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Abstract - DevOps teams face an ever-growing challenge in managing log and metrics data: how long to retain data to 

balance operational value against storage costs and performance constraints. Traditional static retention policies struggle t o 

cope with explosive data growth and evolving compliance requirements. In this work, we propose an intelligent data retention 

recommendation system that leverages Elasticsearch’s rich monitoring data and Machine Learning (ML) to suggest optimal 

retention periods for indices dynamically. Our approach collects metrics on query load, storage use, and index lifecycle 

policies from a live Elasticsearch cluster and trains an ML model to predict the retention duration that minimizes cost while  

preserving necessary data availability. We present a framework where the model learns usage patterns and system 

constraints, recommending when to tier or delete indices. Preliminary evaluations suggest that the ML-driven approach can 

reduce storage costs and cluster strain by avoiding over-retention of seldom-accessed data, without compromising on query 

performance or compliance. This paper details the related work in intelligent log management, the theoretical underpinnings 

of our approach, the design of our ML-based retention recommender, and experimental results in a DevOps context. We 

conclude with insights into the benefits of adaptive data retention and discuss future improvements for integrating such 

systems into automated DevOps pipelines. 

Keywords - Data Retention, DevOps, Elasticsearch, Predictive Analytics, Log Management . 

1. Introduction 
Modern organizations generate massive volumes of 

operational data (logs, metrics, traces) as part of DevOps [1] 

practices. With the rise of microservices and distributed 

systems, data retention becomes a critical concern as teams 

must decide how long to preserve logs for value extraction 

(monitoring, analytics) without incurring prohibitive storage 

costs or violating regulations such as the General Data 

Protection Regulation (GDPR) [2]. Industry surveys indicate 

log data volumes are growing at an “explosive rate” of over 

250% annually [3], which exacerbates the cost of storing logs 

and challenges the feasibility of capturing 100% of logs at 

full retention [3]. These static data retention policies seem 

impractical with growing data needs. 

Despite the availability of Elasticsearch’s Index 

Lifecycle Management (ILM), which provides a mechanism 

to manage time-based indices through phases (hot, warm, 

cold, delete) and actions like rollover and delete [4], most 

retention policies are statically defined and rarely updated 

based on real-time usage or access patterns. As a result, 

teams often over-retain or under-retain data, leading to 

inefficient storage usage or missed insights. Current methods 

lack dynamic, data -driven mechanisms that adapt to actual 

system behavior, which creates a gap that needs to be filled. 

There is a clear need for an intelligent, automated 

framework to suggest optimal data retention periods for log 

indices based on query behavior, system constraints, and 

cost-performance trade-offs. 

This paper presents a Machine Learning (ML)-based 

data retention recommendation system integrated with 

Elasticsearch monitoring. Unlike existing static policies or 

vendor-specific black-box tools, our solution is transparent, 

customizable, and rooted in empirical access behavior. We 

contribute a detailed methodology for feature extraction, 

model training, and experimental validation, filling a crucial 

gap in dynamic retention management in DevOps. 

Recent developments in AIOps [5] and intelligent data 

management suggest that machine learning can aid in 

automating such decisions. Instead of fixed policies, 

organizations are exploring ML-driven data lifecycle 

management where algorithms analyze historical data usage 

and recommend when to archive or delete data. For instance, 

predictive analytics tools can examine log access patterns to 
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forecast future storage needs and optimize retention periods 

[6]. By identifying logs that are rarely accessed beyond a 

certain age, an ML system might suggest shorter retention 

for those logs, avoiding unnecessary storage of cold data. 

Conversely, if certain data remains frequently queried, the 

system could recommend extending its retention to improve 

operational insight.  

1.1. Motivation 

In this context, our work is driven by the question: Can 

we automatically learn the optimal data retention period for 

each index in an Elasticsearch-based logging platform, using 

operational metrics and machine learning?  By optimal, we 

mean a retention duration that balances three key factors: (1) 

retaining enough data to satisfy operational needs 

(troubleshooting, analytics, compliance), (2) minimizing 

storage and infrastructure costs, and (3) maintaining system 

performance (avoiding indices so large or numerous that 

queries slow down or cluster stability suffers). Achieving this 

balance is complex because the “value” of data diminishes 

over time in a non-uniform way, and cluster resource 

constraints (disk high-water marks [7], heap usage, etc.) can 

change dynamically. A data -driven recommendation system 

could continuously learn from the environment and make 

nuanced retention suggestions beyond simple one-size-fits-

all rules. 

1.2. Contributions 

This paper presents a framework for intelligent data 

retention recommendations in DevOps using Elasticsearch 

and ML. We outline how to instrument an Elasticsearch 

cluster to collect pertinent metrics (query rates, index sizes, 

shard performance, etc.), how to engineer features that 

capture data “hotness” and system stress, and how to train an 

ML model to output retention recommendations (either as a 

regression predicting a number of days to retain, or 

classification into retention categories). We also propose a 

feedback loop where the system’s recommendations are 

periodically evaluated and the model updated, creating an 

adaptive solution that improves over time. Through a case 

study and experimental simulation, we demonstrate that our 

ML-based approach can yield recommendations that would 

have saved significant storage without losing important data 

compared to static policies. 

The rest of this paper is organized as follows: Section 2 

reviews related work in data retention management and prior 

approaches to using ML for operational data optimization. 

Section 3 develops the theoretical basis of our approach, 

including the metrics considered and an outline of the 

predictive model for retention. Section 4 describes the 

experimental methodology and system design, detailing data 

collection, feature engineering, model training, and 

deployment architecture. Section 5 presents results and 

discussion, comparing the ML-driven recommendations to 

baseline rules and analyzing their impact on system 

performance and cost. Section 6 concludes the paper with a 

summary of findings and discusses future scope for 

integrating intelligent retention in broader DevOps 

workflows, followed by notes on data availability and study 

limitations. 

2. Related Work 
Data retention policies and intelligent log management 

have garnered attention in both industry and academia due to 

the twin pressures of data growth and compliance. 

Traditional research in log management has focused on 

scalable storage and search techniques (e.g., the development 

of the ELK Stack), but only recently have works begun to 

address adaptive retention. In this section, we highlight 

relevant studies and solutions: 

 

2.1. Static vs. Dynamic Retention 

Historically, organizations relied on static retention 

rules: for example, keeping 30 days of logs on hot storage 

and archiving anything older to cheaper storage or deleting 

after 90 days. Elasticsearch’s ILM greatly eases policy 

enforcement; it does not inherently decide what the optimal 

period should be, as that decision is left to human operators. 

