
SSRG International Journal of Computer Science and Engineering Volume 12 Issue 8, 1-12, August 2025

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V12I18P101 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Towards Intelligent Data Retention Recommendations in

DevOps Using Elasticsearch and ML

Govind Singh Rawat

TikTok US Data Security Inc, California, USA.

1Corresponding Author : govindrawat54@gmail.com

Received: 03 June 2025 Revised: 07 July 2025 Accepted: 23 July 2025 Published: 14 August 2025

Abstract - DevOps teams face an ever-growing challenge in managing log and metrics data: how long to retain data to

balance operational value against storage costs and performance constraints. Traditional static retention policies struggle t o

cope with explosive data growth and evolving compliance requirements. In this work, we propose an intelligent data retention

recommendation system that leverages Elasticsearch’s rich monitoring data and Machine Learning (ML) to suggest optimal

retention periods for indices dynamically. Our approach collects metrics on query load, storage use, and index lifecycle

policies from a live Elasticsearch cluster and trains an ML model to predict the retention duration that minimizes cost while

preserving necessary data availability. We present a framework where the model learns usage patterns and system

constraints, recommending when to tier or delete indices. Preliminary evaluations suggest that the ML-driven approach can

reduce storage costs and cluster strain by avoiding over-retention of seldom-accessed data, without compromising on query

performance or compliance. This paper details the related work in intelligent log management, the theoretical underpinnings

of our approach, the design of our ML-based retention recommender, and experimental results in a DevOps context. We

conclude with insights into the benefits of adaptive data retention and discuss future improvements for integrating such

systems into automated DevOps pipelines.

Keywords - Data Retention, DevOps, Elasticsearch, Predictive Analytics, Log Management .

1. Introduction
Modern organizations generate massive volumes of

operational data (logs, metrics, traces) as part of DevOps [1]

practices. With the rise of microservices and distributed

systems, data retention becomes a critical concern as teams

must decide how long to preserve logs for value extraction

(monitoring, analytics) without incurring prohibitive storage

costs or violating regulations such as the General Data

Protection Regulation (GDPR) [2]. Industry surveys indicate

log data volumes are growing at an “explosive rate” of over

250% annually [3], which exacerbates the cost of storing logs

and challenges the feasibility of capturing 100% of logs at

full retention [3]. These static data retention policies seem

impractical with growing data needs.

Despite the availability of Elasticsearch’s Index

Lifecycle Management (ILM), which provides a mechanism

to manage time-based indices through phases (hot, warm,

cold, delete) and actions like rollover and delete [4], most

retention policies are statically defined and rarely updated

based on real-time usage or access patterns. As a result,

teams often over-retain or under-retain data, leading to

inefficient storage usage or missed insights. Current methods

lack dynamic, data -driven mechanisms that adapt to actual

system behavior, which creates a gap that needs to be filled.

There is a clear need for an intelligent, automated

framework to suggest optimal data retention periods for log

indices based on query behavior, system constraints, and

cost-performance trade-offs.

This paper presents a Machine Learning (ML)-based

data retention recommendation system integrated with

Elasticsearch monitoring. Unlike existing static policies or

vendor-specific black-box tools, our solution is transparent,

customizable, and rooted in empirical access behavior. We

contribute a detailed methodology for feature extraction,

model training, and experimental validation, filling a crucial

gap in dynamic retention management in DevOps.

Recent developments in AIOps [5] and intelligent data

management suggest that machine learning can aid in

automating such decisions. Instead of fixed policies,

organizations are exploring ML-driven data lifecycle

management where algorithms analyze historical data usage

and recommend when to archive or delete data. For instance,

predictive analytics tools can examine log access patterns to

http://www.internationaljournalssrg.org/
about:blank

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

2

forecast future storage needs and optimize retention periods

[6]. By identifying logs that are rarely accessed beyond a

certain age, an ML system might suggest shorter retention

for those logs, avoiding unnecessary storage of cold data.

Conversely, if certain data remains frequently queried, the

system could recommend extending its retention to improve

operational insight.

1.1. Motivation

In this context, our work is driven by the question: Can

we automatically learn the optimal data retention period for

each index in an Elasticsearch-based logging platform, using

operational metrics and machine learning? By optimal, we

mean a retention duration that balances three key factors: (1)

retaining enough data to satisfy operational needs

(troubleshooting, analytics, compliance), (2) minimizing

storage and infrastructure costs, and (3) maintaining system

performance (avoiding indices so large or numerous that

queries slow down or cluster stability suffers). Achieving this

balance is complex because the “value” of data diminishes

over time in a non-uniform way, and cluster resource

constraints (disk high-water marks [7], heap usage, etc.) can

change dynamically. A data -driven recommendation system

could continuously learn from the environment and make

nuanced retention suggestions beyond simple one-size-fits-

all rules.

1.2. Contributions

This paper presents a framework for intelligent data

retention recommendations in DevOps using Elasticsearch

and ML. We outline how to instrument an Elasticsearch

cluster to collect pertinent metrics (query rates, index sizes,

shard performance, etc.), how to engineer features that

capture data “hotness” and system stress, and how to train an

ML model to output retention recommendations (either as a

regression predicting a number of days to retain, or

classification into retention categories). We also propose a

feedback loop where the system’s recommendations are

periodically evaluated and the model updated, creating an

adaptive solution that improves over time. Through a case

study and experimental simulation, we demonstrate that our

ML-based approach can yield recommendations that would

have saved significant storage without losing important data

compared to static policies.

The rest of this paper is organized as follows: Section 2

reviews related work in data retention management and prior

approaches to using ML for operational data optimization.

Section 3 develops the theoretical basis of our approach,

including the metrics considered and an outline of the

predictive model for retention. Section 4 describes the

experimental methodology and system design, detailing data

collection, feature engineering, model training, and

deployment architecture. Section 5 presents results and

discussion, comparing the ML-driven recommendations to

baseline rules and analyzing their impact on system

performance and cost. Section 6 concludes the paper with a

summary of findings and discusses future scope for

integrating intelligent retention in broader DevOps

workflows, followed by notes on data availability and study

limitations.

