
SSRG International Journal of Computer Science and Engineering Volume 12 Issue 9, 8-11, September 2025

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V12I19P102 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

In-Sprint Automation: A Much Needed Cultural Shift to

Accommodate Generative AI Storm in Quality

Engineering Space
Nagmani Lnu

Director of Quality Engineer at a FinTech Company, San Antonio, USA.

Corresponding Author : nagmanijobs@gmail.com

Received: 17 July 2025 Revised: 18 August 2025 Accepted: 05 September 2025 Published: 29 September 2025

Abstract - As Gen AI grows, the demand to include Artificial Intelligence in the software testing life cycle will increase to achieve

faster release cycles. Quality engineers (QE) will face even more pressure to deliver automated tests within the same sprint as

development. This paper presents a practical framework and cultural transformation adopted by a mid-size FinTech enterprise

that enabled 90% in-sprint automation coverage. The approach redefines the QE role, leverages method-level reusability, and

introduces placeholder scripting to handle partial requirements early in the sprint. Workshops, proofs of concept, and

organizational-level rollouts played key roles in scaling this model. Our case study demonstrates how cultural shifts and strategic

reuse can bridge the gap between agile development and test automation. This methodology aligns well with the DevOps principle

of "shift-left" testing, where test activities are integrated earlier in the lifecycle to reduce feedback cycles and improve quality.

Keywords - Generative AI, In-Sprint Automation, Selenium, Shift-left Testing, Test Automation.

1. Introduction
Ever since Agile development began, companies have

recognized the need for continuous integration and continuous

delivery, which have become central themes in their

development processes. Software testing is an important part

of the software development life cycle. Companies dedicate a

significant amount of development time to testing code, and

the ongoing demand for automation is ever-present to

accelerate the overall development process.

The traditional QE operation followed a three-phase

model:

1. Sprint Planning: QEs write test cases.

2. Sprint Execution: QE executes test cases.

3. Post-sprint: Automation engineers automate manual

cases or partially generate them through Artificial

Intelligence (AI)

This model has created multiple inefficiencies:

• Automation lagged development.

• Duplicate effort is made using manual steps and then

automated steps.

• Additional QE headcount is needed to close gaps.

• Stories developed late in the sprint go unautomated for

multiple cycles.

In this model, automation is treated as an afterthought

rather than a continuous practice. Manual testing is prioritized

as the primary deliverable, while automation is relegated to a

secondary activity, addressed only if time allows. This is often

challenged, especially in Agile development practices, as

Agile facilitates rapid, iterative delivery of software but faces

the headwind of automation not being completed within the

same sprint. According to the Capgemini World Quality

Report 2023 [1], 70–80% of respondents reported that their

QE teams lack sufficient time for automation. While

Generative AI may reduce this percentage, scalable in-sprint

automation will remain challenging [2] unless tests generated

by Gen AI are managed properly for reusability. An approach

must be established within the Quality Engineering team to

utilize these tests for in-sprint automation, which requires

both technical and cultural changes within the organization.

This paper outlines an approach to transition to a model where

automation occurs within the same sprint without sacrificing

quality or velocity and covers the technical and behavioral

changes an organization can implement to enable in-sprint

automation.

2. Literature Review
In-sprint automation has become a critical requirement

from the outset of agile development, and the industry is

increasingly looking to leverage Generative AI to address this

http://www.internationaljournalssrg.org/

Nagmani Lnu / IJCSE, 12(9), 8-11, 2025

9

need. In 2024, Joshua Moses published an article on using

Generative AI for code generation [3]. In 2023, V. Shobha

Rani, Dr A. Ramesh Babu, K. Deepthi, and Vallem Ranadheer

Reddy published an article discussing the benefits, challenges,

and best practices of shift-left testing in DevOps [4]. In 2024,

Thamiziniyz Natrajan and Shanmugavadivu Pichai published

an article on a Behavior Driven Development and metrics

framework to enhance agile practices [5]. None of these

papers addresses the approach and process, including cultural

change and method reusability, required to adopt in-sprint

automation at scale for the enterprise. This paper stands out in

that respect.

3. Solution Approach
To address in-sprint automation challenges, the following

exercises were conducted to resolve technical and cultural

issues:

• Method Reusability Awareness: Most UI or API flows

share common interactions (e.g., login, navigation, form

submission). The study showed that 60–80% of the steps

in manual test cases had already been automated in

previous sprints. QEs were empowered to leverage these

reusable methods at the start of each sprint, reducing the

amount of code they needed to write from scratch and

ensuring consistency across test suites. The automation

framework was further enhanced with tagging and

metadata, making it easier and faster to locate reusable

components.

• Deferring automation to the next sprint for stories arriving

late because of development delay: Stories that arrived

late in a sprint were scheduled for automation in the

following sprint. However, shared steps for these stories

were still pre-automated using reusable methods,

ensuring that some level of automation coverage was

consistently maintained. Additionally, deferred

automations were tracked independently, and QE metrics

incorporated "delayed automation coverage" to monitor

any gaps.

• In-Sprint Test Reviews and Automation Syncs: To

enforce culture, mid-sprint checkpoints were introduced,

during which QEs presented completed automation

scripts in brief sync meetings. This practice fostered

alignment with developers, encouraged code reuse, and

helped identify blockers early. Additionally, peer reviews

became mandatory for every new script to uphold code

quality and framework standards.

