Volume 12 Issue 9, 8-11, September 2025
© 2025 Seventh Sense Research Group®

SSRG International Journal of Computer Science and Engineering
ISSN: 2348-8387 / https://doi.org/10.14445/23488387/1IJCSE-V12I9P102

Original Article

In-Sprint Automation: A Much Needed Cultural Shift to
Accommodate Generative Al Storm 1n Quality
Engineering Space
Nagmani Lnu

Director of Quality Engineer at a FinTech Company, San Antonio, USA.
Corresponding Author : nagmanijobs@gmail.com

Received: 17 July 2025 Revised: 18 August 2025 Accepted: 05 September 2025 Published: 29 September 2025
Abstract - As Gen Al grows, the demand to include Artificial Intelligence in the software testing life cycle will increase to achieve
faster release cycles. Quality engineers (QF) will face even more pressure to deliver automated tests within the same sprint as
development. This paper presents a practical framework and cultural transformation adopted by a mid-size FinTech enterprise
that enabled 90% in-sprint automation coverage. The approach redefines the QF role, leverages method-level reusability, and
introduces placeholder scripting to handle partial requirements early in the sprint. Workshops, proofs of concept, and
organizational-level rollouts played key roles in scaling this model. Our case study demonstrates how cultural shifts and strategic

reuse can bridge the gap between agile development and test automation. This methodology aligns well with the DevOps principle
of "shift-left" testing, where test activities are integrated earlier in the lifecycle to reduce feedback cycles and improve quality.

Keywords - Generative A, In-Sprint Automation, Selenium, Shift-left Testing, Test Automation.

1. Introduction

Ever since Agile development began, companies have
recognized the need for continuous integration and continuous
delivery, which have become central themes in their
development processes. Software testing is an important part
of the software development life cycle. Companies dedicate a
significant amount of development time to testing code, and
the ongoing demand for automation is ever-present to
accelerate the overall development process.

The traditional QE operation followed a three-phase

model:

1. Sprint Planning: QEs write test cases.

2. Sprint Execution: QE executes test cases.

3. Post-sprint: Automation engineers automate manual
cases or partially generate them through Artificial
Intelligence (AI)

This model has created multiple inefficiencies:

e  Automation lagged development.

e Duplicate effort is made using manual steps and then
automated steps.

e Additional QE headcount is needed to close gaps.

e Stories developed late in the sprint go unautomated for
multiple cycles.

£]o)

In this model, automation is treated as an afterthought
rather than a continuous practice. Manual testing is prioritized
as the primary deliverable, while automation is relegated to a
secondary activity, addressed only if time allows. This is often
challenged, especially in Agile development practices, as
Agile facilitates rapid, iterative delivery of software but faces
the headwind of automation not being completed within the
same sprint. According to the Capgemini World Quality
Report 2023 [1], 70-80% of respondents reported that their
QE teams lack sufficient time for automation. While
Generative Al may reduce this percentage, scalable in-sprint
automation will remain challenging [2] unless tests generated
by Gen Al are managed properly for reusability. An approach
must be established within the Quality Engineering team to
utilize these tests for in-sprint automation, which requires
both technical and cultural changes within the organization.
This paper outlines an approach to transition to a model where
automation occurs within the same sprint without sacrificing
quality or velocity and covers the technical and behavioral
changes an organization can implement to enable in-sprint
automation.

2. Literature Review

In-sprint automation has become a critical requirement
from the outset of agile development, and the industry is
increasingly looking to leverage Generative Al to address this

T | his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


http://www.internationaljournalssrg.org/

Nagmani Lnu / IJCSE, 12(9), 8-11, 2025

need. In 2024, Joshua Moses published an article on using
Generative Al for code generation [3]. In 2023, V. Shobha
Rani, Dr A. Ramesh Babu, K. Deepthi, and Vallem Ranadheer
Reddy published an article discussing the benefits, challenges,
and best practices of shift-left testing in DevOps [4]. In 2024,
Thamiziniyz Natrajan and Shanmugavadivu Pichai published
an article on a Behavior Driven Development and metrics
framework to enhance agile practices [5]. None of these
papers addresses the approach and process, including cultural
change and method reusability, required to adopt in-sprint
automation at scale for the enterprise. This paper stands out in
that respect.

3. Solution Approach
To address in-sprint automation challenges, the following

exercises were conducted to resolve technical and cultural

issues:

e  Method Reusability Awareness: Most Ul or API flows
share common interactions (e.g., login, navigation, form
submission). The study showed that 60—80% of the steps
in manual test cases had already been automated in
previous sprints. QEs were empowered to leverage these
reusable methods at the start of each sprint, reducing the
amount of code they needed to write from scratch and
ensuring consistency across test suites. The automation
framework was further enhanced with tagging and
metadata, making it easier and faster to locate reusable
components.

e  Deferring automation to the next sprint for stories arriving
late because of development delay: Stories that arrived
late in a sprint were scheduled for automation in the
following sprint. However, shared steps for these stories
were still pre-automated using reusable methods,
ensuring that some level of automation coverage was
consistently =~ maintained. = Additionally,  deferred
automations were tracked independently, and QE metrics
incorporated "delayed automation coverage" to monitor
any gaps.

® [n-Sprint Test Reviews and Automation Syncs: To
enforce culture, mid-sprint checkpoints were introduced,
during which QEs presented completed automation
scripts in brief sync meetings. This practice fostered
alignment with developers, encouraged code reuse, and
helped identify blockers early. Additionally, peer reviews
became mandatory for every new script to uphold code

quality and framework standards.