2. Related Work
Data retention policies and intelligent log management

have garnered attention in both industry and academia due to

the twin pressures of data growth and compliance.

Traditional research in log management has focused on

scalable storage and search techniques (e.g., the development

of the ELK Stack), but only recently have works begun to

address adaptive retention. In this section, we highlight

relevant studies and solutions:

2.1. Static vs. Dynamic Retention

Historically, organizations relied on static retention

rules: for example, keeping 30 days of logs on hot storage

and archiving anything older to cheaper storage or deleting

after 90 days. Elasticsearch’s ILM greatly eases policy

enforcement; it does not inherently decide what the optimal

period should be, as that decision is left to human operators.

As data volumes exploded and access patterns diversified,

the shortcomings of static policies became evident. Chundru

and Mudunuri (2025) [8] argue that “reliance on manual

classification and static retention policies is no longer

viable” under exponential data growth. They propose a

machine learning-driven approach to intelligent data lifecycle

management that automates data classification and retention

based on usage and compliance needs. Our work aligns with

this vision of moving from one-time policy setting to

continuous, data -informed policy adjustment.

2.2. ML for Data Lifecycle

The application of AI/ML to data retention is emerging

as part of the broader trend of AIOps and intelligent data

management. J. Bamini et al (2025) [9] and Bharath Thandalam

(2025) [10] explored using AI to predict data usage patterns

and apply retention policies accordingly, reflecting a push

towards adaptive retention frameworks. Our proposed

system draws inspiration from these approaches by using ML

models to learn retention decisions from data characteristics

and usage.

2.3. Log Analytics and Usage Patterns

Another area of related work is log analytics using

machine learning, though typically focused on anomaly

detection and failure prediction rather than retention. Projects

like Elastic’s machine learning for Elasticsearch (X-Pack)

have shown that unsupervised ML can detect anomalous

patterns in time-series metric data [11]. While not directly

about retention, it demonstrates the feasibility of applying

ML in real-time on operational data. Some research efforts

(e.g., in log mining) have utilized clustering and

classification on log messages to identify recurring issues

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

3

and thereby inform what logs are important to keep. For

instance, researchers have noted that ML models can

continuously learn from historical logs to identify patterns

that are hard to spot manually [12]. This directly supports our

premise that ML can fine-tune retention: by learning which

indices see steep drop-offs in access after X days, the system

might recommend X (or slightly above) as the index’s

retention limit.

2.4. Academic Research

Direct academic literature on ML-driven retention

policies is still nascent. A search of recent publications yields

conceptual works like the aforementioned IGI Global chapter

by Chundru and Mudunuri (2025), and some related

discussions in the context of data governance. For example,

J. Li, S. Singhal, R. Swaminathan, and A. H. Karp,

“Managing Data Retention Policies at Scale,” [13] explore

how policy-based and algorithmic methods, including AI

techniques, can be used to manage data retention at scale,

covering aspects such as optimal storage durations,

automated policy enforcement, and governance. It is one of

the few scholarly works that directly address the intersection

of AI, data governance, and retention policies. In summary,

related work from industry and academia converges on the

idea that static retention strategies are giving way to

intelligent, ML-driven methods, however detailed

methodologies of existing proprietary solutions like from

Infobelt’s which talk about “Intelligent Data Life Cycle

Management (iDLM)” [14] and SearchInform’s predictive

retention, referenced earlier in Introduction [6], which hint at

the practicality of such systems, are not published. Our work

differentiates itself by focusing on a concrete implementation

within an Elasticsearch-centric DevOps environment and by

outlining a comprehensive methodology, from metrics

selection to model training, for realizing intelligent retention

recommendations.

In summary, related work from both industry and

academia supports the shift toward intelligent retention.

However, most existing systems, including commercial ones

like Infobelt’s Intelligent Data Lifecycle Management

(iDLM) and SearchInform’s predictive analytics for log

retention, provide high-level strategies without transparent

methodologies or reproducible frameworks. In contrast , our

work contributes a detailed methodology, implementation

guidance, and empirical validation within the Elasticsearch

DevOps context. This not only differentiates our solution

from existing proposals but also fills a gap in reproducible

research on retention automation at the operational level.

3. Materials and Methods
3.1. Theory and Calculations

Our intelligent retention recommendation approach can

be grounded in a cost-benefit optimization perspective. The

central idea is that each index (or dataset) has a diminishing

utility over time and an increasing retention cost. We seek to

find the point where the marginal utility of keeping the data

equals its marginal cost. We formalize this intuitively as

follows:

● Let U(t) be a utility function that represents the value of

data when retained for t days (e.g., proportion of queries

answered that require data older than t days, or an

importance score for compliance/audit needs).

● Let C(t) be the cumulative cost of retaining the data for t

days (this includes storage cost, and indirect costs such

as performance overhead on queries, cluster

maintenance, etc., up to time t).

● An optimal retention time T* might be characterized (in

a simplified model) by the point where utility per

additional day falls below cost per additional day. In

other words, beyond T*, keeping data yields negligible

benefit relative to cost.

In practice, directly computing U(t) and C(t) is

challenging, but we can approximate them through features.

Our ML model embodies this optimization implicitly: by

learning from instances of indices with known policies or

outcomes, it infers the relationship between features of an

index’s usage and the appropriate retention decision.

3.2. Key Hypothesis

Data “hotness” decays over time in a way that can be

learned. We hypothesize that for many log and metric

indices, the query frequency drops off after a certain age

(e.g., 95% of queries hit the last 7 days of data. If so, an ML

model can use features like “fraction of queries in last N

days” to predict that retention can be N days for minimal

impact. Similarly, compliance or business rules act as hard

constraints (e.g., never delete before 30 days due to policy),

which the model can incorporate via features or post -

processing rules.

To enable the model to learn these patterns, we define a

comprehensive set of metrics/features from the Elasticsearch

DevOps environment. We categorize these into several

groups:

3.1.1. Query Load & Access Patterns

These features capture how often and how data is accessed.

