running the Nagios program is shut down or

loses connection to a running service. In that case, Nagios will

notify the responsible administrator or administrator group

that manages that server or service.

Nagios runs as a monitoring service, checking servers and

services. At the same time, external supporting tools are

designated to collect information and send it back to the

Nagios server at predefined scheduled intervals. When signs

of issues are detected, Nagios alerts the system administrator

via email or a message. All status information over time,

historical logs, and report tables are uploaded to the web

interface for detailed viewing.

The Nagios application runs on a central server, typically

on a Linux or Unix system [11]. Each monitored server must

run a Nagios-compatible service to communicate with the

central server. The configuration files on the central server are

executed to perform the necessary checks on remote servers

and retrieve the collected information back to the central

server. While the Nagios application must run on a Linux or

Unix server, the remote servers can be any type of hardware

or operating system as long as they are capable of

communicating with the Nagios host.

Depending on the responses from the remote servers,

Nagios will react accordingly based on its configuration

settings. Depending on the type of remote check being

performed, Nagios may execute checks using the capabilities

of the remote server itself (such as checking if a file exists), or

it may run a specialized check program (known as a Nagios

plugin) to handle more complex checks (such as verifying the

version of a specific software package). If the returned value

is incorrect, Nagios will escalate the alert level using

predefined and configured notification methods.

The NRPE tool is designed to allow users to execute

Nagios plugins on remote Linux/Unix servers. The main

reason for this is to enable Nagios to monitor resources on

those servers (such as CPU usage, memory usage, etc.) from

a distance. Since these resources are not usually exposed

externally, a background program (called an agent) like NRPE

must be installed on the remote Linux/Unix servers.

Additionally, Nagios can execute plugins on remote

Linux/Unix servers via SSH, using a plugin called

check_by_ssh that enables this functionality. Using SSH is

more secure than NRPE, but it consumes significantly more

CPU resources on both the monitoring server and the remote

server. This becomes a concern when monitoring hundreds or

thousands of servers. Therefore, using NRPE is generally a

better option due to its lower CPU overhead.

Thi Ngoc Linh Tran / IJCSE, 12(5), 29-34, 2025

31

The NRPE tool consists of two components: the

check_nrpe plugin, located on the monitoring server, and the

NRPE daemon, running on the remote Linux/Unix server.

When Nagios needs to monitor the resources or service on a

remote Linux/Unix server, Nagios executes the check_nrpe

plugin, specifying which service or resource to check on the

remote server. The check_nrpe plugin communicates with the

NRPE daemon on the remote server through a secure

connection protected by the SSL protocol. The NRPE daemon

runs the appropriate Nagios plugin to check the specified

service or resource as defined in its configuration. These

Nagios plugins must already be installed on the remote server.

Without them, the NRPE daemon cannot monitor anything.

The NRPE daemon returns the result of the check to the

check_nrpe plugin, which then passes it back to the Nagios

software for processing. Nagios operations can be set up to

perform checks in two ways: using direct checks and indirect

checks. Direct check is the simplest method using NRPE to

monitor specific local resources on the remote server. For

example, CPU load, RAM usage, disk space, etc. Nagios can

use NRPE to perform indirect checks on public services and

resources of remote servers that the Nagios server cannot

directly access. For example, suppose a remote server has the

NRPE daemon and Nagios plugins installed and is able to

communicate with another remote server (whereas the Nagios

server itself cannot). In that case, the administrator can

configure the NRPE service to allow the Nagios server to

indirectly monitor that second remote server. In this setup, the

NRPE service essentially functions as an intermediary service.

Fig. 1 Architecture of Nagios

3. Materials and Methods
3.1. Building an Attack Alert Plugin for Nagios

This feature is designed to detect early signs of attacks,

whether carried out individually or in combination, that

hackers use to avoid detection. The goal of developing this

feature is to integrate it into Nagios Core to promptly detect

Denial of Service (DoS) attacks on servers. With this

functionality, system administrators can modify and

customize it over time to suit the current network conditions.

Moreover, it allows for flexible updates to match attack

indicators corresponding to the methods used by hackers.

To promptly detect sudden large-scale attacks from the

very beginning, it's essential to monitor and collect abnormal

signs during the connection establishment phase—the first

step in communication using the connection-oriented TCP

protocol. In this phase, a client sends TCP_SYN messages to

request a connection with the server. After receiving this

message, the server responds with a TCP_SYN/ACK and

allocates resources to maintain a half-open connection for

about 75 seconds, waiting for a TCP_ACK response from the

client. If the client never sends back a TCP_ACK, the server

wastes resources maintaining that half-open connection.