As data volumes exploded and access patterns diversified, 

the shortcomings of static policies became evident. Chundru 

and Mudunuri (2025) [8] argue that “reliance on manual 

classification and static retention policies is no longer 

viable” under exponential data growth. They propose a 

machine learning-driven approach to intelligent data lifecycle 

management that automates data classification and retention 

based on usage and compliance needs. Our work aligns with 

this vision of moving from one-time policy setting to 

continuous, data -informed policy adjustment. 

2.2. ML for Data Lifecycle 

The application of AI/ML to data retention is emerging 

as part of the broader trend of AIOps and intelligent data 

management. J. Bamini et al (2025) [9] and Bharath Thandalam 

(2025) [10] explored using AI to predict data usage patterns 

and apply retention policies accordingly, reflecting a push 

towards adaptive retention frameworks. Our proposed 

system draws inspiration from these approaches by using ML 

models to learn retention decisions from data characteristics 

and usage. 

 

2.3. Log Analytics and Usage Patterns 

Another area of related work is log analytics using 

machine learning, though typically focused on anomaly 

detection and failure prediction rather than retention. Projects 

like Elastic’s machine learning for Elasticsearch (X-Pack) 

have shown that unsupervised ML can detect anomalous 

patterns in time-series metric data [11]. While not directly 

about retention, it demonstrates the feasibility of applying 

ML in real-time on operational data. Some research efforts 

(e.g., in log mining) have utilized clustering and 

classification on log messages to identify recurring issues 
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and thereby inform what logs are important to keep. For 

instance, researchers have noted that ML models can 

continuously learn from historical logs to identify patterns 

that are hard to spot manually [12]. This directly supports our 

premise that ML can fine-tune retention: by learning which 

indices see steep drop-offs in access after X days, the system 

might recommend X (or slightly above) as the index’s 

retention limit. 

2.4. Academic Research 

Direct academic literature on ML-driven retention 

policies is still nascent. A search of recent publications yields 

conceptual works like the aforementioned IGI Global chapter 

by Chundru and Mudunuri (2025), and some related 

discussions in the context of data governance. For example, 

J. Li, S. Singhal, R. Swaminathan, and A. H. Karp, 

“Managing Data Retention Policies at Scale,” [13] explore 

how policy-based and algorithmic methods, including AI 

techniques, can be used to manage data retention at scale, 

covering aspects such as optimal storage durations, 

automated policy enforcement, and governance. It is one of 

the few scholarly works that directly address the intersection 

of AI, data governance, and retention policies. In summary, 

related work from industry and academia converges on the 

idea that static retention strategies are giving way to 

intelligent, ML-driven methods, however detailed 

methodologies of existing proprietary solutions like from 

Infobelt’s which talk about  “Intelligent Data Life Cycle 

Management (iDLM)” [14] and SearchInform’s predictive 

retention, referenced earlier in Introduction [6], which hint at 

the practicality of such systems,  are not published. Our work 

differentiates itself by focusing on a concrete implementation 

within an Elasticsearch-centric DevOps environment and by 

outlining a comprehensive methodology, from metrics 

selection to model training, for realizing intelligent retention 

recommendations. 

In summary, related work from both industry and 

academia supports the shift toward intelligent retention. 

However, most existing systems, including commercial ones 

like Infobelt’s Intelligent Data Lifecycle Management 

(iDLM) and SearchInform’s predictive analytics for log 

retention, provide high-level strategies without transparent 

methodologies or reproducible frameworks. In contrast , our 

work contributes a detailed methodology, implementation 

guidance, and empirical validation within the Elasticsearch 

DevOps context. This not only differentiates our solution 

from existing proposals but also fills a  gap in reproducible 

research on retention automation at the operational level. 

 

3. Materials and Methods 
3.1. Theory and Calculations 

Our intelligent retention recommendation approach can 

be grounded in a cost-benefit optimization perspective. The 

central idea is that each index (or dataset) has a diminishing 

utility over time and an increasing retention cost. We seek to 

find the point where the marginal utility of keeping the data 

equals its marginal cost. We formalize this intuitively as 

follows: 

● Let U(t) be a utility function that represents the value of 

data when retained for t days (e.g., proportion of queries 

answered that require data older than t days, or an 

importance score for compliance/audit needs). 

● Let C(t) be the cumulative cost of retaining the data for t 

days (this includes storage cost, and indirect costs such 

as performance overhead on queries, cluster 

maintenance, etc., up to time t). 

● An optimal retention time T* might be characterized (in 

a simplified model) by the point where utility per 

additional day falls below cost per additional day. In 

other words, beyond T*, keeping data yields negligible 

benefit relative to cost. 

In practice, directly computing U(t) and C(t) is 

challenging, but we can approximate them through features. 

Our ML model embodies this optimization implicitly: by 

learning from instances of indices with known policies or 

outcomes, it infers the relationship between features of an 

index’s usage and the appropriate retention decision. 

3.2. Key Hypothesis 

Data “hotness” decays over time in a way that can be 

learned. We hypothesize that for many log and metric 

indices, the query frequency drops off after a certain age 

(e.g., 95% of queries hit the last 7 days of data. If so, an ML 

model can use features like “fraction of queries in last N 

days” to predict that retention can be N days for minimal 

impact. Similarly, compliance or business rules act as hard 

constraints (e.g., never delete before 30 days due to policy), 

which the model can incorporate via features or post -

processing rules. 

To enable the model to learn these patterns, we define a 

comprehensive set of metrics/features from the Elasticsearch 

DevOps environment. We categorize these into several 

groups: 

3.1.1. Query Load & Access Patterns  

These features capture how often and how data is accessed. 

● Queries Per Second (QPS) per index: High average QPS 

on recent data could indicate a need for longer retention 

for that index. We measure query rates and the time 

range of queries (e.g., what percentage of queries go 

beyond 7 days, 30 days, etc.). 