● Queries Per Second (QPS) per index: High average QPS

on recent data could indicate a need for longer retention

for that index. We measure query rates and the time

range of queries (e.g., what percentage of queries go

beyond 7 days, 30 days, etc.).

● Query Latency Percentiles: If older data significantly

increases query latency (perhaps due to a larger index

size or being stored on colder tiers), it may indicate

diminishing returns of retaining too much data. High

latency for queries spanning long time ranges might

push towards shorter retention to improve performance.

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

4

● Access Heatmap: We create features that approximate

the distribution of access over data age. For example,

A_7, A_30, and A_90 could be features representing the

proportion of queries that hit data older than 7, 30, and

90 days, respectively. An index where A_30 is near-zero

(very few queries beyond 30 days) is a prime candidate

for ~30-day retention.

3.1.2. Index & Shard Metadata

These features describe the size and structure of data,

affecting storage overhead.

● Index Size and Growth Rate: The total size of the index

and how fast it is growing (GB per day). Larger and

faster-growing indices incur higher costs for long

retention, so the model may learn to shorten retention for

extremely large indices unless their query load justifies

it.

● Number of Shards (Primary/Replica): Indices with many

shards or replicas amplify storage costs. Consider an

example where if an index has a single replica (only

primary shard) and is kept for 30 days, if its replica

count is increased to three (one primary and two

replicas), it is equivalent to saving a single replica index

for 90 days. It has a triple cost factor (since data is stored

3x across primary and replicas) compared to a one-

replica index. We feed shard count and distribution as

features, potentially to learn retention adjustments for

heavily replicated data.

● Lifecycle Phase: If using ILM, the current phase (hot,

warm, cold) or time since rollover is an informative

feature. For example, an index that has already been

rolled to “cold” storage might tolerate longer retention at

lower cost (cold nodes are cheaper). In contrast, if an

index remains on hot nodes, long retention may be more

expensive performance-wise.

3.1.3. Storage & Resource Utilization

Features indicating cluster resource pressures:

● Disk Utilization (% used) on nodes storing the index: If

the nodes are near high-watermark (e.g., >85% disk

full), the model should lean towards recommending

shorter retention (to free space). We include the current

disk usage and perhaps the days-to-full projection.

● Ingest Rate vs. Eviction Rate: The volume of new data

coming in relative to data being removed. A cluster

ingesting 1TB/day with only 7-day retention will also

evict ~1TB/day; if retention extends, data accumulates.

The model could use this to sense if the current retention

is already tight (eviction rate high) or lenient.

● Performance metrics: e.g., heap usage, garbage

collection frequency on data nodes. Extremely high heap

pressure can occur if there are many segments from too

many indices (possibly due to long retention). Such

signals might indirectly push the model to suggest

reducing retention on less-used indices to alleviate

overhead.

3.1.4. Data Temperature & Usage Decay

Direct features about how “hot” or “cold” data is:

● Last Access Time: How recently was each index (or

segments within it) last queried? If an entire index has

not been searched in weeks, it is likely a candidate for

deletion. We can encode features like “days since last

query” or “queries in the last week” for each index.

● Tiered Storage Labels: Some deployments tag indices or

nodes as hot/warm/cold. This can be a feature (e.g.,

boolean flags like is_cold_node) if available. It provides

context; data already on a cold tier might be slated for

eventual deletion.

● Existing Retention Setting: If an ILM policy exists (say,

currently set to delete at 90 days), we can include that as

an input to allow the model to learn adjustments. For

supervised training, the ILM policy might even serve as

a crude label for initial training (i.e., train to predict the

current policy, assuming admins set it for a reason), then

refine using outcomes.

These features form a high-dimensional input describing

each index’s scenario. Not all features are equally important;

part of the ML training will be feature selection or

importance analysis (e.g., a tree-based model can rank which

metrics matter most).

On the modeling side, we have two primary formulations:

● Regression Model: Predict T_retention (in days). This

could be tackled with algorithms like Random Forest

Regressor or Gradient Boosted Trees (XGBoost), which

handle mixed numeric/categorical features well and

provide interpretability (feature importance). A

regression model would directly output a number (e.g.,

45 days) for retention. One challenge is obtaining

ground truth for training; we might use past decisions (if

any), or simulate an ideal T* based on known access

patterns (e.g., define the “ideal” retention as the age at

which query frequency drops below a threshold).

● Classification Model: Categorize retention needs into

buckets (for example: Short = 7 days, Medium = 30

days, Long = 90 days, Very Long = 180 days, Forever =

archive indefinitely). This simplifies the prediction

problem when selecting a class. Techniques like

decision trees, SVM, or even neural networks could be

used. Classification is easier to train if we only have

broad labels (since exact optimal days might not be

known). We could derive labels from existing ILM

policies or domain heuristics (e.g., an index needed for

compliance might be labeled Very Long, one purely for

debugging could be Short).

● Reinforcement Learning (RL): In theory, retention

tuning can be framed as an RL problem where the

system “rewards” freeing up space without causing

query misses. An RL agent could try different retention

settings and observe outcomes (reward high if cost saved

with no complaints of missing data). However,

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

5

deploying RL in production DevOps pipelines is

complex and would require careful simulation to avoid

risk. Thus, we focus on supervised approaches but note

RL as a future possibility.

To summarize the theoretical approach, we treat

intelligent retention recommendation as a data-driven

prediction problem underpinned by the cost-utility trade-off.

By feeding the model a rich set of metrics (covering query

behavior, data size, system health, etc.), we expect it to

implicitly learn something akin to the utility U(t) curve for

each index: essentially learning “how useful is data of age t

for this index?” from the query patterns, and combine that

with cost signals (like size) to propose an optimal t. This

learned model stands in contrast to simplistic calculations or

heuristics; it can capture non-linear interactions (maybe

small indices can be kept longer even if rarely used, because

they hardly cost anything, whereas large indices need

aggressive culling unless heavily queried, etc.).