4. Implementation Approach
A pilot initiative was launched within a single agile team

and tracked over three sprints to measure the following:

• Reuse rate of existing automation methods

• Time spent on manual test design versus automation

• Regression readiness by sprint close

• Number of scripts completed within sprint boundaries

One of the primary obstacles was shifting mindsets, as

engineers were accustomed to handling manual and

automation workflows separately. Several workshops were

held to demonstrate the following:

• How to identify reusable methods

• Writing flexible scripts with placeholder support

• Git branching strategies to avoid conflicts with

incomplete features

• How to convert acceptance criteria into BDD-style tests

that can be automated early

Leadership support proved essential. Engineering

managers established in-sprint automation as a key

performance indicator (KPI) and formally recognized early

adopters. These cultural shifts had a notable impact. The

results demonstrated up to 85% automation readiness within

the sprint. Manual testing efforts decreased, and regression

tests were executed on the same day as feature delivery. After

the initial team’s success, Sprint Automation was scaled to

five agile teams throughout the organization. Automation

repositories were modularized, method libraries were

standardized, and peer-review processes were implemented.

Additionally, a central QE guild was formed to share best

practices and monitor adoption metrics.

5. Test Cases and Code Examples
As part of the workshop exercise, the following examples

were automated

5.1. Test Case 1

Loan Payment Verification: This test case verifies that

after a user logs in, navigates to the loan page, selects a loan,

makes a payment, and logs back in, the payment is reflected

correctly. As part of the working session, the task was to

analyze the available pages and reusable methods, and to

create a placeholder method for the new functionality that was

still under development, as shown in Table 1.

Table 1. Test Case 1

Step Action Reusable? Notes

1 Login Yes Reused login method

2 Select loan Yes Reused the loan selection method

3 Pay the loan in full. No New logic to pay off the loan went as a placeholder.

4 Check loan payment status. No New logic to verify payment status went as a placeholder.

Nagmani Lnu / IJCSE, 12(9), 8-11, 2025

10

Once the flow was identified, it was time to create the

automation. The Page Object Model (POM) and Test class

code illustrated in Figures 1 and 2, respectively, serve as an

example to explain the concept. The actual written code

cannot be shared due to security concerns.

Fig. 1 POM Example to Automate the Loan page

Fig. 2 Test Class Example code

5.2. Test Case 2

Loan Visibility After Payment: The test case was to

ensure that when a user logs in, pays off a loan, and logs

back in, the paid loan is no longer displayed in their loan list.

The reusability analysis is shown below in Table 2.

Table 2. Test Case 2

Step Action Reusable? Notes

1 Login

Yes

Reused login method

2 Select loan Yes

Reused the loan selection method

 3 Pay the loan in full.

No

New logic to pay off the loan

 4 Log out and log back in.

Yes

Reused login/logout method

 5 Check if the loan is displayed No New logic to verify loan visibility post-payment

The code in Figure 3 below serves as an example to

demonstrate the automation process.

Fig. 3 Test Class for Test Case 2 Example code

6. Results
The new model achieved:

• 90% automation completion within the sprint

• 70% reduction in automation creation effort by the

centralized team

• Enable a centralized team for other enabler activities

• Higher release confidence

• Reduced test debt and maintenance overhead

7. Conclusion
While AI can help generate code snippets, it alone will

not enable in-sprint automation, as in-sprint automation is not

just a technical upgrade—it is a cultural transformation. This

study emphasizes the importance of early QE involvement,

smart reuse, and flexible scripting. By shifting automation

activities earlier and empowering QEs to take ownership of

test development, significant efficiency and quality gains can

be achieved. Future directions include integrating generative

AI for dynamic placeholder filling, NLP-based test case

parsing, and self-healing scripts to reduce maintenance.

Nagmani Lnu / IJCSE, 12(9), 8-11, 2025

11

References
[1] World Quality Report 2023-24, Capgemini. [Online]. Available: www.capgemini.com/insights/research-library/world-quality-report-

2023-24/

[2] Rahul Jain, Overcome the In-Sprint Automation Challenges with Test Automation [2025], LambdaTest, 2024. [Online]. Available:

https://www.lambdatest.com/blog/top-in-sprint-test-automation-challenges/

[3] Joshua Moses, Accelerating Agile Sprints with Generative AI for Code Automation, 2024. [Google Scholar]

[4] V. Shobha Rani et al., “Shift-Left Testing in DevOps: A Study of Benefits, Challenges, and Best Practices,” 2023 2nd International

Conference on Automation, Computing and Renewable Systems (ICACRS), 2023. [CrossRef] [Google Scholar] [Publisher Link]

[5] Thamizhiniyan Natarajan, and Shanmugavadivu Pichai, “Behaviour-driven Development and Metrics Framework for Enhanced Agile

Practices in Scrum Teams,” Information and Software Technology, vol. 170, 2024. [CrossRef] [Google Scholar] [Publisher Link]

http://www.capgemini.com/insights/research-library/world-quality-report-2023-24/
http://www.capgemini.com/insights/research-library/world-quality-report-2023-24/
https://www.lambdatest.com/blog/top-in-sprint-test-automation-challenges/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ACCELERATING+AGILE+SPRINTS+WITH+GENERATIVE+AI+FOR+CODE+AUTOMATION&btnG=
https://doi.org/10.1109/ICACRS58579.2023.10404436
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Shift-Left+Testing+in+DevOps%3A+A+Study+of+Benefits%2C+Challenges%2C+and+Best+Practices&btnG=
https://ieeexplore.ieee.org/abstract/document/10404436
https://doi.org/10.1016/j.infsof.2024.107435
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Behaviour-driven+development+and+metrics+framework+for+enhanced+agile+practices+in+scrum+teams&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584924000405

