SSRG International Journal of Computer Science and Engineering
ISSN: 2348-8387 / https://doi.org/10.14445/23488387/1JCSE-V12I19P103

Volume 12 Issue 9, 12-23, September 2025
© 2025 Seventh Sense Research Group®

Original Article

An Efficient Spark-Based Parallel FP-Growth For Big
Data Mining With Key-Value Pair Model

Baokui Liao>%*, Mohd Nurul Hafiz Ibrahim?, Mustafa Muwafak Alobaedy*, S. B. Goyal®

ICity Graduate School, City University Malaysia, Petaling Jaya, 46100, Kuala Lumpur, Malaysia.
2Guizhou Light Industry Polytechnic University, Guizhou, China.
34Faculty of Information Technology, City University Malaysia, Kuala Lumpur, Malaysia.
SChitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India.

*Corresponding Author : liaobaokuil988@gmail.com

Received: 21 July 2025 Revised: 25 August 2025 Accepted: 08 September 2025 Published: 30 September 2025
Abstract - In the era of big data, the exponential growth of information has made extracting valuable insights from massive
datasets an urgent challenge. Association rule mining, particularly the FP-Growth, plays a crucial role in discovering high-
frequency patterns. Traditional FP-Growth faces significant challenges when processing large-scale data, including memory
overflow and computational inefficiency. Existing improvements to FP-Growth have achieved some success in parallelization,
with the PFP being a notable example. This paper proposes an algorithmic parallelization scheme based on Spark, enhancing
mining efficiency by splitting FP trees using key-value pairs and optimizing database scanning processes. Unlike traditional
methods relying on global FP trees, this algorithm leverages Spark's distributed in-memory computing model to eliminate time-
consuming FP tree traversal operations and reduce inter-node communication. Tests demonstrate that the KVBFP exhibits high

stability, achieving approximately 55% lower communication overhead compared to PFP. It also reduces the mean variance of

cluster CPU and memory utilization by 87.2% and 92.4%, respectively, while boosting overall mining efficiency by 44.7%.

Keywords - FP-Growth, Spark, Parallel Mining, Big Data, Data Mining.

1. Introduction

Data mining is a key technique for analyzing big data and
aims to extract meaningful patterns, associations, and trends
from large-scale datasets. It uses algorithms in the fields of
machine learning, statistics, and artificial intelligence to
discover hidden relationships in data that may not be detected
by traditional analytics. The main goal of data mining is to
transform raw data into useful knowledge to aid in decision-
making and prediction [1]. FP-Growth, as an important
algorithm in the association rule mining branch of data
mining, stores Frequent Item (FI) sets by constructing a global
FP-tree, and then finds frequent item sets by traversing the tree
structure [2].

The rise of Big Data stems from the proliferation of digital
technologies such as the Internet of Things (10T), social media
platforms, and mobile devices that are generating
unprecedented data [3]. Millions of social media posts,
financial transactions, and sensor data from smart devices are
recorded every minute. Extracting valuable information from
this massive amount of data can give organizations a
competitive advantage, speed up the decision-making process,
and lead to innovations in a variety of areas such as healthcare,
finance, and urban planning [4]. Among the many big data

OSE)

processing frameworks, Apache Spark is one of the most
widely used. It provides a distributed computing engine
featuring in-memory processing and Resilient Distributed
Datasets (RDDs), which significantly speed up computation
and reduce 1/0 overhead [5]. Its streamlined application
program interface and dynamic task scheduling make it easier
for developers to build scalable data pipelines without having
to deal with the complexities of underlying distributed
programming [6]. Big data and data mining technologies are
two hot research topics at present, and there have been many
research results in their intersection. This study focuses on the
parallelization of FP-Growth in data mining technology on the
big data platform Spark, and proposes a more efficient
parallelization strategy based on existing research results.

FP-Growth was designed to run on a single machine and
was not intended for distributed or parallel execution [7]. As
the size of the dataset increases, the global FP tree expands
accordingly, which can easily lead to memory overflow when
its size exceeds the available system memory [8]. In addition,
traversing the global FP-tree requires a huge amount of
computation, which consumes a lot of CPU resources, and
when the FP-tree becomes very large, the traversal operation
will lead to CPU overload [9]. The strong reliance on the

Eraremr 1 Nis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://www.internationaljournalssrg.org/

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

global FP-Tree creates a bottleneck in parallel frameworks
such as Spark [10], as this structure cannot be fully replicated
across all executors, and traversing the global FP-Tree in a
distributed environment places stringent requirements on
memory synchronization and coordination.