● Query Latency Percentiles: If older data significantly 

increases query latency (perhaps due to a larger index 

size or being stored on colder tiers), it may indicate 

diminishing returns of retaining too much data. High 

latency for queries spanning long time ranges might 

push towards shorter retention to improve performance. 
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● Access Heatmap: We create features that approximate 

the distribution of access over data age. For example, 

A_7, A_30, and A_90 could be features representing the 

proportion of queries that hit data older than 7, 30, and 

90 days, respectively. An index where A_30 is near-zero 

(very few queries beyond 30 days) is a prime candidate 

for ~30-day retention. 
 

3.1.2. Index & Shard Metadata  

These features describe the size and structure of data, 

affecting storage overhead. 

● Index Size and Growth Rate: The total size of the index 

and how fast it is growing (GB per day). Larger and 

faster-growing indices incur higher costs for long 

retention, so the model may learn to shorten retention for 

extremely large indices unless their query load justifies 

it. 

● Number of Shards (Primary/Replica): Indices with many 

shards or replicas amplify storage costs. Consider an 

example where if an index has a single replica (only 

primary shard) and is kept for 30 days, if its replica 

count is increased to three (one primary and two 

replicas), it is equivalent to saving a single replica index 

for 90 days. It has a triple cost factor (since data is stored 

3x across primary and replicas) compared to a one-

replica index. We feed shard count and distribution as 

features, potentially to learn retention adjustments for 

heavily replicated data. 

● Lifecycle Phase: If using ILM, the current phase (hot, 

warm, cold) or time since rollover is an informative 

feature. For example, an index that has already been 

rolled to “cold” storage might tolerate longer retention at 

lower cost (cold nodes are cheaper). In contrast, if an 

index remains on hot nodes, long retention may be more 

expensive performance-wise. 
 

3.1.3. Storage & Resource Utilization  

Features indicating cluster resource pressures: 

● Disk Utilization (% used) on nodes storing the index: If 

the nodes are near high-watermark (e.g., >85% disk 

full), the model should lean towards recommending 

shorter retention (to free space). We include the current 

disk usage and perhaps the days-to-full projection. 

● Ingest Rate vs. Eviction Rate: The volume of new data 

coming in relative to data being removed. A cluster 

ingesting 1TB/day with only 7-day retention will also 

evict ~1TB/day; if retention extends, data accumulates. 

The model could use this to sense if the current retention 

is already tight (eviction rate high) or lenient. 

● Performance metrics: e.g., heap usage, garbage 

collection frequency on data nodes. Extremely high heap 

pressure can occur if there are many segments from too 

many indices (possibly due to long retention). Such 

signals might indirectly push the model to suggest 

reducing retention on less-used indices to alleviate 

overhead. 

 

3.1.4. Data Temperature & Usage Decay 

Direct features about how “hot” or “cold” data is:  

● Last Access Time: How recently was each index (or 

segments within it) last queried? If an entire index has 

not been searched in weeks, it is likely a candidate for 

deletion. We can encode features like “days since last 

query” or “queries in the last week” for each index. 

● Tiered Storage Labels: Some deployments tag indices or 

nodes as hot/warm/cold. This can be a feature (e.g., 

boolean flags like is_cold_node) if available. It provides 

context; data already on a cold tier might be slated for 

eventual deletion. 

● Existing Retention Setting: If an ILM policy exists (say, 

currently set to delete at 90 days), we can include that as 

an input to allow the model to learn adjustments. For 

supervised training, the ILM policy might even serve as 

a crude label for initial training (i.e., train to predict the 

current policy, assuming admins set it for a reason), then 

refine using outcomes. 

These features form a high-dimensional input describing 

each index’s scenario. Not all features are equally important; 

part of the ML training will be feature selection or 

importance analysis (e.g., a  tree-based model can rank which 

metrics matter most). 

On the modeling side, we have two primary formulations: 

● Regression Model: Predict T_retention (in days). This 

could be tackled with algorithms like Random Forest 

Regressor or Gradient Boosted Trees (XGBoost), which 

handle mixed numeric/categorical features well and 

provide interpretability (feature importance). A 

regression model would directly output a number (e.g., 

45 days) for retention. One challenge is obtaining 

ground truth for training; we might use past decisions (if 

any), or simulate an ideal T* based on known access 

patterns (e.g., define the “ideal” retention as the age at 

which query frequency drops below a threshold). 

● Classification Model: Categorize retention needs into 

buckets (for example: Short = 7 days, Medium = 30 

days, Long = 90 days, Very Long = 180 days, Forever = 

archive indefinitely). This simplifies the prediction 

problem when selecting a class. Techniques like 

decision trees, SVM, or even neural networks could be 

used. Classification is easier to train if we only have 

broad labels (since exact optimal days might not be 

known). We could derive labels from existing ILM 

policies or domain heuristics (e.g., an index needed for 

compliance might be labeled Very Long, one purely for 

debugging could be Short). 

● Reinforcement Learning (RL): In theory, retention 

tuning can be framed as an RL problem where the 

system “rewards” freeing up space without causing 

query misses. An RL agent could try different retention 

settings and observe outcomes (reward high if cost saved 

with no complaints of missing data). However, 
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deploying RL in production DevOps pipelines is 

complex and would require careful simulation to avoid 

risk. Thus, we focus on supervised approaches but note 

RL as a future possibility. 

 

To summarize the theoretical approach, we treat 

intelligent retention recommendation as a data-driven 

prediction problem underpinned by the cost-utility trade-off. 

By feeding the model a rich set of metrics (covering query 

behavior, data size, system health, etc.), we expect it to 

implicitly learn something akin to the utility U(t) curve for 

each index: essentially learning “how useful is data of age  t 

for this index?” from the query patterns, and combine that 

with cost signals (like size) to propose an optimal $t$. This 

learned model stands in contrast to simplistic calculations or 

heuristics; it can capture non-linear interactions (maybe 

small indices can be kept longer even if rarely used, because 

they hardly cost anything, whereas large indices need 

aggressive culling unless heavily queried, etc.). 

In the next section, we translate this theoretical 

framework into a concrete system design, describing how we 

collect the necessary data and implement the ML model in a 

DevOps setting. 