Furthermore, if the number of TCP_SYN messages

spikes due to many clients participating in this process, server

resources can be exhausted very quickly. Hackers exploit this

principle through various techniques, often combining

multiple methods to avoid detection and complicate the

defense and recovery process.

3.2. Detecting Signs of Denial-of-Service (DoS) Attacks

A Denial-of-Service (DoS) attack is a method of

drastically increasing network traffic (bandwidth usage) by

sending a large number of service connection requests to a

server, causing the server to become overwhelmed and unable

to respond, leading to system service disruptions or complete

failure. DoS attacks remain a serious threat today. Although

several countermeasures exist, most are either ineffective or

only moderately effective.

This attack method is based on the TCP three-way

handshake mechanism between a client and a server. One

common attack based on this principle is the SYN flood

attack. The attacker sends a large number of SYN requests

with spoofed (non-existent) source IP addresses. These SYN

requests are technically valid, so the target server responds

with a SYN/ACK and allocates resources for a half-open

connection. Since the spoofed source never replies with an

ACK, the server ends up maintaining a large number of these

half-open connections [7]. Preventing this kind of attack

requires systems to detect early indicators at the very

beginning of the attack. The detection method is usually based

on anomaly detection algorithms.

Several anomaly detection methods consider various

parameters, such as the CUSUM (Cumulative Sum Control

Chart) combined with average cumulative thresholds, as well

as the frequency of message pairs during data transmission

(e.g., SYN–FIN pairs, SYN-ACK pairs). However, these

methods are typically applied on border routers. For a system

to detect DoS attacks effectively, a packet filter must be

implemented. The success and accuracy of early detection

depend heavily on the quality of this packet filter.

One detection algorithm designed for this purpose is the

Adaptive Threshold Algorithm. This algorithm is simple, easy

to implement, and suitable for Linux environments. It

Thi Ngoc Linh Tran / IJCSE, 12(5), 29-34, 2025

32

measures the volume of TCP-SYN packets during the initial

phase of communication (connection setup) and compares it

against a predefined threshold. This is what distinguishes it

from other anomaly detection methods. The threshold is

determined over a fixed period based on an estimated average

number of TCP-SYN packets. If the observed traffic exceeds

this threshold, it is identified as an anomaly, and a warning is

triggered.

Assume at time t:

xt: number of SYN packets received during time interval t

μ_{t-1}: average rate of SYN packets measured

before time t

Alert condition is defined as:

If x_t ≥ (α + 1)·μ_{t-1}, then an alert

is triggered at time t.

Where:

μ_t: average threshold value calculated over

several sample intervals

α > 0: the percentage over the average rate, derived from

sample intervals where thresholds were previously exceeded

This forms the basis of the adaptive threshold algorithm,

which is used to detect signs of SYN flood attacks by

comparing the current rate of SYN packets to a dynamic.

Fig. 2 Diagram of the adaptive threshold algorithm

Based on this diagram, each incoming packet is checked

to determine if it is a TCP-SYN packet. If it is, the number of

TCP-SYN packets is updated; then, the values of α and μ are

calculated to determine the threshold. The number of TCP-

SYN packets received is then compared with this threshold to

determine the alert condition.

4. Results and Discussion
4.1. Normal Access Scenario

When a user accesses a service normally, the connection

setup process is carried out through the three-way handshake

mechanism. After the connection is successfully established

and a response is received from the server, the connection

remains open until the timeout period expires. Therefore, the

number of TCP-SYN packets required to establish the

connection again is not necessary. This characteristic is based

on the HTTP 1.1 protocol standard (persistent connection),

which is used by most web servers. The results collected and

extracted from the TCPDUMP tool indicate that the number

of TCP-SYN packets sent to the server for establishing a

connection is lower than the total ratio of TCP packets.

Fig. 3 Traffic connection statistics chart

The chart above shows statistical results during normal

connection: The data collected after a time period (about 2

minutes) shows that the threshold value achieved is α = 0.4

(threshold defined as the percentage ratio to the average rate).

This value will be applied as a safe threshold for comparison

with later attack indicators. When real-time monitoring is

performed using Nagios, the results indicate that this is normal

access, non-threatening, and a safe alert (with code 0).