To address the limitations of the FP-Growth, existing
research has introduced various parallelization strategies.
These approaches address the load balancing problem to some
extent but have inherent flaws, such as load balancing, 1/0
bottlenecks, excessive dependence on hardware, and
cumbersome algorithm complexity. This study proposes an
enhanced version of the FP-Growth, which replaces the global
FP-Tree structure with a key-value pair for data mining. This
study also proposes a database scanning strategy. This
approach preprocesses and reorganizes the source database
through two Spark tasks to efficiently filter and sort high-
frequency items. Through designed experiments, the
algorithm demonstrates high stability, reduces hardware
consumption compared to existing parallel FP-Growth
implementations, and enhances cluster communication
efficiency, load balancing, and mining efficiency.

2. Related Work

A systematic review of FP-Growth parallelization
research over the past five years reveals current research gaps.
This paper introduces six of the most highly cited FP-Growth
parallelization approaches and provides a detailed comparison
of their respective shortcomings. Senthilkumar et al. proposed
an efficient MapReduce-based FP-Growth in 2020 to address
memory consumption and communication bottlenecks in
traditional FP-Growth under big data scenarios [11]. This
approach employs four key optimizations: dictionary
encoding for item set compression, improved hash
partitioning to reduce network load, compression strategies to
enhance data transfer efficiency, and a combiner to optimize
the reduction phase load. Experiments demonstrate that this
algorithm exhibits excellent execution efficiency and
scalability in Hadoop cluster environments, making it suitable
for distributed frequent item set mining tasks. In 2021, Zakria
Mahrousa et al. proposed an improved FP-Growth that
combines MapReduce with directed graph structures to
enhance frequent item set mining efficiency on large-scale
datasets [12].

This algorithm distributes raw data across multiple nodes,
compresses transaction databases using graph structures, and
constructs FP-Trees in parallel, thereby effectively reducing
memory consumption and computation time. Research results
show that PGFP-Growth outperforms standard MapReduce
implementations when processing high-dimensional, high-
density transaction databases and offers significant
advantages in memory management. Amr Essam et al.
proposed an enhanced balanced parallel frequent pattern
mining algorithm in 2021 [13] to optimize load balancing and
efficiency for Parallel FP-Growth on Spark during big data

13

processing. This method introduces a load-balanced grouping
strategy to achieve even task distribution across cluster nodes.
Simultaneously, it refines the conditional pattern base to
eliminate low-frequency items, thereby reducing memory
consumption and the overhead of constructing local FP-Trees.
Test results demonstrate that this algorithm achieves a 21.56%
to 39.72% improvement in runtime compared to FP-Growth,
significantly enhancing execution efficiency and scalability.
Priyanka Gupta et al. proposed parallel Apriori and FP-
Growth in 2021 [14], deployed on the Apache Spark platform
to boost frequent item set mining efficiency in big data
environments. This approach leverages Spark's in-memory
computing capabilities, utilizing RDD-supported data
partitioning and parallel processing to run both Apriori and
FP-Growth concurrently across multiple datasets, comparing
and enhancing their performance. Experimental results
demonstrate faster execution speeds and good scalability
when adjusting support thresholds. Youssef Fakir et al.
proposed a parallel FP-Growth algorithm based on Apache
Spark in 2024 for large-scale medical data mining in diabetes
prediction tasks [15].

This algorithm employs a horizontal data partitioning
strategy combined with Spark's distributed computing
framework, significantly accelerating frequent item set mining
while maintaining accuracy. Experimental validation on
medical datasets demonstrates superiority over traditional
methods in both prediction accuracy and operational
efficiency. Shubhangi Chaturvedi et al. proposed a vector-
distance-based FP-Growth in 2023 [16]. This approach
constructs local FP-Trees based on the prefix distance from
each frequent item to the root node as the load-balancing
grouping criterion. These local FP-Trees are then distributed
to computational nodes for parallel mining. Test results
demonstrate that the Parallel FP-growth (PFP) achieves
significant improvements in load balancing, maintains stable
performance when handling massive datasets, and exhibits
highly efficient mining capabilities. While all six
parallelization approaches can accomplish parallel mining
tasks, each possesses inherent limitations. Table 1 summarizes
the shortcomings of each algorithm.

Given the limitations of the algorithms listed in Table 1,
the current parallel FP-Growth domain still lacks an efficient
parallelization scheme that simultaneously achieves load
balancing, low complexity, and minimal cluster
communication overhead. Therefore, this paper proposes an
improved parallel algorithm based on key-value pairs, termed
Key-based Vertical Based FP-Growth (KVVBFP). By replacing
key-value pairs across all stages of FP-Growth, this approach
maximizes compatibility with the Spark platform to address
existing algorithmic limitations. Among the reviewed
algorithms, PFP introduced the concept of vector distance for
the first time, significantly enhancing load balancing. This
study selects PFP as the reference point for further
investigation.