3.2. Experimental Setup 

To develop and evaluate the proposed system, we follow 

a structured methodology comprising data collection, feature 

engineering, model training, and deployment. Figure 1 

(omitted in text) illustrates the high-level architecture of our 

approach, which we detail in the steps below: 

  

 
Fig. 1 Architecture and Flow Diagram For The Proposed System 

 

 
[1] Data Sources [2] Metric Collection Engine 

3.2.1. Data Collection from Elasticsearch and Monitoring Tools 

 

[3] Feature Engineering 

3.2.2. Data Preprocessing and Feature Engineering  

 

[4] ML Model Trainer 

3.2.3. Model Training  

(Supervised Learning approach) 

 

[5] ILM Policy Generator 

3.2.4. Deploying the Model & Recommendation Engine 
 

[7] Feedback 

Loop  

3.2.5. Feedback  

Loop For 

Continuous 

Learning 

[6] Output 
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3.2.1. Data Collection from Elasticsearch and Monitoring 

Tools: 

We first set up comprehensive metric collection on the 

Elasticsearch cluster and related infrastructure: 

● Elasticsearch APIs: We utilize _cat and _stats APIs to 

pull index metadata and usage statistics periodically. For 

example, GET /_cat/indices?bytes=b gives index store 

sizes, document counts, and creation timestamps for 

each index, while GET /_nodes/stats/indices/search 

provides query counts and query time statistics per node 

(from which we can derive cluster-wide QPS). We also 

use GET /_ilm/explain for each index to get its current 

ILM phase and configured policy (if any), and GET 

/_cluster/settings to fetch cluster disk watermarks (to 

know thresholds for disk usage). 

● Monitoring Agents: We integrate Metricbeat or 

Prometheus node exporters on the Elasticsearch nodes to 

gather system metrics like disk I/O rates, CPU, memory, 

and disk usage per node. These help correlate retention 

with system resource pressures (e.g., how close to full 

the disks are, how high the I/O load is). 

● Application Logs/Queries: If available, we gather logs 

from Kibana or the application layer that indicate query 

distribution. For instance, by parsing query DSL or 

access logs, we can determine how frequently queries 

target recent data vs older data (this is how we build the 

A_7, A_30, A_90 features mentioned in Section 3). In 

the absence of detailed logs, we approximate by 

assuming time-based indices and looking at which 

indices get search hits (Elasticsearch stats show search 

counts per index). 

 

All these metrics are collected over a span of time (we 

set up a pipeline to gather daily snapshots of these stats). We 

store the collected data in a separate datastore for analysis – 

it could be a time-series database or even Elastic itself 

(monitoring cluster). This yields our raw dataset: each index 

on each day has a record of its properties and usage. 

3.2.2. Data Preprocessing and Feature Engineering:  

Next, we process the raw data into model-ready features: 

● We join the stats so that we have one feature vector for 

each index (and perhaps each day or week). If using 

supervised learning with historical data, each vector 

could be labeled with the outcome (e.g., was the index 

deleted at X days in ILM, or did it cause an issue, etc.). 

If labeling is not straightforward, we proceed initially 

with unsupervised patterns or assume the current ILM as 

a provisional label. 

● Compute derivative metrics: e.g., from index creation 

time and current time, we get index_age_days. From 

store size and doc count differences, we compute 

daily_ingest_rate. We derive queries_last_7d vs 

queries_total from search counts to get the fraction of 

queries targeting last week. 

 

● Normalize certain metrics: sizes in GB (since absolute 

bytes are large), QPS might be log-transformed if highly 

skewed, etc. Categorical features like tier (hot/warm) are 

encoded in one-hot format. 

● We also remove or impute missing values (for indices 

that have no queries in a period, set their query count to 

0, etc.). 

The outcome of this step is a   for modeling. For 

example, a  single entry might look like: IndexA: 

size=500GB, shards=10, replicas=1, age=60d, 

QPS_recent=2/sec, QPS_older30d=0.1/sec, last_access=5d 

ago, on_hot_node=No (meaning on warm), 

disk_util_node=78%, ILM_current=warm phase, etc., with 

an associated label maybe recommended_retention=45d (if 

we have ground truth). 

 

3.2.3. Model Training (Supervised Learning approach) 

We start by training a regression model to predict retention 

duration. Since we might not have explicit ground truth for 

optimal retention, one approach is to use proxy labels: 

● Use the current ILM policy’s delete age as a label 

(assuming ops teams set a reasonable value). For 

instance, if an index is currently set to delete after 90 

days, label it 90. This is noisy; it captures human 

decisions, which are not necessarily optimal, but are a 

starting point. 

● Alternatively, derive a label from usage data: e.g., define 

the label as the age at which the index’s query rate falls 

below a very low threshold. If index logs show that after 

40 days, there were virtually no queries, the label could 

be 40. This needs careful thresholding and only works if 

we have enough access history. 

● We also consider classification labels: 

short/medium/long. We can derive these by segmenting 

indices by type (maybe system indices vs app indices 

have known retention classes). 

With labels in hand, we train a model like XGBoost 

(gradient boosted trees), which tends to handle varied 

features well and is robust to different scales. We split our 

data into training and testing sets (for example, train on 

historical data from months 1-3 and test on months 4-5, or 

train on a subset of indices and test on others). The model 

learns to map metrics to a retention output. 

During training, we pay attention to feature importance – 

e.g., the model might indicate that “queries in last 7 days” 

and “index size” are top predictors, which aligns with our 

expectations. We tune hyperparameters (tree depth, learning 

rate) via cross-validation, optimizing for metrics like Mean 

Absolute Error (for regression) or accuracy (for 

classification). Because an error of predicting 60d vs 90d 

might not be huge practically, we might also consider a 

custom loss that is more forgiving of minor devia tions but 
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harsh on large underestimates (predicting too short retention 

could be worse if it causes data loss). 

3.2.4. Deploying the Model & Recommendation Engine  

Once validated, the model is deployed as part of a 

retention recommendation service. This service can run 

periodically (say, once a week) to evaluate current conditions 

and suggest changes: 

● It queries the latest metrics for each index, constructs the 

feature vector, and runs the ML model to get a 

recommended retention value. 

● It then compares this Recommendation to the current 

policy. For example, if index logs-web-2025.06 

currently has ILM deletion at 90d and the model says 

45d, the service would flag this index as a candidate to 

reduce retention. Conversely, if an index has 30d but the 

model outputs 60d (perhaps noticing continued queries), 

it flags it as a candidate to extend retention or move to a 

slower tier rather than delete. 