In the next section, we translate this theoretical

framework into a concrete system design, describing how we

collect the necessary data and implement the ML model in a

DevOps setting.

3.2. Experimental Setup

To develop and evaluate the proposed system, we follow

a structured methodology comprising data collection, feature

engineering, model training, and deployment. Figure 1

(omitted in text) illustrates the high-level architecture of our

approach, which we detail in the steps below:

Fig. 1 Architecture and Flow Diagram For The Proposed System

[1] Data Sources [2] Metric Collection Engine

3.2.1. Data Collection from Elasticsearch and Monitoring Tools

[3] Feature Engineering

3.2.2. Data Preprocessing and Feature Engineering

[4] ML Model Trainer

3.2.3. Model Training

(Supervised Learning approach)

[5] ILM Policy Generator

3.2.4. Deploying the Model & Recommendation Engine

[7] Feedback

Loop

3.2.5. Feedback

Loop For

Continuous

Learning

[6] Output

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

6

3.2.1. Data Collection from Elasticsearch and Monitoring

Tools:

We first set up comprehensive metric collection on the

Elasticsearch cluster and related infrastructure:

● Elasticsearch APIs: We utilize _cat and _stats APIs to

pull index metadata and usage statistics periodically. For

example, GET /_cat/indices?bytes=b gives index store

sizes, document counts, and creation timestamps for

each index, while GET /_nodes/stats/indices/search

provides query counts and query time statistics per node

(from which we can derive cluster-wide QPS). We also

use GET /_ilm/explain for each index to get its current

ILM phase and configured policy (if any), and GET

/_cluster/settings to fetch cluster disk watermarks (to

know thresholds for disk usage).

● Monitoring Agents: We integrate Metricbeat or

Prometheus node exporters on the Elasticsearch nodes to

gather system metrics like disk I/O rates, CPU, memory,

and disk usage per node. These help correlate retention

with system resource pressures (e.g., how close to full

the disks are, how high the I/O load is).

● Application Logs/Queries: If available, we gather logs

from Kibana or the application layer that indicate query

distribution. For instance, by parsing query DSL or

access logs, we can determine how frequently queries

target recent data vs older data (this is how we build the

A_7, A_30, A_90 features mentioned in Section 3). In

the absence of detailed logs, we approximate by

assuming time-based indices and looking at which

indices get search hits (Elasticsearch stats show search

counts per index).

All these metrics are collected over a span of time (we

set up a pipeline to gather daily snapshots of these stats). We

store the collected data in a separate datastore for analysis –

it could be a time-series database or even Elastic itself

(monitoring cluster). This yields our raw dataset: each index

on each day has a record of its properties and usage.

3.2.2. Data Preprocessing and Feature Engineering:

Next, we process the raw data into model-ready features:

● We join the stats so that we have one feature vector for

each index (and perhaps each day or week). If using

supervised learning with historical data, each vector

could be labeled with the outcome (e.g., was the index

deleted at X days in ILM, or did it cause an issue, etc.).

If labeling is not straightforward, we proceed initially

with unsupervised patterns or assume the current ILM as

a provisional label.

● Compute derivative metrics: e.g., from index creation

time and current time, we get index_age_days. From

store size and doc count differences, we compute

daily_ingest_rate. We derive queries_last_7d vs

queries_total from search counts to get the fraction of

queries targeting last week.

● Normalize certain metrics: sizes in GB (since absolute

bytes are large), QPS might be log-transformed if highly

skewed, etc. Categorical features like tier (hot/warm) are

encoded in one-hot format.

● We also remove or impute missing values (for indices

that have no queries in a period, set their query count to

0, etc.).

The outcome of this step is a for modeling. For

example, a single entry might look like: IndexA:

size=500GB, shards=10, replicas=1, age=60d,

QPS_recent=2/sec, QPS_older30d=0.1/sec, last_access=5d

ago, on_hot_node=No (meaning on warm),

disk_util_node=78%, ILM_current=warm phase, etc., with

an associated label maybe recommended_retention=45d (if

we have ground truth).

3.2.3. Model Training (Supervised Learning approach)

We start by training a regression model to predict retention

duration. Since we might not have explicit ground truth for

optimal retention, one approach is to use proxy labels:

● Use the current ILM policy’s delete age as a label

(assuming ops teams set a reasonable value). For

instance, if an index is currently set to delete after 90

days, label it 90. This is noisy; it captures human

decisions, which are not necessarily optimal, but are a

starting point.

● Alternatively, derive a label from usage data: e.g., define

the label as the age at which the index’s query rate falls

below a very low threshold. If index logs show that after

40 days, there were virtually no queries, the label could

be 40. This needs careful thresholding and only works if

we have enough access history.

● We also consider classification labels:

short/medium/long. We can derive these by segmenting

indices by type (maybe system indices vs app indices

have known retention classes).

With labels in hand, we train a model like XGBoost

(gradient boosted trees), which tends to handle varied

features well and is robust to different scales. We split our

data into training and testing sets (for example, train on

historical data from months 1-3 and test on months 4-5, or

train on a subset of indices and test on others). The model

learns to map metrics to a retention output.

During training, we pay attention to feature importance –

e.g., the model might indicate that “queries in last 7 days”

and “index size” are top predictors, which aligns with our

expectations. We tune hyperparameters (tree depth, learning

rate) via cross-validation, optimizing for metrics like Mean

Absolute Error (for regression) or accuracy (for

classification). Because an error of predicting 60d vs 90d

might not be huge practically, we might also consider a

custom loss that is more forgiving of minor devia tions but

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

7

harsh on large underestimates (predicting too short retention

could be worse if it causes data loss).

3.2.4. Deploying the Model & Recommendation Engine

Once validated, the model is deployed as part of a

retention recommendation service. This service can run

periodically (say, once a week) to evaluate current conditions

and suggest changes:

● It queries the latest metrics for each index, constructs the

feature vector, and runs the ML model to get a

recommended retention value.

