
SSRG International Journal of Computer Science and Engineering Volume 12 Issue 8, 27-30, August 2025

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V12I18P104 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Importance of Structured Prompt Engineering to

Generate Effective Test Cases

Nagmani Lnu

Director of Quality Engineer at a FinTech Company, San Antonio, TX, USA.

Corresponding Author : nagmanijobs@gmail.com

Received: 12 June 2025 Revised: 19 July 2025 Accepted: 08 August 2025 Published: 29 August 2025

Abstract - As demand for Artificial Intelligence (AI) grows, best practices for using different AI tools are becoming critical. To

scale AI implementation enterprise-wide, prompt engineering has become vital in developing AI-enabled applications and

utilizing them to complete day-to-day engineering tasks. One such task is creating functional test cases. Software testing is a

crucial stage in the Software Development Life Cycle and consumes a significant portion of the overall development timeline.

This study was conducted while evaluating a test management tool that utilizes AI to generate test cases for UI (User Interface)

and API (Application Programming Interface) applications. While generative AI is the future, using AI without proper

guardrails and prompt standards can become counterproductive. This study demonstrates this by using multiple real -time

industry use cases.

Keywords - Artificial Intelligence, Functional Test Case, Hallucination, Prompt Engineering, Software Testing.

1. Introduction
Testing consumes a significant portion of the software

development life cycle (SDLC). Depending on the project, it

accounts for between 30% and 50% of the development effort

[1]. The test life cycle includes two major phases: Test

Planning and Test Execution. While there are many tools on

the market to automate and execute test cases manually or

automatically, few, if any, tools are available to create test

cases. As a result, creating test cases requires a significant

amount of effort in the overall testing life cycle. Artificial

intelligence can become a valuable tool in this area, which is

why around 68% of organizations in the Capgemini 2024

Quality Report mention plans to integrate AI into their tech

stack [2].

As many organizations across industries are on the

journey of integrating Artificial Intelligence (AI) into

different phases of the SDLC to bring consistency and

automation, prompt engineering is becoming critical.

Therefore, in this study, the task was to evaluate various

commercial tools available in the market, along with some

popular LLMs such as Copilot and Windsurf. This study

demonstrates that artificial intelligence, combined with

effective prompt engineering, can increase the acceptability

of AI-generated test cases by up to 100% and reduce test

planning effort by up to 90%. This paper presents a

comprehensive and practical use case and a prompt approach

that can be applied across all industries.

2. Related Work
Prompt engineering is a relatively new concept that

gained momentum in 2023. There are many papers coming

around it. In 2025, Reangpusri published a paper exploring

prompt engineering for Test Driven Development [4].

In 2024, L. Naimi, E. M. Bouziane, M. Manouch, and A.

Jakime published a test case generation using LLM and

prompt engineering [5]. No paper has focused on the

effectiveness of the test cases and related measurements in

this regard. This paper differentiates in this regard from all

other research.

3. About Application and Testing Strategy
The application under test was a payment processing

application that users can access to make payments for their

loans or credit cards. Figure 1 below explains the high-level

page flow of the application. Like other payment systems,

this application accepts both credit card and ACH payments.

Users have the option to make payments with their registered

login or as guests.

When making payments, users must navigate to the

relevant pages to select their account, enter payment details,

and complete the verification and confirmation process.

While this seems like a simple application, the effort required

to create test cases varies depending on the situation.

http://www.internationaljournalssrg.org/

Nagmani Lnu / IJCSE, 12(8), 27-30, 2025

28

• Situation 1- This could be an existing application. The

team may already have existing test cases and wants to

add or enhance them based on new features being added

as part of the sprint.
• Situation 2- The application is in production, but

comprehensive test cases are missing. The team is

willing to put some effort into creating the regression

tests that will be automated and executed along with the

build and release process.

• Situation 3- Application is in the design phase and has

an existing Figma design or flow diagram available to

create test cases

All three situations were simulated during this study, and

it was found that the quality of test cases and acceptance rate

were very high when the AI was used with proper

engineering, rather than simply passing the requirement as

input.

Fig. 1 Application flow

4. About Prompt Engineering
According to the Prompt Engineering Guide

(https://www.promptingguide.ai/), researchers employ

proper prompt engineering to enhance the LLM [3]. This is

true not only for the developer who creates an AI application,

but also for the user who interacts with an LLM to generate

content.