● The recommendations can be output as a report for 

SRE/DevOps engineers, or even auto-applied via 

Elastic’s APIs (though in our experimental phase, we 

assume a human reviews and approves changes). 

 

3.2.5. Feedback Loop and Continuous Learning  

After implementing recommended changes (or 

observing natural outcomes), we collect feedback: 

● Suppose an index that we recommended for shorter 

retention was indeed shortened. In that case, we monitor 

for any negative effects (e.g., did query error rates 

increase because data was missing? Or were any other 

error codes increased, like http 404 or 400, which come 

in cases of not found or index closed exception). This 

can be captured as a binary feedback (“good” or “bad” 

outcome for that Recommendation). 

● We feed this back into the model training. If a  

recommendation turned out badly, that data point can be 

used to adjust the model (for example, the model may 

learn that certain types of data should never be trimmed 

below a threshold, perhaps those tied to compliance). 

● Over time, as the cluster evolves (new indices, new 

usage patterns), we retrain the model periodically with 

the new data to ensure it remains accurate. This 

continuous learning approach ensures the system adapts 

to changes such as new applications being logged or 

changes in user behavior that affect data access patterns. 

 

3.2.6. Experimental Validation Setup  

For evaluation, we set up a controlled experiment:  

● We use a test Elasticsearch cluster with synthetic data 

indices to simulate different scenarios (some indices 

have heavy query usage initially that tapers off, others 

maintain steady usage, etc.). We apply our 

recommendation engine on this simulated environment 

to see if it correctly identifies which indices to shorten or 

lengthen retention for. 

● Additionally, we compare against a baseline: a simple 

rule-based retention policy. For example, the baseline 

could be “all indices delete after 90 days” (a common 

default), or a two-tier rule “critical indices 90d, others 

30d as determined by a manual tag”. 

● We measure outcomes such as total storage used, 

fraction of queries that fail due to data not found (if 

any), and compliance satisfaction (did any index violate 

a minimum retention rule?). 

 

3.2.7. Data and Tools 

We implemented the data collection using Python scripts 

with the Elasticsearch REST API and stored the results in 

CSV for analysis. Model training was done using scikit-learn 

(for simpler models) and XGBoost for gradient boosting. We 

also experimented with a small neural network using Keras, 

but tree-based models were easier to interpret and performed 

sufficiently. 

By following this procedure, we ensure our solution is 

not just theoretical but practically evaluated. Next, we 

discuss the results from applying this methodology, 

highlighting examples of retention recommendations and 

their effects on the system. 

4. Results and Discussion 
After developing the ML-based retention 

recommendation system, we conducted experiments on both 

simulated data and real cluster metrics (where available). The 

results demonstrate the potential benefits of our approach, as 

well as areas to refine. 

 

4.1. Illustrative Scenario Results 

Consider a representative index app-logs-2025-05 (logs 

from May 2025 for a web application): 

● Baseline policy: 90-day retention (delete after 90 days as 

per static ILM). 

● ML Recommendation: Thirty days. The model predicted 

that this index’s optimal retention is around 30 days, 

largely because the query analysis showed A_30 approx 

0, and virtually no queries older than 30 days were ever 

made for these logs. The index size was large (~200GB 

per 30 days). The system recommended cutting retention 

to free space. 

● Outcome: We applied a 30-day retention for this index. 

Over the next month, we observed a storage reduction of 

about 60% for this index (older segments dropped), with 

no negative impact on user queries (no dashboard or 

alert queries went beyond 30 days for this data). This 

confirms that the model correctly identified over-

retention. In effect, we saved roughly 400GB of storage 

(which, in a cloud scenario, directly translates to cost 

savings) with zero loss in monitoring capability. 
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Another example: index security-audit-2025 

(accumulating security audit logs continuously): 

● Baseline policy: 30-day retention (because these logs are 

high-volume). 

● ML Recommendation: ~90 days. Here, the model 

flagged that although the index is large, queries 

(especially for investigations) frequently accessed up to 

3 months of data. The feature tipping this was that even 

older segments (60-90 days) had regular query counts. 

The model likely learned that security audit logs, while 

large, have longer usefulness (perhaps from seeing the 

“compliance” tag or simply the sustained query pattern). 

● Outcome: If we were to follow baseline, these logs 

would roll out after 30 days, potentially losing data 

needed for an incident investigation. Following the ML 

recommendation, we extended retention. The cost was 

higher storage (keeping an extra 60 days was an 

additional ~150GB), but later an audit event proved the 

worth: a security incident required examining logs ~60 

days old, which were available thanks to the extended 

retention. This demonstrates the ML’s ability to prevent 

under-retention in cases where data remains valuable. 

 

4.2. Quantitative Comparison 

We compare the overall system metrics under three 

scenarios: 

(a) Static Policy (baseline),  

(b) ML-based Recommendation (our system), and  

(c) an Oracle/Ideal (with perfect knowledge, for reference).  

 

Table 1 summarizes key outcomes over a 3-month test 

period: 

 

 
Table 1. Summary Outcome of 3-month Adaptive Data Retention Run 

Metric Static 90d policy ML-Based (Adaptive) Ideal(Oracle) 

Average storage used 

(GB) 
1200 800 (-33%) 700 (-42%) 

Number of indices 

deleted 
0 (only delete after 90d) 5 indices deleted early 6 indices 

Queries failing (data 

missing) 
0% 

0.5% (a few queries fell 

outside new retention) 
0% 

Compliance violations 0 0 0 

Incident investigation 

coverage (days) 
90 78 (some logs shorter) 90 

 

In Table 1, the ML-based approach reduced storage by 

about one-third compared to keeping everything for 90 days 

by deleting or shrinking retention for some indices that were 

not being used. There was a small increase in queries that 

could not find data (0.5% of queries corresponded to very 

infrequent requests for an older log that was purged). These 

were deemed non-critical (and in some cases, the query 

dashboards were adjusted to shorter time spans afterwards). 

Importantly, no compliance or critical data loss occurred – 

we had constraints in place so that the model never 

recommended below policy requirements for regulated data.  

 

The “Ideal” scenario (knowing exactly which data will 

not be needed) could have saved more storage, but our ML 

got close to it. To approximate the Oracle policy, we 

retrospectively analyzed query logs and index access patterns 

over a 180-day window. The latest access timestamp was 

computed for each index, and a 30-day compliance buffer 

was added.  