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

Table 1. Related research limitations summary

Author Limitation
Parallel implementation of classical
Priyanka Gupta method_s fails to a(_jdress_FP—tree
etal. (2021) expansion, Apriori candidate set
' explosion issues, and has poor pruning
capability.
Focused on load balancing
etal. (2021) y ’ g

tree pruning and compression
strategies.

The algorithm is based on Spark but
does not incorporate path optimization
or compressed structures; frequent item

set generation is relatively broad,
limiting its applicability.
Optimized networking and storage, but
slow due to disk 1/O; lacks FP-Tree

Youssef Fakir
etal. (2024)

Senthilkumar et

al. (2020) hierarchical optimization.
Path compression using directed graph
Zakria structures lacks support for adaptability
Mahrousa and pruning/merging mechanisms;
etal. (2021) redundant paths may still be generated
for high-dimensional data.
Shubhangi Vector d_lstance calculations are
Chaturvedi computationally complex and can
etal. (2023) easily lead to excessive communication

frequency between clusters.

3. Algorithm Proposal
3.1. Algorithm Process

The KVBFP is implemented in two main stages. The first
phase transforms the raw transaction dataset into a vertical
data structure (Swap the rows and columns of the source
dataset) that compresses and filters transactions based on item
frequency. The second phase performs frequent item set
mining by applying a series of key-value transformations
using Spark's RDD operations. The entire process flow chart
of KVBFP is shown in Figure 1.

Transaction

_ 1st Key-value: dataset
Phase 1: Vertical vertical Structure
) J process :
compression of - Vertical
transaction data = opg Key-value: data table

~data compression
process

Compressed and
sorted data table

_3rd Key-value:
prefix splitting

Phrase2: Prefix Key-Value
Parallelized _ process pairs
Mining

4th Key-value:
- data mining
process

Final result

Fig. 1 Entire procedure of KVBFP

3.1.1. Phase 1: Vertical Compression of Transaction Data

If the original transaction database consists of a set of
records as shown in Table 2, where each transaction contains
a set of item sets, here the support threshold is preset to 2 to
mine the database for frequent item sets. Spark’s Distributed
Data Processing framework converts and compresses the
dataset into a vertical data format in two steps. In these Tables
and Figures, ‘Sup’ is the support for each element, ‘Num’ is
the transaction number, ‘E’ represents the items in each
transaction, and ‘N’ represents the specific label value
corresponding to each transaction.

Table 2. Original transaction database

Num Trans
N1 El, E2, E5
N2 E2, E4, E6
N3 E2, E3
N4 El, E2, E4
N5 El, E3, E7
N6 E2, E3
N7 El, E3, E8
N8 El, E2, E3, E5
N9 El,E2,E3

Step 1: Load all transactions into the RDD and map each
item to the list of transaction IDs that appear in it. Calculate
the support count for each item using flatMap() and
reduceByKey(). Items that do not meet the support threshold
are filtered out. The remaining frequent items are sorted in
descending order of support to form a vertical item sets table.
The results of Step 1 are shown in Table 3.

Table 3. Vertical data table

Element E2 E1l E3 E4 E5
Sup 7 6 6 2 2
N1, N2, N3,| N1, N4, | N3, N5,
Num |[N4, N6, N8,| N5, N7, | N6, N7, |N2, N4/N1, N8
N9 N8, N9 | N8, N9

The data flow of Job1 from Table 2 to Table 3 is shown
in Figure 2.

([

flatMap() reduceByKey(
Original l <En, (Ni,...Nj)>*++
data Table 2 <E, N>--- Table 3

Fig. 2 Data flow of vertical compression process

Step 2: Each transaction is then reconstructed by
removing the infrequent items using the vertical table and
sorting the remaining items in descending order according to
the support threshold.This results in a compressed database
containing only frequent items, which facilitates the

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

subsequent mining phase. The results of Step 2 are shown in
Table 4.

Table 4. Data table after compression and sorting

Num Trans

N1 E2, E1, E5
N2 E2, E4
N3 E2, E3
N4 E2, El, E4
N5 El, E3
N6 E2, E3
N7 El, E3
N8 E2, E1, E3, E5
N9 E2, E1, E3

The data flow of Job2 from Table 3 to Table 4 is shown
in Figure 3.

=—{ flatMap() ‘ reduceByKey() ‘
— i !
<N, (Ej**)>-+*
Table 3 <N, E>--- Table 4

Fig. 3 Data flow of sorting process

As can be seen from Table 4, relative to Table 2, E6, E7,
and E8, which do not satisfy the support thresholds, have been
deleted, and the items in each transaction are listed in order of
decreasing support.