The Prompt Engineering guide suggests many different

prompt engineering techniques to interact with LL.M. A few

of those are listed below.
• Zero-shot or Few-shot- In which the user tries to get the

answer by providing zero to very few input contexts

• Chain of Thought - Where the user provides a chain of

actions to perform a complex task

• Meta Prompting - Focus more on the structure and

syntax of the prompt to generate content

• Graph prompt- To provide input on a graphical

document (such as Figma, screenshot, or design

document) in a standard form

Many other prompt engineering techniques can be found

on the Prompt Engineering Guide website. These techniques

are continually evolving, as new terms emerge in the

industry.

5. Study Approach
The purpose of this study was to develop an enterprise-

wide, scalable process to generate the maximum number of

valid test cases, thereby minimizing review effort. A key

metric, approval percentage, was considered to measure the

success, which is equivalent to the total number of accepted

test cases divided by the total number of generated test cases.

𝐴𝑝𝑝𝑟𝑜𝑣𝑎𝑙 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠
∗ 100 (1)

5.1. Approach 1- Experiment 1- Zero Shot Prompt -

Requirement document

The experiment began by uploading a requirement

document containing a detailed description of the

application's functionality to the tool. The task was to

generate end-to-end test cases without any prompts. AI tools

generated 89 test cases in total; however, QE could only

approve 19 of those, giving a very poor approval percentage

of 23%

5.2. Approach 1- Experiment 2- Zero Shot Prompt –

Detailed Requirement Document

This time, a different requirement document containing

more details on application functionality was uploaded to

generate test cases without any standard prompt. This time,

the tool generated 51 test cases, but QE could accept only 6.

Again, the approval percentage was very poor at 11%. In

both approaches, the quality of test cases was very poor, with

missing test steps or invalid test cases that were completely

out of context.

5.3. Approach2-Experiment 1 - Structured Prompt-

Detailed Requirement Document

After the zero-prompt approach, the experiment was

repeated with the following structured prompt.

5.3.1. Prompt

“Task: Generate comprehensive test cases for a specified

use case flow

Context: As a software QA analyst, they need to organize

the test cases by functional groups, ensuring broad coverage

without redundancy. Each test case should be end-to-end,

covering every step from beginning to

end.

Tone: Professional”

Results were very promising. This time, the tool

generated only 32 test cases, and out of those, 17 test cases

were accepted, representing a significant jump in the

acceptance rate from 11% to 53%. Mentioning Persona, as

the QA analyst, with a descriptive prompt and a clear

indication of the test case type, played a key role here.

Login
Accounts

Page
Payments

Verification
Page

Payment
Confirmation

Page

Nagmani Lnu / IJCSE, 12(8), 27-30, 2025

29

5.4. Approach2-Experiment 2- With Structured Prompting

– Requirement document passed as a table format

This time, the document was modified to a tabular form,

presenting high-level scenarios. The task was to pass a

structured prompt, as shown below, to generate detailed end-

to-end test cases, which is more time-consuming. This is a

very common situation where the QE team would like to

design high-level test cases, but takes AI assistance to detail

them out.

5.4.1. Prompt

“Task: Generate comprehensive test cases for each high-

level test flow mentioned in the document

Context: as a Software QA analyst for each specified use case

in the given document. Ensuring broad coverage without

redundancy. Each test case should be end-to-end, covering

every step from start to finish, and it should have a single

standard flow within each test case. The test suite should have

positive, negative, and all possible edge cases. Test cases

should be based on both UI and functionality.

Tone: Professional”

Results were stunning, with the QE team accepting

100% of steps with very minimal modification.

5.5. Approach2-Experiment 3- Structured Prompting –

Requirement document passed as screenshots flow

This time, the document was modified to include

screenshots of the application flow, enabling the generation

of end-to-end test cases. Once again, this is another very

common use case in software engineering, where a team

would like to use AI to generate test cases based on the

application flow, such as a Figma design document or user

interface screenshots.

5.5.1. Prompt

“Task: Generate comprehensive test cases for the flows

depicted in the given document

Context: A Software QA analyst is responsible for each flow

of the application mentioned in the given

document. Ensuring broad coverage without redundancy.

Each test case should be end-to-end, covering every step from

start to finish, and it should have a single standard flow within

each test case. The test suite should have positive, negative,

and all possible edge cases. Test cases should be based on

application functionality.