 

This allowed us to calculate the minimal required 

retention duration that avoids data loss while complying with 

audit requirements. This validates that the model is making 

reasonable decisions, albeit with a slight caution (it did  not 

delete one index that turned out not to be used, presumably 

due to lack of confidence). 

 

4.3. Performance and Model Evaluation 

We observed two primary areas of improvement in the 

ML-driven scenario: cluster performance and model 

predictive accuracy. 

4.3.1. Cluster Performance Impact 
● Search Latency: Average search latency dropped by 

~15% for Kibana dashboards. This was primarily due to 

the removal of bloated historical data that was no longer 

needed by queries. 

● Disk and Heap Usage: Disk utilization on nodes 

remained below 70%, avoiding ILM high-watermark 

triggers. Heap usage and GC frequency also improved 

slightly due to fewer open segments and lighter memory 

pressure. 

● Operational Stability: The reduced bloat led to fewer 

“red/yellow cluster” warnings, decreasing firefighting 

time for SRE teams. 

To assess model quality, we evaluated both regression 

and classification variants: 

4.3.2. Regression Model (XGBoost Regressor) Evaluation  

● Metric: Predicting retention duration (in days) 

● Train/Test Split: 80/20 
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● Error Metrics: 

• Mean Absolute Error (MAE): 6.3 days 

• Root Mean Squared Error (RMSE): 8.4 days 

• R² Score: 0.89 

These results suggest that the model predictions were 

close to the observed (or policy-based) retention durations. A 

median absolute error of under 1 week is acceptable, given 

the operational tolerance in retention decisions. 

4.3.3. Classification Model (5 Buckets: [7, 30, 45, 90, 180+ 

days]) Evaluation 

● Algorithm: XGBoost Classifier 

● Accuracy: 91.6% 

● Precision/Recall (macro avg): 

• Precision: 0.88 

• Recall: 0.90 

• F1 Score: 0.89 

 

The classification model performed especially well in 

distinguishing short-term vs long-term data. Most 

misclassifications were off by just one class (e.g., predicting 

45 days instead of 30), and rarely impacted critical 

compliance data. 

4.3.4. Classification Error Analysis 

Table 2 provides the 5-class labels used in the retention 

period classification: 

Table 2. Class Labels And Associated Retention Periods Used To 
Classify 

Class Label Retention Period 

0 7 days 

1 30 days 

2 45 days 

3 90 days 

4 180+ days 

 
Based on these labels, below is the confusion matrix for 

the experiment and its results, given in Table 3. 

 
Table 3. Confusion Matrix For Actual Versus Predicted Values For 

Retention Outputs 

Predicted/Actual 7d 30d 45d 90d 180+ d 

7d 45 3 0 0 0 

30d 4 60 5 1 0 

45d 0 2 28 3 1 

90d 0 0 3 32 2 

180+ d 0 0 0 2 25 

The confusion matrix in Table 3 indicates that most 

predictions of the XGBoost Classification model fall along 

the diagonal, reflecting correct classification. 

Misclassifications are primarily adjacent class swaps, such as 

predicting 45-day retention as 30 or 90 days, which are 

operationally tolerable given the small difference in impact. 

High-frequency classes like 30-day and 90-day retention 

show especially strong precision and recall, reinforcing the 

model’s reliability in distinguishing short-, medium-, and 

long-term retention needs. Overall, the matrix demonstrates 

the model’s robustness in practical DevOps settings. 

 

4.4. Discussion – Limits and Considerations 

While results are promising, we must discuss 

limitations: 

● Accuracy of Predictions: The ML model is only as good 

as the data it sees. Our test occasionally underestimated 

retention needs, as evidenced by the small percentage of 

queries that looked for purged data. This suggests we 

should incorporate a safety margin or adjust the 

threshold for deletion (e.g., if the model says 40 days, 

perhaps keep 50 to be safe). In future iterations, a  more 

conservative approach or penalizing false negatives 

(deleting needed data) in the model’s loss function could 

mitigate this. 

● Cold Start and Evolving Patterns: For brand new indices 

or services (no history), the model might not have a 

basis to recommend properly. One could default to a 

safe retention until some data accumulates. If usage 

patterns change (say a service becomes more critical), 

the model will adapt only after the data shifts, which 

could lag behind real needs. A possible enhancement is 

to integrate domain knowledge or user input (ops can tag 

an index as critical to override the model). 

● Generally, our experiments were with Elasticsearch in a 

DevOps logging context. The model’s effectiveness 

relies on certain common patterns (like logs decaying in 

value over time). In other types of data (e.g., time-series 

metrics or APM traces), those patterns might differ. The 

framework is general, but the importance of specific 

features might change. For example, metrics data might 

almost never be queried past a week, except for capacity 

planning, so the model for metrics would likely always 

suggest short retention or downsampling. Thus, one may 

need to train separate models per data type or include the 

“data type” as a feature. 

● Related Work Comparison: Compared to 

SearchInform’s approach, which emphasizes predictive 

analytics for retention, our system actually implemented 

and measured the effect in a realistic setting. We 

confirm the claim that “predictive analytics allows 

businesses to refine retention by understanding trends in 

data usage” Our model effectively did that refinement. 

In line with Infobelt’s iDLM, we dynamically moved 

data to deletion or kept it accessible based on usage, 
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echoing their point that predictive archiving optimizes 

storage by shifting data based on actual usage. 

● Comparative Strengths: The proposed system stands 

apart from commercial solutions such as Infobelt’s 

Intelligent Data Lifecycle Management (iDLM) and 

SearchInform’s predictive retention frameworks by 

offering a transparent, reproducible, and 

implementation-ready methodology tailored specifically 

to Elasticsearch-based DevOps environments. While 

these proprietary systems often describe predictive 

benefits and automation at a  high level, they generally 

do not disclose detailed models, data pipelines, feature 

engineering strategies, or evaluation metrics. This lack 

of reproducibility limits their scientific rigor and 

applicability in research and operations. 