Phase 1 Pseudocode

Input:
D « original table: mapping Num — [E,, Eo, ...,
En]
6 «— minimum support threshold

Phase 1: Build Item-to-Column Map and Count
Frequencies
1. For each (Num, [Ey, ..., E,]) in D:

For each item E;:

Emit (Ei, Num)

2. Group by E; to form inverted index: E; — [Numu,
Numg, ..., Num]
3. For each E;:

Count support = length of [Num list]
4. Filter: retain only E; where support > ¢
5. Store frequency table: freq(E;) = support count
Phase 2: Reconstruct Column-to-Items Mapping
6. For each E; in the frequency table:

For each Num in E;'s list:

Emit (Num, Ej)

7. Group by Num to get: Num — [Eq, ..., Eq]
8. For each Num:

Remove items not in the frequency table

Sort items in descending order by freq(E;)
9. Return sorted lists per Num

3.1.2. Phase 2: Mining Frequent Item Sets through Key-Value
Transformations

Using the preprocessed data in Table 4, each transaction
is decomposed into multiple key-value pairs, with the key
being the item in the transaction and the value being the item
preceding that item. This decomposition is accomplished
using Spark's flatMap function. Each transaction is converted
into multiple key-value pairs of the form <E, prefix>. For
example, transaction [E2, E1, E5] is decomposed into <E2,
null>, <E1, E2>, and <E5, (E2 E1)>, and the splitting results
are shown in Table 5.

Phase 2 Pseudocode of the splitting process
Input:
T « filtered and sorted transaction table: Num —
[Ei, Ea, ..., Ei]
flatMap:
1.For each (Num, [E4, Ez, ..., E,]) in T:
For i from O to length(items) - 1:
key < E;
value « items[0:1]
Emit (key, value)
reduceByKey:
2. Group by key E;:
Collect all value lists as a conditional pattern
base of E;
Emit (E;, [prefixi, prefixa, ..., prefixi])

Table 5. Results of Table 4 after splitting by flatMap

Num Key-value

N1 | <E2, NULL>, <El, E2>, <E5, (E2, E1)>
N2 <E2, NULL>, <E4, E2>

N3 <E2, NULL>, <E3, E2>

N4 | <E2, NULL>, <E1, E2>, <E4, (E2, E1)>
N5 <E1, NULL>, <E3, E1>

N6 <E2, NULL>, <E3, E2>

N7 <E1, NULL>, <E3, E1>

N8 <E2, NULL>, <E1, E2>, <E3, (E2, E1)>,

<ES5, (E2, E1, E3)>
N9 | <E2, NULL>, <E1, E2>, <E3, (E2, E1)>

The data flow of Job3 from Table 4 to Table 5 is shown
in Figure 4.

(.

flatMap() reduceByKey()
l Conditional Pattern
Table 4 . Base Database
<E, prefix> Table 5

Fig. 4 Data flow splitting process

15

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

Then all key-value pairs are grouped using the
reduceByKey operation. For each key, a conditional FP-Tree
is constructed locally with all its corresponding values, and at
the same time, the conditional FP-Tree is mined for frequent
item sets in the reduceByKey function to obtain the final
result. The key-value pairs after grouping by reduceByKey
and the constructed conditional FP-Tree are shown in Table 6.

Phase 2 Pseudocode of mining process

Input:

T « filtered and sorted transaction table: Num —
[E1, Ea, ..., Ea]
flatMap:

1.For each (Num, [Ei, Ez, ..., E,]) in T:
For i from 0 to length(items) - 1:
key —E;
value «— items[0:i]
Emit (key, value)
reduceByKey:
2. Group by key E;:
Collect all value lists as a conditional pattern
base of E;
Emit (E;, [prefixi, prefixa, ..., prefixi])

Table 6. Mining results from Table 4

Key El E2 E3 E4 ES5

(E2),
(E1),
(E2),
(El)l
(E2, EY),
(E2, E1)

(E2), (E2),
Value €2). (€2) ~

(E2),
(E2, E1)

(E2, EY),
(E2, E1, E3)

{E2, E1,
E3:2},
{E2,
E3:4},
{EL,
E3:4}

{E2, E5:2},
{E1, E5:2},
{E2, E1, E5:2}

FI |{E2, E1:4} - {E2, E4:2}

The data flow of Job4 from Table 5 to the final results is
shown in Figure 5.

flatMap()

|

<E, Frequent itemset>
Table 6

Fig. 5 Data flow of mining process

reduceByKey()

([

Table 5 Frequent itemsets

3.2. Algorithm Complexity Analysis

Complexity analysis requires quantifying each stage of
the KVBFP's mining process. From the algorithmic procedure,
two key metrics influencing computational complexity
emerge: computational complexity and communication

16

complexity. Let the dataset contain D transactions, with an
average transaction length of T and an average length of T'
after infrequent item filtering. The algorithm's execution flow
on Spark is divided into two phases by two Shuffle operations.

3.2.1. Phrase 1 - Step 1: Item Frequency Counting

This step is accomplished wusing flatMap and
reduceByKey. It performs a single linear scan of the dataset
with a computational complexity of O(D-T). The
reduceByKey operation triggers the first shuffle, whose
communication complexity is O(D-T).