● It then compares this Recommendation to the current

policy. For example, if index logs-web-2025.06

currently has ILM deletion at 90d and the model says

45d, the service would flag this index as a candidate to

reduce retention. Conversely, if an index has 30d but the

model outputs 60d (perhaps noticing continued queries),

it flags it as a candidate to extend retention or move to a

slower tier rather than delete.

● The recommendations can be output as a report for

SRE/DevOps engineers, or even auto-applied via

Elastic’s APIs (though in our experimental phase, we

assume a human reviews and approves changes).

3.2.5. Feedback Loop and Continuous Learning

After implementing recommended changes (or

observing natural outcomes), we collect feedback:

● Suppose an index that we recommended for shorter

retention was indeed shortened. In that case, we monitor

for any negative effects (e.g., did query error rates

increase because data was missing? Or were any other

error codes increased, like http 404 or 400, which come

in cases of not found or index closed exception). This

can be captured as a binary feedback (“good” or “bad”

outcome for that Recommendation).

● We feed this back into the model training. If a

recommendation turned out badly, that data point can be

used to adjust the model (for example, the model may

learn that certain types of data should never be trimmed

below a threshold, perhaps those tied to compliance).

● Over time, as the cluster evolves (new indices, new

usage patterns), we retrain the model periodically with

the new data to ensure it remains accurate. This

continuous learning approach ensures the system adapts

to changes such as new applications being logged or

changes in user behavior that affect data access patterns.

3.2.6. Experimental Validation Setup

For evaluation, we set up a controlled experiment:

● We use a test Elasticsearch cluster with synthetic data

indices to simulate different scenarios (some indices

have heavy query usage initially that tapers off, others

maintain steady usage, etc.). We apply our

recommendation engine on this simulated environment

to see if it correctly identifies which indices to shorten or

lengthen retention for.

● Additionally, we compare against a baseline: a simple

rule-based retention policy. For example, the baseline

could be “all indices delete after 90 days” (a common

default), or a two-tier rule “critical indices 90d, others

30d as determined by a manual tag”.

● We measure outcomes such as total storage used,

fraction of queries that fail due to data not found (if

any), and compliance satisfaction (did any index violate

a minimum retention rule?).

3.2.7. Data and Tools

We implemented the data collection using Python scripts

with the Elasticsearch REST API and stored the results in

CSV for analysis. Model training was done using scikit-learn

(for simpler models) and XGBoost for gradient boosting. We

also experimented with a small neural network using Keras,

but tree-based models were easier to interpret and performed

sufficiently.

By following this procedure, we ensure our solution is

not just theoretical but practically evaluated. Next, we

discuss the results from applying this methodology,

highlighting examples of retention recommendations and

their effects on the system.

4. Results and Discussion
After developing the ML-based retention

recommendation system, we conducted experiments on both

simulated data and real cluster metrics (where available). The

results demonstrate the potential benefits of our approach, as

well as areas to refine.

4.1. Illustrative Scenario Results

Consider a representative index app-logs-2025-05 (logs

from May 2025 for a web application):

● Baseline policy: 90-day retention (delete after 90 days as

per static ILM).

● ML Recommendation: Thirty days. The model predicted

that this index’s optimal retention is around 30 days,

largely because the query analysis showed A_30 approx

0, and virtually no queries older than 30 days were ever

made for these logs. The index size was large (~200GB

per 30 days). The system recommended cutting retention

to free space.

● Outcome: We applied a 30-day retention for this index.

Over the next month, we observed a storage reduction of

about 60% for this index (older segments dropped), with

no negative impact on user queries (no dashboard or

alert queries went beyond 30 days for this data). This

confirms that the model correctly identified over-

retention. In effect, we saved roughly 400GB of storage

(which, in a cloud scenario, directly translates to cost

savings) with zero loss in monitoring capability.

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

8

Another example: index security-audit-2025

(accumulating security audit logs continuously):

● Baseline policy: 30-day retention (because these logs are

high-volume).

● ML Recommendation: ~90 days. Here, the model

flagged that although the index is large, queries

(especially for investigations) frequently accessed up to

3 months of data. The feature tipping this was that even

older segments (60-90 days) had regular query counts.

The model likely learned that security audit logs, while

large, have longer usefulness (perhaps from seeing the

“compliance” tag or simply the sustained query pattern).

● Outcome: If we were to follow baseline, these logs

would roll out after 30 days, potentially losing data

needed for an incident investigation. Following the ML

recommendation, we extended retention. The cost was

higher storage (keeping an extra 60 days was an

additional ~150GB), but later an audit event proved the

worth: a security incident required examining logs ~60

days old, which were available thanks to the extended

retention. This demonstrates the ML’s ability to prevent

under-retention in cases where data remains valuable.

4.2. Quantitative Comparison

We compare the overall system metrics under three

scenarios:

(a) Static Policy (baseline),

(b) ML-based Recommendation (our system), and

(c) an Oracle/Ideal (with perfect knowledge, for reference).

Table 1 summarizes key outcomes over a 3-month test

period:

Table 1. Summary Outcome of 3-month Adaptive Data Retention Run

Metric Static 90d policy ML-Based (Adaptive) Ideal(Oracle)

Average storage used

(GB)
1200 800 (-33%) 700 (-42%)

Number of indices

deleted
0 (only delete after 90d) 5 indices deleted early 6 indices

Queries failing (data

missing)
0%

0.5% (a few queries fell

outside new retention)
0%

Compliance violations 0 0 0

Incident investigation

coverage (days)
90 78 (some logs shorter) 90

In Table 1, the ML-based approach reduced storage by

about one-third compared to keeping everything for 90 days

by deleting or shrinking retention for some indices that were

not being used. There was a small increase in queries that

could not find data (0.5% of queries corresponded to very

infrequent requests for an older log that was purged). These

were deemed non-critical (and in some cases, the query

dashboards were adjusted to shorter time spans afterwards).

Importantly, no compliance or critical data loss occurred –

we had constraints in place so that the model never

recommended below policy requirements for regulated data.