Fig. 4 Nagios alert results during normal connection

Start

Incoming

packet

Filtering TCP-SYN-RECV

Total TCP-

SYN-RECV

Threshold comparison

(a+1)μt-1

Alert Exit

Correct

Greater than

Wrong

Smaller than

Thi Ngoc Linh Tran / IJCSE, 12(5), 29-34, 2025

33

4.2. Case of Attack Occurrence

In this scenario, the number of TCP-SYN packets

generated is much higher compared to normal access. The

traffic may come from a single source or multiple sources,

causing harm to the system. If the traffic comes from a single

source, this is known as a SYN Flood Denial of Service (DoS)

attack. If the TCP-SYN packets originate from multiple

different sources, it is referred to as a Distributed Reflection

Denial of Service (DRDoS) attack. Another scenario that can

lead to a sudden increase in TCP-SYN packets, which is

equally dangerous, is an application-layer attack specifically

targeting the web service of a server, resulting in a reduction

in server performance. This type of attack is called an HTTP-

GET attack. In this attack, an attacker continuously creates a

large number of successful connections and repeatedly sends

requests for a page on the web server, forcing the server to

maintain the connection and respond to the requested page.

The number of TCP-SYN packets collected and filtered from

the TCPDUMP tool indicates that the number of packets has

increased drastically, signaling a potential attack Significant

Increase in Traffic. This represents an abnormal increase in

TCP SYN packets, indicating a potential ongoing attack. In

practice, for a medium-sized system, if the number of TCP-

SYN packets reaches around 500 at a given time, it is a strong

indication that the system may be under attack. This abnormal

traffic surge could be caused by a SYN Flood DoS attack,

DRDoS, or other types of attacks that exploit the TCP

handshake process, leading to the exhaustion of system

resources. If this type of traffic is detected, it should trigger an

immediate alert in the monitoring system (such as Nagios) to

notify administrators of the suspicious activity.

In all the methods mentioned above and other similar

techniques, Nagios remains capable of detecting signs of an

attack. The results collected over a period of around 2 minutes

show that the threshold value reached α=0.624823, which

indicates that the attack was detected at very early stages. This

threshold is significantly higher than the value used as a

sample for normal access (where α was lower). The increase

in the threshold value serves as the key indicator for detecting

an attack in its early phase.

Fig. 5 Traffic diagram during an attack

The diagram above shows a significant increase in the

traffic of TCP-SYN packets over time. This is an abnormal

sign because, according to the principles of connection-

oriented protocols, TCP-SYN packets are only used in the

initial stage of the connection setup process. Once the

connection is established, sending TCP-SYN messages is

unnecessary. Due to the abnormal difference in the number of

TCP-SYN packets, based on the threshold value, the Nagios

alert feature is triggered and set with a Critical code (2). This

indicates that the system has detected a possible attack or

abnormal behavior, such as a SYN Flood or DRDoS.

Fig. 6 Nagios alert result for attack detection

5. Conclusion
 Network security issues have always been a top concern

nowadays. Network systems are constantly faced with

unpredictable attack threats from hackers using new methods

and techniques, making it challenging to ensure the smooth

operation of network systems. To effectively prevent and take

appropriate measures when attacks occur, it is crucial to detect

and provide timely alerts at the first sign of any attacks. The

successful development of a Denial-of-Service (DoS) attack

detection feature within an open-source environment has

contributed significantly to the field of system security. This

feature enhances the Nagios toolkit, making it more powerful

and effective when integrated into the system, solving the

issue raised by the thesis. This feature operates by detecting

abnormal signs in the traffic volume generated during the

operation of the server. A simple yet highly effective

algorithm provides results right at the onset of an attack. This

is a major contribution to attack detection methods because it

allows abnormal behavior to be detected with high accuracy

at the very first stage of the communication process.

Additionally, with the existing network performance

monitoring features in Nagios, administrators can obtain more

complete and detailed information, making it easier to manage

the system effectively.

 In the future, this method could be further refined and

adapted to identify other types of attacks, contributing to

improving the overall security of network systems. With the

combination of proactive detection and detailed real-time

monitoring, systems will be better equipped to withstand

attacks, reducing downtime and potential damage caused by

cyber threats importance and relevance.