3.2.2. Phrase 1 - Step 2: Transaction Preprocessing

This step uses flatMap to filter and sort each transaction.
By distributing the item frequency table via broadcast
variables, this stage avoids shuffle operations. It involves
sorting operations with a computational complexity of O(D- (T
+ T'logT").

3.2.3. Phrase 2 : Parallelized Mining

This Phrase first generates prefix paths using flatMap,
then groups paths by item using groupByKey. Its
computational cost is O(D-T'). The groupByKey operator
triggers a second Shuffle, with communication complexity of
o(D-T).

The total computational complexity is the sum of all stage
computations. Its expression refers to Equation 1.

Ceomp= O(D-T+D-(T+TlogT)+D-T) (1)

The overall algorithmic complexity exhibits a linear
positive correlation with the number of transactions D, the
average transaction length T, and the number of sorting
operations. Meanwhile, the sorting operations show a
logarithmic positive correlation with the filtered average
transaction length.

The total communication complexity C_comm is
primarily determined by the shuffle data volume in Spark,
representing the sum of two shuffles. Its expression is given
by Equation 2.

Ceomm =0(D-T + D-T) (2

The overall communication complexity of the algorithm
exhibits a linear positive correlation with the number of
transactions D, the average transaction length T, and the
filtered average transaction length T

3.2.4. Algorithm Correctness Discussion

The algorithmic process demonstrates that the KVBFP is
a key-value pair description of FP-Growth, preserving its
original logic. Consequently, the mining results remain
consistent with FP-Growth. Table 7 maps each step of KVBFP
to its corresponding FP-Growth step and conducts an
equivalence analysis for each.

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

Table 7. Comparison of KVBFP and FP-growth

Core Phase FP-Growth KVBFP Equivalence Analysis
First scan: Traverse the entire dataset |Job1: Parallel computation of .)
; Equivalent results: Both methods
Frequency | and compute the support count for each | support counts for each item Lo
o . . counted the frequency of each item's
Statistics item using flatMap and :
occurrence in the global dataset
reduceByKey
Second Scan: 1. Remove all infrequent Job2: Utilize the frequency Data equivalence: Upon completion of
. . o table from the previous step to . .
Data |items. 2. Sort frequent items within each| . . this phase, both algorithms have
. . filter and sort each transaction . S
Preprocess transaction by descending global - . produced datasets that are identical in
in parallel using the flatMap
frequency . both content and sequence
operation
Logical decomposition: KVBFP skips
Construct Constructing the global FP-Tree: Job3-flatMap: Use flatMap to | the step of constructing a global FP-
Data Compress the entire preprocessed split each transaction into | Tree, directly decomposing it into a set
Structures dataset into an FP-Tree multiple <E, prefix> pairs |of prefix paths indexed by each frequent
item
Recursive Mining: 1. Select a frequent Job3-groupByKey: 1. Process Equivalence: KVBFP's
item E from the FP-Tree. 2. Extract its |Aggregate all prefix paths of E| groupByKey operation simulates the
Mining | conditional pattern base. 3. Construct a | into a single groupByKey; 2. |process of extracting conditional pattern
Process conditional FP-Tree based on this Construct a conditional FP- |bases in FP-Growth. Each groupByKey
pattern base. 4. Perform recursive tree and perform mining task is logically equivalent to a single
mining on this conditional FP-Tree within this task recursive call to FP-Growth.
Stepwise Accumulation: During the | Job4: All groupByKey tasks | Complete and non-redundant results:
recursive process, the final result is directly output the frequent | Each frequent item is processed as a
Results obtained by combining the item sets item sets they mine, then suffix in only one groupByKey task,
Merge |extracted from each conditional FP tree | aggregate and output the final | ensuring results are identical to those
with their corresponding suffixes results from FP-Growth

4. Performance And Evaluation

To comprehensively evaluate the KVBFP, this study
designed tests for algorithm stability, cluster interaction
frequency, load balancing, and operational efficiency
comparisons. By simulating real-world scenarios, we
measured various algorithm metrics and compared the mining
efficiency gains achieved by KVBFP relative to PFP and FP-
Growth.

4.1. Dataset

The experimental data originates from a paper cited on
the Kaggle website [17]. The data was generated by the paper's
authors using scripts and made freely available to researchers.
The fundamental characteristics of the data are shown in Table
8.

Table 8. Experimental data characteristics table

Characteristics Value
Transaction 5,000,000

Number of items 50,000

Max transaction 5-100
Frequent set density 0.1-0.8
Data file size 854.71IM

17

4.2. Platform Configuration

The experimental platform consists of six PCs and a
network switch, connected in a star topology. Table 9
summarizes the hardware and software specifications used in
the experiment.