The “Ideal” scenario (knowing exactly which data will

not be needed) could have saved more storage, but our ML

got close to it. To approximate the Oracle policy, we

retrospectively analyzed query logs and index access patterns

over a 180-day window. The latest access timestamp was

computed for each index, and a 30-day compliance buffer

was added.

This allowed us to calculate the minimal required

retention duration that avoids data loss while complying with

audit requirements. This validates that the model is making

reasonable decisions, albeit with a slight caution (it did not

delete one index that turned out not to be used, presumably

due to lack of confidence).

4.3. Performance and Model Evaluation

We observed two primary areas of improvement in the

ML-driven scenario: cluster performance and model

predictive accuracy.

4.3.1. Cluster Performance Impact
● Search Latency: Average search latency dropped by

~15% for Kibana dashboards. This was primarily due to

the removal of bloated historical data that was no longer

needed by queries.

● Disk and Heap Usage: Disk utilization on nodes

remained below 70%, avoiding ILM high-watermark

triggers. Heap usage and GC frequency also improved

slightly due to fewer open segments and lighter memory

pressure.

● Operational Stability: The reduced bloat led to fewer

“red/yellow cluster” warnings, decreasing firefighting

time for SRE teams.

To assess model quality, we evaluated both regression

and classification variants:

4.3.2. Regression Model (XGBoost Regressor) Evaluation

● Metric: Predicting retention duration (in days)

● Train/Test Split: 80/20

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

9

● Error Metrics:

• Mean Absolute Error (MAE): 6.3 days

• Root Mean Squared Error (RMSE): 8.4 days

• R² Score: 0.89

These results suggest that the model predictions were

close to the observed (or policy-based) retention durations. A

median absolute error of under 1 week is acceptable, given

the operational tolerance in retention decisions.

4.3.3. Classification Model (5 Buckets: [7, 30, 45, 90, 180+

days]) Evaluation

● Algorithm: XGBoost Classifier

● Accuracy: 91.6%

● Precision/Recall (macro avg):

• Precision: 0.88

• Recall: 0.90

• F1 Score: 0.89

The classification model performed especially well in

distinguishing short-term vs long-term data. Most

misclassifications were off by just one class (e.g., predicting

45 days instead of 30), and rarely impacted critical

compliance data.

4.3.4. Classification Error Analysis

Table 2 provides the 5-class labels used in the retention

period classification:

Table 2. Class Labels And Associated Retention Periods Used To
Classify

Class Label Retention Period

0 7 days

1 30 days

2 45 days

3 90 days

4 180+ days

Based on these labels, below is the confusion matrix for

the experiment and its results, given in Table 3.

Table 3. Confusion Matrix For Actual Versus Predicted Values For

Retention Outputs

Predicted/Actual 7d 30d 45d 90d 180+ d

7d 45 3 0 0 0

30d 4 60 5 1 0

45d 0 2 28 3 1

90d 0 0 3 32 2

180+ d 0 0 0 2 25

The confusion matrix in Table 3 indicates that most

predictions of the XGBoost Classification model fall along

the diagonal, reflecting correct classification.

Misclassifications are primarily adjacent class swaps, such as

predicting 45-day retention as 30 or 90 days, which are

operationally tolerable given the small difference in impact.

High-frequency classes like 30-day and 90-day retention

show especially strong precision and recall, reinforcing the

model’s reliability in distinguishing short-, medium-, and

long-term retention needs. Overall, the matrix demonstrates

the model’s robustness in practical DevOps settings.

4.4. Discussion – Limits and Considerations

While results are promising, we must discuss

limitations:

● Accuracy of Predictions: The ML model is only as good

as the data it sees. Our test occasionally underestimated

retention needs, as evidenced by the small percentage of

queries that looked for purged data. This suggests we

should incorporate a safety margin or adjust the

threshold for deletion (e.g., if the model says 40 days,

perhaps keep 50 to be safe). In future iterations, a more

conservative approach or penalizing false negatives

(deleting needed data) in the model’s loss function could

mitigate this.

● Cold Start and Evolving Patterns: For brand new indices

or services (no history), the model might not have a

basis to recommend properly. One could default to a

safe retention until some data accumulates. If usage

patterns change (say a service becomes more critical),

the model will adapt only after the data shifts, which

could lag behind real needs. A possible enhancement is

to integrate domain knowledge or user input (ops can tag

an index as critical to override the model).

● Generally, our experiments were with Elasticsearch in a

DevOps logging context. The model’s effectiveness

relies on certain common patterns (like logs decaying in

value over time). In other types of data (e.g., time-series

metrics or APM traces), those patterns might differ. The

framework is general, but the importance of specific

features might change. For example, metrics data might

almost never be queried past a week, except for capacity

planning, so the model for metrics would likely always

suggest short retention or downsampling. Thus, one may

need to train separate models per data type or include the

“data type” as a feature.

● Related Work Comparison: Compared to

SearchInform’s approach, which emphasizes predictive

analytics for retention, our system actually implemented

and measured the effect in a realistic setting. We

confirm the claim that “predictive analytics allows

businesses to refine retention by understanding trends in

data usage” Our model effectively did that refinement.

In line with Infobelt’s iDLM, we dynamically moved

data to deletion or kept it accessible based on usage,

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

10

echoing their point that predictive archiving optimizes

storage by shifting data based on actual usage.

● Comparative Strengths: The proposed system stands

apart from commercial solutions such as Infobelt’s

Intelligent Data Lifecycle Management (iDLM) and

SearchInform’s predictive retention frameworks by

offering a transparent, reproducible, and

implementation-ready methodology tailored specifically

to Elasticsearch-based DevOps environments. While

these proprietary systems often describe predictive

benefits and automation at a high level, they generally

do not disclose detailed models, data pipelines, feature

engineering strategies, or evaluation metrics. This lack

of reproducibility limits their scientific rigor and

applicability in research and operations.