Tone: Professional”

5.5.2. Additional Prompt

An additional prompt was also included in each

screenshot image to provide context for the AI. For example,

the following additional context was added to the login

page. “User has the option to skip login and go as a Guest to

make payments. However, this option will be disabled for the

user who does not have this set up enabled.”

An additional prompt helped the AI agent to create three

sets of test cases to cover all the required flows.

• Submit payment with a registered user

• Submit payment with guest permission when enabled.

• Guest payment options are not available if it was not

configured for the bank.

Results were stunning, with the QE team accepting 96%

of test cases with very minimal modification.

5.6. Approach2-Experiment 4- With Structured Prompting

– Requirement document was passed as Swagger

documentation

After UI test cases, the attempt was changed to generate

API test cases. A Swagger documentation containing all API

definitions was uploaded to generate end-to-end API test

cases for the application.

5.6.1. Prompt

“Task: Generate comprehensive end-to-end API test cases for

the given Swagger documentation

Context: A Software QA analyst is responsible for the API

definition mentioned in the document. Ensuring broad

coverage without redundancy. Each test case should be end-

to-end, covering every step from beginning to end. The test

suite should have positive, negative, and all possible edge

cases. Test cases should be based on application

functionality.”

Results were stunning, with the QE team accepting 94%

of test cases with very minimal modification.

6. Conclusion
This study proves that teams with a good understanding

of the system and requirements can generate highly effective

test cases, with an acceptance rate of 94 to 100% for UI and

APIs, by providing a structured prompt (as depicted in Table

1 below). In the absence of a structured prompt, Quality

Engineers will spend an enormous amount of time removing

unwanted test cases and will not utilize Artificial Intelligence

technology to its fullest capability.

Prompts can be provided at the beginning to trigger the

task process for AI, and if needed, within documents such as

Figma documents or Swagger documentation, to help AI

generate a quality test case. A structured prompt should

clearly include the task and context to avoid any

hallucinations. For example, if a user wants to generate test

cases for a specific requirement (such as a small requirement

or a defect), rather than for end-to-end test cases, they should

specify this clearly in the prompt.

This study helps companies create an enterprise-wide

Artificial Intelligence prompt engineering practice with

standards and guardrails.

Nagmani Lnu / IJCSE, 12(8), 27-30, 2025

30

Table 1. Results summary

References
[1] Time Estimation for Software Testing, Devmio - Software Know-How, 2016. [Online]. Available: devm.io/testing/time-estimation-for-

software-testing-128078.

[2] Sahelichakraborty, World Quality Report 2024 Shows 68% of Organizations Now Utilizing Gen AI to Advance Quality Engineering ,

Capgemini USA, 2024. [Online]. Available: www.capgemini.com/us-en/news/press-releases/world-quality-report-2024-shows-68-of-

organizations-now-utilizing-gen-ai-to-advance-quality-engineering/

[3] Prompting Techniques – Nextra, Prompt Engineering Guide. [Online]. Available: www.promptingguide.ai/techniques

[4] Theodore Reangpusri, and Cassandra Flur, “Test-Driven Development: Exploring Prompt Engineering,” Digital Scientific Archive, 2025.

[Google Scholar] [Publisher Link]

[5] Lahbib Naimi et al., “A New Approach For Automatic Test Case Generation From Use Case Diagram Using LLMS and Prompt

Engineering,” International Conference on Circuit, Systems and Communication, Fes, Morocco, pp. 1-5, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

Approach Exercise Prompt Type Use Case Approval Percentage

Approach1 1 Zero Shot End-to-End UI Test Case 23%

Approach1 2 Zero Shot End-to-End UI Test Case 11%
Approach2 1 Structured End-to-End UI Test Case 53%
Approach2 2 Structured End-to-End UI Test Steps 100%
Approach2 3 Structured End-to-End Test Case from Figma 96%
Approach2 4 Structured End-to-End API Test Case from Swagger 94%

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Test-Driven+Development%3A+Exploring+Prompt+Engineering&btnG=
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1971520&dswid=7160
https://doi.org/10.1109/ICCSC62074.2024.10616548
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+approach+for+automatic+test+case+generation+from+use+case+diagram+using+LLMs+and+prompt+engineering&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+approach+for+automatic+test+case+generation+from+use+case+diagram+using+LLMs+and+prompt+engineering&btnG=
https://ieeexplore.ieee.org/abstract/document/10616548