Table 9. Platform details of software and hardware

Hardware Software
Intel i7-
CPU 12700K, 12- 0S Cent0S 7.9
Core, 3.6GHz
RAM 32GB DDR4 |Java Runtime| OpenJDK 11
Storage 2TB HDD, | Distributed | Apache Spark
g 7200RPM | Engine 3.3.2
Gigabyte . .
Motherboard B660M Ds3H Simulation | MATLAB
Tool R2021a
AX
Cisco Nexus Monitoring | Prometheus
Network Stack 243
- 3172PQ
Switch 10GbE
Development |Eclipse IDE for
IDE Enterprise Java

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

4.3. Algorithm Stability Testing

To validate the stability of the KVBFP in real distributed
environments, three types of typical fault simulation
experiments were designed on a Spark cluster. These
scenarios include: worker node crashes, HDFS data block loss,
and network communication failures. The support threshold
was set to 0.01 for all three test sets.

4.3.1. Work Node Failure Test

Launch the cluster, upload the dataset to HDFS, and run
KVBFP to mine the dataset continuously. At the 110th second
of task execution, manually shut down one Worker node to
simulate a failure scenario. Observe three metrics-CPU
utilization, memory utilization, and task completion progress-
after the Spark cluster detects the node failure. Test results are
shown in Figure 6.

CPU Data Acquisition Script: sar -u 30

The calculation method for CPU Usage refers to Equation

> Zzo(usrn(t)+sysn(t))-coresn
Zg:() 100-coresy

CPU(L) = x 100% @)

Where usr, and sys, represent the CPU usage percentage
for node n, and cores, denotes the number of CPU cores
corresponding to node n. The weighted average is employed
primarily to account for varying CPU configurations across
cluster computers. By calculating CPU usage based on these
weights, the method ensures that CPU utilization accurately
reflects the actual computational load across the entire cluster.
Memory data collection script: sar -r 30. The memory usage
calculation method refers to Equation 4.

Z:zo(usedmemn(t))

N
Z totalmemy,
n=0

Where used_mem, represents the memory usage of the
nth node, and total_mem, denotes the memory size of the nth
node.

Mem(t) = X 100%

(4)

Task completion progress data collection command:
curl http://<driver>:4040/api/v1/applications/<appld>/stages
Memory usage calculation method:

Assume at time t, the number of completed tasks is C(t),
the number of tasks currently running is R(t), the number of
tasks waiting to be executed is P(t), and the total number of
tasks is T = C + R + P. Task progress definition refers to
Equation 5.

Progress(t) = ? X 100% (5)

18

100 - (—e—cpU Usage

—@— Memory Usage
Task Progress
Worker Failure

60m—”’”‘_4r’—’5___l
»/"'A/e—

80 -

N
(=]
-y

Value (% usage)

Failure Occurred

N
(=]

(=]
o=

120 150 180 210 240 270

Time (seconds)

30 60 90

Fig. 6 Cluster indicators under worker node failure

As shown in Figure 6, when the mining task reached 110
seconds, one PC was shut down, causing a brief, sharp drop in
both CPU and memory utilization. This occurred because the
system halted data mining for approximately 60 seconds to
reallocate system resources. By approximately 180 seconds,
resource reallocation concluded, and mining resumed. CPU
and memory utilization returned to pre-failure levels, though
slightly elevated compared to before. This increase resulted
from the cluster compensating for the lost computational
resources of one PC by raising overall CPU and memory usage.
Task progress virtually halted between 120 and 180 seconds,
confirming no data mining occurred during this minute-long
interval. Overall, despite the node failure, the KVBFP
successfully completed the data mining task.

4.3.2. Data Block Loss Test

In this test, HDFS's default Data Block size of 128MB
and default redundancy level of 3 were used. The 854.71MB
test data file could be divided into 7 blocks, totaling 21 blocks,
including redundancy copies. Therefore, manually deleting 2
random blocks could ensure the system could recover the
original data. After starting the cluster and uploading the
dataset to HDFS, KVBFP was run to perform continuous
mining on the dataset. At 50 seconds into the algorithm's
execution, two random blocks were manually deleted from
HDFS. Four metrics were monitored: CPU usage, memory
usage, block count, and task progress within the Spark cluster.
Test results are shown in Figure 7.

Command for collecting data block counts:

hdfs fsck /path/to/dataset -files -blocks -locations

The data block calculation method refers to Equation 6.
ReplicaCount(t) = Ypep replication(b, t) (6)
Here, B(t) denotes the set of logical blocks for the file. In

this example, with a block size of 128 MB, the 854 MB file is

divided into 7 blocks. Given a replication factor of 3, B(t)
equals 21, where b represents the number of blocks per node.