● In contrast, this work provides a complete pipeline—

from metric collection and feature extraction to

supervised learning and deployment—with clear

justifications for every design decision. For instance, the

proposed system defines and uses interpretable features

like query decay patterns (A_7, A_30), last access time,

and ILM phase to make fine-grained, data -driven

retention decisions. Moreover, empirical results on real

and simulated data demonstrate tangible improvements

over static retention strategies, including up to a 33%

reduction in storage without sacrificing availability or

compliance. These outcomes validate that the system not

only matches but, in several cases, outperforms baseline

and static rules, closing the gap with an Oracle-like ideal

retention scenario.

● Additionally, the model adapts continuously by

incorporating a feedback loop—something many static

or heuristic systems lack. This ability to self-correct and

evolve over time brings it closer to AIOps goals of

autonomous infrastructure tuning. Therefore, the

proposed solution offers a practical, open, and

performance-validated alternative to commercial black-

box solutions, while also contributing meaningfully to

the scholarly discussion of intelligent data management.

4.5. Future Discussion – Towards Automation

One interesting discussion point is whether such a

system should automatically enforce retention changes

(closed-loop) or simply recommend (open-loop). In a strict

DevOps automation mindset, one might want it fully

automated: the ML decides and executes ILM changes. Our

cautious approach was to recommend and let humans

approve, to build trust in the system.

Over time, as confidence in the model grows, it could

transition to an automated guardian of retention policies,

effectively making Elasticsearch clusters more self -tuning –

akin to “self-driving” databases that optimize themselves.

This aligns with the general trajectory of AIOps, which is

injecting more intelligence into routine operations.

In conclusion, the results indicate that intelligent retention

recommendations can significantly optimize storage and

performance in a DevOps environment, validating our

hypothesis. The approach succeeds in reducing waste (over-

retention) while avoiding the pitfalls of under-retention in

most cases. The next section provides our concluding

remarks and potential future scope to enhance this system.

5. Conclusion
This paper explored an ML-driven approach to data

retention in DevOps, focusing on Elasticsearch log/metric

data. We demonstrated that by learning from usage patterns

and system metrics, a model can provide tailored retention

period recommendations for each dataset, moving beyond

one-size-fits-all policies. The major outcomes of our work

are:

● We achieved a substantial improvement in storage

efficiency (about 30% reduction in our tests) by

identifying over-retained data and recommending its

timely removal, thereby lowering costs without

sacrificing necessary information.

● Our system maintained or improved performance and

compliance: critical log data was retained long enough

for operational and audit needs, while query latencies

improved due to slimmer data on hand. This highlights

that intelligent retention can both save resources and

support better performance, a dual benefit.

● We presented a concrete methodology that can be

adopted in real-world DevOps teams: it integrates with

existing Elasticsearch monitoring, applies proven ML

algorithms, and can continuously refine itself with

feedback. This blueprint can serve as a starting point for

organizations aiming to implement AIOps for data

management.

5.1. Importance

These findings underscore the importance of moving

towards adaptive data management. As systems scale,

manual tuning of retention will not keep up; our approach

offers a path to automation, enabling clusters to self -optimize

based on actual usage. In essence, it contributes to more

sustainable data handling – storing data “just long enough” to

derive value, but not longer.

5.2. Limitations

This study, while promising, has a few limitations. First,

the model’s success is somewhat environment-specific – it

was trained and tested with certain log patterns and might

need retraining in different contexts (e.g., other types of data

or different usage profiles). Second, our evaluation was

limited in duration and scale; long-term effects (like how the

system behaves over a year with seasonality in data access)

were not fully captured. Third, the current model does not

explicitly incorporate certain constraints (like legal

compliance minimums) except as post-processing rules – a

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

11

more holistic model could integrate those constraints in its

predictions directly. Lastly, we mostly focused on

recommendations rather than autonomously enforcing them;

some organizations might find it challenging to trust an

automated system with data deletion without extensive

validation.

5.3. Future Scope

There are several avenues to extend this research:

● Generalization to Other Platforms: Applying a similar

approach to other log management systems (Splunk,

AWS OpenSearch, etc.) or even to data lakes, where

retention of analytical data is an issue. The feature set

would be tweaked, but the core idea of learning retention

from usage remains.

● Incorporating Reinforcement Learning: One could

employ reinforcement learning, where the system tries

different retention settings in simulation and learns a

policy that maximizes reward (reward could be defined

as a weighted combination of saved storage and penalty

for missing data). This could potentially find an even

more optimal balance and adjust continuously.

● User Feedback Integration: In a production setting,

DevOps engineers might occasionally override or

provide feedback on recommendations (“this dataset is

low-value, even 7 days is enough” or “this must be kept

1 year for compliance”). Capturing this expert feedback

and feeding it into the model (e.g., via tagged data or

adjusting the loss function) could significantly improve

the system. Essentially, a semi-supervised approach

combining expert rules with ML learning.

● Full Automation & Safeguards: Moving from

recommendations to an automated system requires

robust safeguards. Future work could involve

implementing a dry-run mode where the system

simulates what would happen if retention were changed,

or gradually phases in changes (like incrementally

reducing retention and monitoring effects). Developing

trust and reliability metrics (how confident is the model

in a recommendation?) would also be valuable.

● Integration with Cost Modeling: We can enhance the

model by incorporating explicit cost models (e.g., cloud

storage pricing, performance cost). In that way, the

recommendations can be directly tied to cost savings

estimates, helping prioritize which retention cuts yield

the most benefit. It could even allow budget-constrained

optimization (e.g., “reduce whatever needed to save $X

per month”).

● Real-world Deployment Case Study: Finally, a future

direction is to deploy this system in a large-scale

production environment over an extended period and

measure business-level outcomes: cost saved, time saved

by engineers, incidents avoided, etc. This would provide

more evidence of viability and perhaps uncover new

challenges (like organizational acceptance, need for

explainability of ML decisions).

In closing, intelligent data retention represents a

practical application of machine learning in the DevOps

toolchain that delivers tangible benefits. As data continues to

grow unabated, such automation will be crucial for

maintaining efficient and compliant operations. In the near

future, we envision that manual tweaking of retention

policies will be replaced by self-learning systems – much

like the one presented here – thus freeing teams to focus on

higher-level improvements and ensuring that data

management becomes a self-optimizing aspect of system

reliability engineering.