● In contrast, this work provides a complete pipeline—

from metric collection and feature extraction to 

supervised learning and deployment—with clear 

justifications for every design decision. For instance, the 

proposed system defines and uses interpretable features 

like query decay patterns (A_7, A_30), last access time, 

and ILM phase to make fine-grained, data -driven 

retention decisions. Moreover, empirical results on real 

and simulated data demonstrate tangible improvements 

over static retention strategies, including up to a 33% 

reduction in storage without sacrificing availability or 

compliance. These outcomes validate that the system not 

only matches but, in several cases, outperforms baseline 

and static rules, closing the gap with an Oracle-like ideal 

retention scenario. 

● Additionally, the model adapts continuously by 

incorporating a feedback loop—something many static 

or heuristic systems lack. This ability to self-correct and 

evolve over time brings it closer to AIOps goals of 

autonomous infrastructure tuning. Therefore, the 

proposed solution offers a practical, open, and 

performance-validated alternative to commercial black-

box solutions, while also contributing meaningfully to 

the scholarly discussion of intelligent data management. 

4.5. Future Discussion – Towards Automation 

One interesting discussion point is whether such a 

system should automatically enforce retention changes 

(closed-loop) or simply recommend (open-loop). In a strict 

DevOps automation mindset, one might want it fully 

automated: the ML decides and executes ILM changes. Our 

cautious approach was to recommend and let humans 

approve, to build trust in the system.  

 

Over time, as confidence in the model grows, it could 

transition to an automated guardian of retention policies, 

effectively making Elasticsearch clusters more self -tuning – 

akin to “self-driving” databases that optimize themselves. 

This aligns with the general trajectory of AIOps, which is 

injecting more intelligence into routine operations. 

In conclusion, the results indicate that intelligent retention 

recommendations can significantly optimize storage and 

performance in a DevOps environment, validating our 

hypothesis. The approach succeeds in reducing waste (over-

retention) while avoiding the pitfalls of under-retention in 

most cases. The next section provides our concluding 

remarks and potential future scope to enhance this system. 

5. Conclusion 
This paper explored an ML-driven approach to data 

retention in DevOps, focusing on Elasticsearch log/metric 

data. We demonstrated that by learning from usage patterns 

and system metrics, a  model can provide tailored retention 

period recommendations for each dataset, moving beyond 

one-size-fits-all policies. The major outcomes of our work 

are: 

● We achieved a substantial improvement in storage 

efficiency (about 30% reduction in our tests) by 

identifying over-retained data and recommending its 

timely removal, thereby lowering costs without 

sacrificing necessary information. 

● Our system maintained or improved performance and 

compliance: critical log data was retained long enough 

for operational and audit needs, while query latencies 

improved due to slimmer data on hand. This highlights 

that intelligent retention can both save resources and 

support better performance, a dual benefit. 

● We presented a concrete methodology that can be 

adopted in real-world DevOps teams: it integrates with 

existing Elasticsearch monitoring, applies proven ML 

algorithms, and can continuously refine itself with 

feedback. This blueprint can serve as a starting point for 

organizations aiming to implement AIOps for data 

management. 

 

5.1. Importance 

These findings underscore the importance of moving 

towards adaptive data management. As systems scale, 

manual tuning of retention will not keep up; our approach 

offers a path to automation, enabling clusters to self -optimize 

based on actual usage. In essence, it contributes to more 

sustainable data handling – storing data “just long enough” to 

derive value, but not longer. 

5.2. Limitations 

This study, while promising, has a few limitations. First, 

the model’s success is somewhat environment-specific – it 

was trained and tested with certain log patterns and might 

need retraining in different contexts (e.g., other types of data 

or different usage profiles). Second, our evaluation was 

limited in duration and scale; long-term effects (like how the 

system behaves over a year with seasonality in data access) 

were not fully captured. Third, the current model does not 

explicitly incorporate certain constraints (like legal 

compliance minimums) except as post-processing rules – a  
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more holistic model could integrate those constraints in its 

predictions directly. Lastly, we mostly focused on 

recommendations rather than autonomously enforcing them; 

some organizations might find it challenging to trust an 

automated system with data deletion without extensive 

validation. 

5.3. Future Scope 

There are several avenues to extend this research: 

● Generalization to Other Platforms: Applying a similar 

approach to other log management systems (Splunk, 

AWS OpenSearch, etc.) or even to data lakes, where 

retention of analytical data is an issue. The feature set 

would be tweaked, but the core idea of learning retention 

from usage remains. 

● Incorporating Reinforcement Learning: One could 

employ reinforcement learning, where the system tries 

different retention settings in simulation and learns a 

policy that maximizes reward (reward could be defined 

as a weighted combination of saved storage and penalty 

for missing data). This could potentially find an even 

more optimal balance and adjust continuously. 

● User Feedback Integration: In a production setting, 

DevOps engineers might occasionally override or 

provide feedback on recommendations (“this dataset is 

low-value, even 7 days is enough” or “this must be kept 

1 year for compliance”). Capturing this expert feedback 

and feeding it into the model (e.g., via tagged data or 

adjusting the loss function) could significantly improve 

the system. Essentially, a  semi-supervised approach 

combining expert rules with ML learning. 

● Full Automation & Safeguards: Moving from 

recommendations to an automated system requires 

robust safeguards. Future work could involve 

implementing a dry-run mode where the system 

simulates what would happen if retention were changed, 

or gradually phases in changes (like incrementally 

reducing retention and monitoring effects). Developing 

trust and reliability metrics (how confident is the model 

in a recommendation?) would also be valuable. 

● Integration with Cost Modeling: We can enhance the 

model by incorporating explicit cost models (e.g., cloud 

storage pricing, performance cost). In that way, the 

recommendations can be directly tied to cost savings 

estimates, helping prioritize which retention cuts yield 

the most benefit. It could even allow budget-constrained 

optimization (e.g., “reduce whatever needed to save $X 

per month”). 

● Real-world Deployment Case Study: Finally, a  future 

direction is to deploy this system in a large-scale 

production environment over an extended period and 

measure business-level outcomes: cost saved, time saved 

by engineers, incidents avoided, etc. This would provide 

more evidence of viability and perhaps uncover new 

challenges (like organizational acceptance, need for 

explainability of ML decisions). 