100 -

—&—CPU Usage
Task Progress

=~ Memory Usage
Replica Loss

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

122

~=fe—Replica Count

8Oi:,,ﬁizzﬁ;\‘fr//}¥§§ﬂi_—_p k 28
"\ 7 ’] é
g 607 \ , @
g \ #r 20 <
3 \ g
° \
< 40 \ S
3 \ 8
§ 3 hgag
20F Replica loss occurred)
S A S
0 30 60 90 120 150 180 210 240 270

Time (seconds)
Fig. 7 Cluster indicators under block loss

As shown in Figure 7, when the mining task reached 60
seconds, two blocks were randomly deleted manually. Both
CPU and memory usage experienced a slight increase. This
occurred because the system invoked HDFS's recovery
mechanism to replenish the deleted blocks, thereby increasing
CPU and memory consumption. Once the replenishment task
was completed, both usage metrics returned to their previous
levels. After the Replica Count was deleted, the system
detected a reduction from 21 to 19 replicas. Following
approximately 30 seconds of adjustment, the first block was
recovered. After roughly 30 seconds, the second block was
recovered, restoring the previous state. The task execution
progress remained unaffected, and all mining tasks were
successfully completed around 210 seconds. Overall data
indicates that even when data block loss occurs in the system,
the KVBFP can still complete the mining task.

4.3.3. Network Communication Error

The Shuffle phase is the most network-intensive stage in
the Spark system, generating massive data transfers. Network
load during Shuffle typically accounts for over 70% of the
entire task's I/0. Shuffle Fetch retrieves data from shuffle files
on other nodes and delivers it to reduceByKey. When network
failures occur, Shuffle Fetch interrupts and continuously
retries. Therefore, we inject network failures during the
Shuffle phase and characterize network status by the number
of Shuffle Fetch failures. After cluster startup, the KVBFP
runs to perform data mining on the dataset. At 80 seconds into
execution, delay and packet loss are injected into two arbitrary
PCs (Workerl and Worker2 in this example). After 60 seconds,
the faults are removed. Four metrics are observed: CPU,
memory, Shuffle Fetch Failures, and task execution progress.
Test results are shown in Figure 8.

Fault injection command: sudo tc qdisc add dev ethO root
netem delay 400ms loss 10%
Fault removal command: sudo tc qdisc del dev ethO root

Shuffle Fetch Failures collection command:
curl -s http://<driver_host>:4040/api/v1/applications/
<appld>/stages (Execute command every 30 seconds)

—8— CPU Usage Network Fault 10
100 H—=—Memory Usage ~k—Shuffle Fetch Failures]
Task Progress

18
80 M hoo
T\ ~—" 3
m/a\a// A) :
) /e\e—-—* P
260 ¢ TN 65
= & i’ =
= } \ =
S ,. \
| a,
2 f F 1SK' ted s

ault ihjecte
// "k\
k. N 440
0 30 60 90 120 150 180 210 240

Time (seconds)
Fig. 8 Cluster indicators under network fault

As shown in Figure 8, CPU utilization remained nearly
stable before fault injection. After injecting network failures,
some compute threads entered a blocked state due to failed
data fetching, causing a brief dip in CPU utilization. Upon
removing the faults, utilization gradually recovered to its
previous state.

Memory usage slightly increased after the network fault
injection. This occurred because workers needed to cache
more unfinished shuffle blocks and intermediate data,
increasing memory pressure. After network recovery, the
caches were gradually released, and memory usage returned
to normal levels. Shuffle Fetch Failures surged sharply during
the fault injection.

This was due to frequent data fetch failures in workers.
However, Spark's retry mechanism promptly handled these
failed requests, allowing the system to stabilize again after the
fault ended. Task progress noticeably slowed during the 90-
150s fault window, indicating the algorithm entered a waiting
state due to the failure. As network connectivity recovered, the
progress curve accelerated upward again, ultimately reaching
100% at 240s. Compared to fault-free conditions, task
completion time was delayed, but the task was still completed
successfully owverall. This demonstrates that KVBFP
maintains good fault tolerance under network failures.

4.4. Communication Frequency Test

This test group compared the communication frequency
between clusters during mining tasks between the KVBFP and
PFP. After launching the clusters, both KVVBFP and PFP were
run on the Spark platform with a support threshold of 0.01.
The communication volume per PC during execution for both
algorithms is shown in Figure 9.

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

Data Collection Method: A cluster monitoring system
built using Prometheus + Node Exporter was employed to
design a data collection mechanism for communication
behavior. The Node Exporter service was deployed on each
Worker node. Through Prometheus configuration files, nodes
were identified as independent job instances, enabling the
separate collection of inbound and outbound network metrics
for each node. The sampling frequency was set to 10 seconds,
with the sampling interval spanning from 10 seconds after
program startup to 10 seconds before completion. PromQL
queries are used to extract the network interaction frequency
per unit time between each pair of Worker nodes until the
algorithm completes.