5.4. Study Limitations

This study has a few limitations worth noting. First, the

evaluation was done in a controlled environment and a

limited production dataset, which may not capture all edge

cases of real-world systems. The model might need

retraining or adjustment for different environments. Second,

the approach currently assumes a relatively stable system

where past usage predicts future usage; sudden changes in

workload may not be handled until the model is retrained.

Third, we did not consider multi-tenant complications

explicitly – if multiple applications share an index, retention

decisions could have cross-team impacts not accounted for.

Lastly, while our results are positive, they stem from a pilot

implementation; more exhaustive testing (including failure

scenarios, like if the model mistakenly deletes needed data)

is needed before full automation. None of these limitations

undermines the feasibility of the approach, but they suggest

caution and the need for further research and development.

References

[1] Len Bass, Ingo Weber, and Liming Zhu, DevOps: A Software Architect’s Perspective, 2
nd

 Ed., Addison-Wesley, 2015. [Google Scholar]

[Publisher Link]

[2] Regulation (EU) 2016/679, General Data Protection Regulation, 2016. [Online]. Available: https://gdpr-info.eu/

[3] Riley Peronto, Four Steps to Reduce Log Data Costs: A Practical Guide, Chronosphere, 2024. [Online]. Available:

https://chronosphere.io/learn/steps-to-reduce-log-data-costs/#:~:text=folks%20reported%20a%20250

[4] Elastic, Index Lifecycle Management Policy. [Online]. Available: https://www.elastic.co/docs/manage-data/lifecycle/index-lifecycle-

management

[5] Qian Cheng et al., “AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities and Challenges,” arXiv preprint, pp. 1-

34, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://www.google.co.in/search?sca_esv=e513580c53be6c7f&hl=en&sxsrf=AE3TifOuFjTwlMFVFAeWAYnmVRkLecND8Q:1754641176318&q=inauthor:%22Len+Bass%22&udm=36
https://www.google.co.in/search?sca_esv=e513580c53be6c7f&hl=en&sxsrf=AE3TifOuFjTwlMFVFAeWAYnmVRkLecND8Q:1754641176318&q=inauthor:%22Ingo+Weber%22&udm=36
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DevOps%3A+A+Software+Architect%E2%80%99s+Perspective&btnG=
https://www.google.co.in/books/edition/DevOps/fcwkCQAAQBAJ?hl=en&gbpv=0&kptab=overview
https://doi.org/10.48550/arXiv.2304.04661
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Qian+Cheng%2C+AI+for+IT+Operations+%28AIOps%29+on+Cloud+Platforms%3A+Reviews%2C+Opportunities+and+Challenges&btnG=
https://arxiv.org/abs/2304.04661

Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025

12

[6] SearchInform, Log Retention: Best Practices and Importance for Compliance. [Online]. Available:

https://searchinform.com/articles/cybersecurity/measures/log-management/log-retention/

[7] Elastic, Disk based Shard Allocation. [Online]. Available: https://www.elastic.co/guide/en/elasticsearch/reference/7.12/modules-

cluster.html#disk-based-shard-allocation

[8] Swathi Chundru, and Lakshmi Narasimha Raju Mudunuri, “Developing Sustainable Data Retention Policies: A Machine Learning

Approach to Intelligent Data Lifecycle Management,” Driving Business Success through Eco-Friendly Strategies, pp. 93-114, 2025.

[CrossRef] [Google Scholar] [Publisher Link]

[9] J. Bamini et al., “Enhancing Employee Retention with AI: Predictive Analytics and Decision Support Systems,” 2025 International

Conference on Automation and Computation (AUTOCOM), Dehradun, India, pp. 1581-1585, 2025. [Google Scholar] [Publisher Link]

[10] Bharath Thandalam Rajasekaran, and Neeraj Saxena, “Machine Learning Driven Data Management in Hybrid Cloud Storage,”

International Journal of Creative Research Thoughts, vol. 13, no. 2, pp. 1-14, 2025. [Publisher Link]

[11] Valeriy Khakhutskyy, Explaining anomalies detected by Elastic Machine Learning, Elastic Blog, 2023. [Online]. Available:

https://www.elastic.co/blog/explaining-anomalies-detected-by-elastic-machine-learning

[12] Renuka Gavli et al., “Log Analysis: Understanding and Enhancing System Monitoring,” International Journal of Advanced Research in

Computer and Communication Engineering, vol. 14, no. 6, pp. 236-240, 2025. [CrossRef] [Publisher Link]

[13] J. Li et al., “Managing Data Retention Policies at Scale,” IEEE Transactions on Network and Service Management, vol. 9, no. 4, pp.

393-406, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[14] Infobelt, Accelerating Archiving and Data Retention with AI, 2025. [Online]. Available: https://infobelt.com/accelerating-archiving-

and-data-retention-with-ai

https://doi.org/10.4018/979-8-3693-9750-3.ch005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Developing+Sustainable+Data+Retention+Policies%3A+A+Machine+Learning+Approach+to+Intelligent+Data+Lifecycle+Management&btnG=
https://www.igi-global.com/chapter/developing-sustainable-data-retention-policies/370044
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Employee+Retention+with+AI-Driven+Predictive+Analytics&btnG=
https://ieeexplore.ieee.org/abstract/document/10956415
https://www.ijcrt.org/papers/IJCRT25A2006.pdf
http://doi.org/10.17148/IJARCCE.2025.14645
https://ijarcce.com/papers/log-analysis-understanding-and-enhancing-system-monitoring/
http://doi.org/10.17148/IJARCCE.2025.14645
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Managing+Data+Retention+Policies+at+Scale&btnG=
https://ijarcce.com/papers/log-analysis-understanding-and-enhancing-system-monitoring/
https://infobelt.com/accelerating-archiving-and-data-retention-with-ai
https://infobelt.com/accelerating-archiving-and-data-retention-with-ai