4. Implementation Approach
A pilot initiative was launched within a single agile team
and tracked over three sprints to measure the following:
e Reuse rate of existing automation methods
e Time spent on manual test design versus automation
e  Regression readiness by sprint close
e Number of scripts completed within sprint boundaries

One of the primary obstacles was shifting mindsets, as
engineers were accustomed to handling manual and
automation workflows separately. Several workshops were
held to demonstrate the following:

e  How to identify reusable methods

e  Writing flexible scripts with placeholder support

e Git branching strategies to avoid conflicts
incomplete features

e How to convert acceptance criteria into BDD-style tests
that can be automated early

with

Leadership support proved essential. Engineering
managers established in-sprint automation as a key
performance indicator (KPI) and formally recognized early
adopters. These cultural shifts had a notable impact. The
results demonstrated up to 85% automation readiness within
the sprint. Manual testing efforts decreased, and regression
tests were executed on the same day as feature delivery. After
the initial team’s success, Sprint Automation was scaled to
five agile teams throughout the organization. Automation
repositories were modularized, method libraries were
standardized, and peer-review processes were implemented.
Additionally, a central QE guild was formed to share best
practices and monitor adoption metrics.

5. Test Cases and Code Examples
As part of the workshop exercise, the following examples
were automated

5.1. Test Case 1

Loan Payment Verification: This test case verifies that
after a user logs in, navigates to the loan page, selects a loan,
makes a payment, and logs back in, the payment is reflected
correctly. As part of the working session, the task was to
analyze the available pages and reusable methods, and to
create a placeholder method for the new functionality that was
still under development, as shown in Table 1.

Table 1. Test case 1
Step Action Reusable? Notes
1 Login Yes Reused login method
2 Select loan Yes Reused the loan selection method
3 Pay the loan in full. No New logic to pay off the loan went as a placeholder.
4 Check loan payment status. No New logic to verify payment status went as a placeholder.




Nagmani Lnu / IJCSE, 12(9), 8-11, 2025

Once the flow was identified, it was time to create the
automation. The Page Object Model (POM) and Test class
code illustrated in Figures 1 and 2, respectively, serve as an
example to explain the concept. The actual written code

cannot be shared due to security concerns.

Fig. 1 POM example to automate the loan page

Fig. 2 Test class example code

5.2. Test Case 2

Loan Visibility After Payment: The test case was to
ensure that when a user logs in, pays off a loan, and logs back
in, the paid loan is no longer displayed in their loan list.

The reusability analysis is shown below in Table 2.

Table 2. Test case 2

Step Action Reusable? Notes
1 Login Yes Reused login method
2 Select loan Yes Reused the loan selection method
3 Pay the loan in full. No New logic to pay off the loan
4 Log out and log back in. Yes Reused login/logout method
5 Check if the loan is displayed No New logic to verify loan visibility post-payment

The code in Figure 3 below serves as an example to
demonstrate the automation process.

Fig. 3 Test Class for Test Case 2 Example code

6. Results
The new model achieved:

e 90% automation completion within the sprint

e 70% reduction in automation creation effort by the
centralized team

e Enable a centralized team for other enabler activities

e Higher release confidence

e Reduced test debt and maintenance overhead

7. Conclusion

While AI can help generate code snippets, it alone will
not enable in-sprint automation, as in-sprint automation is not
just a technical upgrade-it is a cultural transformation. This
study emphasizes the importance of early QE involvement,
smart reuse, and flexible scripting.

By shifting automation activities earlier and empowering
QEs to take ownership of test development, significant
efficiency and quality gains can be achieved. Future directions
include integrating generative Al for dynamic placeholder
filling, NLP-based test case parsing, and self-healing scripts
to reduce maintenance.



Nagmani Lnu / IJCSE, 12(9), 8-11, 2025

Conflict of Interest Statement Funding Statement
The authors declare that no conflicts of interest exist with No funding was obtained for this research.
respect to the research, authorship, and publication of this
article.
References

[11 World Quality Report 2023-24, Capgemini. [Online]. Available: www.capgemini.com/insights/research-library/world-quality-report-
2023-24/

[2] Rahul Jain, Overcome the In-Sprint Automation Challenges with Test Automation [2025], LambdaTest, 2024. [Online]. Available:
https://www.lambdatest.com/blog/top-in-sprint-test-automation-challenges/

[3] Joshua Moses, Accelerating Agile Sprints with Generative Al for Code Automation, 2024. [Google Scholar]

[4] V. Shobha Rani et al., “Shift-Left Testing in DevOps: A Study of Benefits, Challenges, and Best Practices,” 2023 2" International
Conference on Automation, Computing and Renewable Systems (ICACRS), 2023. [CrossRef] [Google Scholar] [Publisher Link]

[S] Thamizhiniyan Natarajan, and Shanmugavadivu Pichai, “Behaviour-driven Development and Metrics Framework for Enhanced Agile
Practices in Scrum Teams,” Information and Software Technology, vol. 170, 2024. [CrossRef] [Google Scholar] [Publisher Link]


http://www.capgemini.com/insights/research-library/world-quality-report-2023-24/
http://www.capgemini.com/insights/research-library/world-quality-report-2023-24/
https://www.lambdatest.com/blog/top-in-sprint-test-automation-challenges/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ACCELERATING+AGILE+SPRINTS+WITH+GENERATIVE+AI+FOR+CODE+AUTOMATION&btnG=
https://doi.org/10.1109/ICACRS58579.2023.10404436
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Shift-Left+Testing+in+DevOps%3A+A+Study+of+Benefits%2C+Challenges%2C+and+Best+Practices&btnG=
https://ieeexplore.ieee.org/abstract/document/10404436
https://doi.org/10.1016/j.infsof.2024.107435
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Behaviour-driven+development+and+metrics+framework+for+enhanced+agile+practices+in+scrum+teams&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584924000405