Thi Ngoc Linh Tran / IJCSE, 12(5), 29-34, 2025

34

References

[1] Muhammad Zakarya, “DDoS Verification and Attack Packet Dropping Algorithm in Cloud Computing,” World Applied Sciences Journal,

vol. 23, no. 11, pp. 1418-1424, 2013. [Google Scholar] [Publisher Link]

[2] G.S. Navale et al., “Detecting and Analyzing DDoS Attack Using Map Reduce in Hadoop,” International Journal of Industrial Electronics

and Electrical Engineering, vol. 2, no. 2, pp. 56-58, 2014. [Google Scholar] [Publisher Link]

[3] Tongguang Zhang, “Cumulative Sum Algorithm for Detecting SYN Flooding Attacks,” Arxiv, pp. 1-3, 2012. [CrossRef] [Google Scholar]

[Publisher Link]

[4] Haining Wang, Danlu Zhang, and Kang G. Shin, “Detecting SYN Flooding Attacks,” Proceedings Twenty-First Annual Joint Conference

of the IEEE Computer and Communications Societies, New York, NY, USA, pp. 1530-1539, 2002. [CrossRef] [Google Scholar]

[Publisher Link]

[5] Chin-Ling Chen, and Chieh-Min Chen, “An Early Detection of Distributed Denial of Service Attack,” Advanced Computational

Paradigms and Hybrid Intelligent Computing, pp. 203-210, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[6] Thomas Chapman et al., “Design and Development of a Comprehensive Cyber Security Competition Visualization System,” Intelligent

Computing, pp. 1240-1249, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Mohd Faris Mohd Fuzi, Nur Fatin Mohammad Ashraf, and Muhammad Nabil Fikri Jamaluddin, “Integrated Network Monitoring Using

Zabbix with Push Notification via Telegram,” Journal of Computing Research and Innovation, vol. 7, no. 1, pp. 155-163, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[8] Tom Davies et al., “A Collaborative Intrusion Detection System Using Snort IDS Nodes,” Arxiv, pp. 1-23, 2025. [CrossRef] [Google

Scholar] [Publisher Link]

[9] Mohd Faris Mohd Fuzi et al., “Performance Analysis of Open-Source Network Monitoring Software in Wireless Network,” Journal of

Computing Research and Innovation, vol. 8, no. 2, pp. 31-44, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[10] Subhajit Sahana et al., “Automatic Anomaly Detection by Network Traffic Analysis,” 2023 3rd International Conference on Innovative

Sustainable Computational Technologies, Dehradun, India, pp. 1-6, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] John Hooft Toomey, “An Unsupervised Based Approach to Detecting Anomalies in Hazard Monitoring Networks,” Thesis, pp. 1-38, 2024.

[Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DDoS+Verification+and+Attack+Packet+Dropping+Algorithm+in+Cloud+Computing&btnG=
https://idosi.org/wasj/wasj23(11)13/1.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+And+Analyzing+Ddos+Attack+Using+Map+Reduce+In+Hadoop&btnG=
https://ijieee.org.in/paper_detail.php?paper_id=878&name=Detecting_And_Analyzing_Ddos_Attack_Using_Map_Reduce_In_Hadoop
https://doi.org/10.48550/arXiv.1212.5129
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cumulative+Sum+Algorithm+for+Detecting+SYN+Flooding+Attacks&btnG=
https://arxiv.org/abs/1212.5129
https://doi.org/10.1109/INFCOM.2002.1019404
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=H+Wang%2C+Detecting+SYN+flooding+attacks&btnG=
https://ieeexplore.ieee.org/abstract/document/1019404
https://doi.org/10.1007/978-981-16-4369-9_21
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Early+Detection+of+Distributed+Denial+of+Service+Attack&btnG=
https://link.springer.com/chapter/10.1007/978-981-16-4369-9_21
https://doi.org/10.1007/978-3-031-37717-4_82
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+Development+of+a+Comprehensive+Cyber+Security+Competition+Visualization+System&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-37717-4_82
https://doi.org/10.24191/jcrinn.v7i1.282
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integrated+network+monitoring+using+zabbix+with+push+notification+via+telegram&btnG=
https://jcrinn.com/index.php/jcrinn/article/view/282
https://doi.org/10.48550/arXiv.2504.16550
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Collaborative+Intrusion+Detection+System+Using+Snort+IDS+Nodes&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Collaborative+Intrusion+Detection+System+Using+Snort+IDS+Nodes&btnG=
https://arxiv.org/abs/2504.16550
https://doi.org/10.24191/jcrinn.v8i2.375
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+analysis+of+open-source+network+monitoring+software+in+wireless+network&btnG=
https://jcrinn.com/index.php/jcrinn/article/view/375
https://doi.org/10.1109/CISCT57197.2023.10351242
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+Anomaly+Detection+by+Network+Traffic+Analysis&btnG=
https://ieeexplore.ieee.org/abstract/document/10351242
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Unsupervised+Based+Approach+to+Detecting+Anomalies+in+Hazard+Monitoring+Networks&btnG=
https://www.cs.uoregon.edu/Reports/UG-202406-Toomey.pdf