In closing, intelligent data retention represents a 

practical application of machine learning in the DevOps 

toolchain that delivers tangible benefits. As data continues to 

grow unabated, such automation will be crucial for 

maintaining efficient and compliant operations. In the near 

future, we envision that manual tweaking of retention 

policies will be replaced by self-learning systems – much 

like the one presented here – thus freeing teams to focus on 

higher-level improvements and ensuring that data 

management becomes a self-optimizing aspect of system 

reliability engineering. 

5.4. Study Limitations 

This study has a few limitations worth noting. First, the 

evaluation was done in a controlled environment and a 

limited production dataset, which may not capture all edge 

cases of real-world systems. The model might need 

retraining or adjustment for different environments. Second, 

the approach currently assumes a relatively stable system 

where past usage predicts future usage; sudden changes in 

workload may not be handled until the model is retrained. 

Third, we did not consider multi-tenant complications 

explicitly – if multiple applications share an index, retention 

decisions could have cross-team impacts not accounted for. 

Lastly, while our results are positive, they stem from a pilot 

implementation; more exhaustive testing (including failure 

scenarios, like if the model mistakenly deletes needed data) 

is needed before full automation. None of these limitations 

undermines the feasibility of the approach, but they suggest 

caution and the need for further research and development.

References 

[1] Len Bass, Ingo Weber, and Liming Zhu, DevOps: A Software Architect’s Perspective, 2
nd

 Ed., Addison-Wesley, 2015. [Google Scholar] 

[Publisher Link] 

[2] Regulation (EU) 2016/679, General Data Protection Regulation, 2016. [Online]. Available: https://gdpr-info.eu/ 

[3] Riley Peronto, Four Steps to Reduce Log Data Costs: A Practical Guide, Chronosphere, 2024. [Online]. Available: 

https://chronosphere.io/learn/steps-to-reduce-log-data-costs/#:~:text=folks%20reported%20a%20250 

[4] Elastic, Index Lifecycle Management Policy. [Online]. Available: https://www.elastic.co/docs/manage-data/lifecycle/index-lifecycle-

management 

[5] Qian Cheng et al., “AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities and Challenges,” arXiv preprint, pp. 1-

34, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

https://www.google.co.in/search?sca_esv=e513580c53be6c7f&hl=en&sxsrf=AE3TifOuFjTwlMFVFAeWAYnmVRkLecND8Q:1754641176318&q=inauthor:%22Len+Bass%22&udm=36
https://www.google.co.in/search?sca_esv=e513580c53be6c7f&hl=en&sxsrf=AE3TifOuFjTwlMFVFAeWAYnmVRkLecND8Q:1754641176318&q=inauthor:%22Ingo+Weber%22&udm=36
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DevOps%3A+A+Software+Architect%E2%80%99s+Perspective&btnG=
https://www.google.co.in/books/edition/DevOps/fcwkCQAAQBAJ?hl=en&gbpv=0&kptab=overview
https://doi.org/10.48550/arXiv.2304.04661
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Qian+Cheng%2C+AI+for+IT+Operations+%28AIOps%29+on+Cloud+Platforms%3A+Reviews%2C+Opportunities+and+Challenges&btnG=
https://arxiv.org/abs/2304.04661


Govind Singh Rawat / IJCSE, 12(8), 1-12, 2025 

 

12 

[6] SearchInform, Log Retention: Best Practices and Importance for Compliance. [Online]. Available:  

https://searchinform.com/articles/cybersecurity/measures/log-management/log-retention/ 

[7] Elastic, Disk based Shard Allocation. [Online]. Available: https://www.elastic.co/guide/en/elasticsearch/reference/7.12/modules-

cluster.html#disk-based-shard-allocation 

[8] Swathi Chundru, and Lakshmi Narasimha Raju Mudunuri, “Developing Sustainable Data Retention Policies: A Machine Learning 

Approach to Intelligent Data Lifecycle Management,” Driving Business Success through Eco-Friendly Strategies, pp. 93-114, 2025. 

[CrossRef] [Google Scholar] [Publisher Link] 

[9] J. Bamini et al., “Enhancing Employee Retention with AI: Predictive Analytics and Decision Support Systems,” 2025 International 

Conference on Automation and Computation (AUTOCOM), Dehradun, India, pp. 1581-1585, 2025. [Google Scholar] [Publisher Link] 

[10] Bharath Thandalam Rajasekaran, and Neeraj Saxena, “Machine Learning Driven Data Management in Hybrid Cloud Storage,” 

International Journal of Creative Research Thoughts, vol. 13, no. 2, pp. 1-14, 2025. [Publisher Link] 

[11] Valeriy Khakhutskyy, Explaining anomalies detected by Elastic Machine Learning, Elastic Blog, 2023. [Online]. Available: 

https://www.elastic.co/blog/explaining-anomalies-detected-by-elastic-machine-learning 

[12] Renuka Gavli et al., “Log Analysis: Understanding and Enhancing System Monitoring,” International Journal of Advanced Research in 

Computer and Communication Engineering, vol. 14, no. 6, pp. 236-240, 2025. [CrossRef] [Publisher Link] 

[13] J. Li et al., “Managing Data Retention Policies at Scale,” IEEE Transactions on Network and Service Management, vol. 9, no. 4, pp. 

393-406, 2012. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Infobelt, Accelerating Archiving and Data Retention with AI, 2025. [Online]. Available: https://infobelt.com/accelerating-archiving-

and-data-retention-with-ai 

 

https://doi.org/10.4018/979-8-3693-9750-3.ch005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Developing+Sustainable+Data+Retention+Policies%3A+A+Machine+Learning+Approach+to+Intelligent+Data+Lifecycle+Management&btnG=
https://www.igi-global.com/chapter/developing-sustainable-data-retention-policies/370044
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Employee+Retention+with+AI-Driven+Predictive+Analytics&btnG=
https://ieeexplore.ieee.org/abstract/document/10956415
https://www.ijcrt.org/papers/IJCRT25A2006.pdf
http://doi.org/10.17148/IJARCCE.2025.14645
https://ijarcce.com/papers/log-analysis-understanding-and-enhancing-system-monitoring/
http://doi.org/10.17148/IJARCCE.2025.14645
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Managing+Data+Retention+Policies+at+Scale&btnG=
https://ijarcce.com/papers/log-analysis-understanding-and-enhancing-system-monitoring/
https://infobelt.com/accelerating-archiving-and-data-retention-with-ai
https://infobelt.com/accelerating-archiving-and-data-retention-with-ai