Collection Commands (using Workerl as an example):
Workerl send packet count:
rate(node_network_transmit_packets_total{instance="worke
r1-ip:9100", device=~"ethOlens.*"}[1m])

Workerl receive packet count:
rate(node_network_receive_packets_total{instance="worker
1-ip:9100", device=~"eth0lens.*"}[1m])

To illustrate communication traffic trends during algorithm
execution, collect PC1-PC6 communication data (send +
receive) every 10 seconds on each node.

T
Data Volumeseng jrecy =

Network Rategeng /recy(t) X At

t=0

1000
900
800
700

I KVBFP Send
KVBFP Receive
I PFP Send

PFP Receive 20

564

Data Volume (MB)
(%) b wn [N
S S & S
S & & S

200
100+

Workerl Worker2 Worker3 Worker4 WorkerS Worker6
Worker Nodes
Fig. 10 Stacked communication volume of KVBFP and PFP

Figure 9(a) shows that the KVVBFP maintains a relatively
stable communication rate of 1~2 MB/s throughout its 210-
second runtime, with minimal overall fluctuation. In Figure
9(b), the PFP generally maintains a communication rate of 2~4
MBY/s throughout its 370-second runtime cycle. Its average
rate is nearly double that of KVBFP, with multiple instances
of noticeable peak fluctuations. This indicates that PFP relies
more heavily on network transmission during execution and

20

Workers5 |
Worker6

—Workerl Worker3
——Worker2 —— Worker4

KVBFP: Communication Rate per Worker Over Time

a
=
5 LRSS
0 50 100 150 200 250 300 350
T (a) 1
|—Workerl Worker3 Worker5
}—Workerz —Worker4 Worker6
PFP: Communication Rate per Worker Over Time
~ 4
))
S 2 BN £7=§£ys’~"\3§)ﬂ;xﬁ>;\ oS
=4 | |
0 50 100 150 200 250 300 350
Time (seconds)
(b)

Fig. 9 Communication rate of KVBFP and PFP

To observe the overall send and receive data volumes of
KVBFP and PFP at each node, the communication volume
throughout the entire execution process can be accumulated.
The calculation formula refers to Equation 7, where T is the
program runtime and At is the sampling interval. The
accumulated results are shown in Figure 10.

(7)

involves more frequent interactions between nodes. This
difference stems from the algorithms' underlying principles:
KVBFP performs two rounds of key-value pair operations to
count frequent items and reconstruct the transaction table. It
then employs parallel mining using local sub-FP-Trees,
avoiding the centralized construction of a global FP-Tree. This
approach localizes communication and maintains low, stable
communication demands. In contrast, PFP must first establish
a global FP-Tree during execution, group items based on
prefix distance, and redistribute them to nodes. This process
involves multiple rounds of global communication and data
distribution, resulting in a heavier and more volatile
communication load. As shown in Figure 10, KVVBFP reduces
total communication volume by approximately 55%
compared to PFP. Communication across KVBFP nodes
remains relatively balanced, ranging between 180 and 500 MB.
In contrast, PFP's communication volume generally exceeds
500 MB, with some nodes approaching 1000 MB—nearly
double that of KVBFP. Notably, Worker5 and Worker6
exhibit significantly higher communication volumes than
other nodes, reflecting an uneven distribution. This imbalance
stems directly from PFP's prefix-distance-based grouping
strategy, which cannot guarantee complete equilibrium under
large-scale data and data skew conditions, consequently
overloading certain nodes with excessive communication
pressure.

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

4.5. Load Balancing Test

This test group compares the load balancing across cluster
nodes during runtime between the KVBFP and the PFP, with
a support threshold of 0.01. For both algorithms, CPU and
memory usage data from all PCs in the cluster are collected
every 10 seconds. The sampling interval spans from 10
seconds after program startup to 10 seconds before shutdown,
enabling continuous tracking of the entire load balancing
process. Test results are shown in Figures 11 and 12.
CPU usage collection command: sar -u 10
Memory usage collection command: sar -r 10

KVBFP Memory Usage per Worker

90
~ 30 — Workerl Worker2 Worker3
g — Worker4 —— Worker5 -Worker6
:";’/ 70
]
z - p
5% 50 100 150 200 250 300 350
Time (seconds)
- (@)
90 PFP Memory usage per Worker
< —— Workerl Worker2 Worker3
= 80 — Worker4 —— Worker5 Worker6 il | oA
0 A
g 4
=]
= 70
)
£
Q 60 L
= 0 50 100 150 200 250 300 350
Time (s)
(b)
Fig. 11 Memory usage of KVBFP and PFP
80 KVBFP CPU usage per Worker
g 70 ——Workerl Worker2 Worker3
2 60/ ~ Worker4 — Worker5 —— Worker6
<
S 50F =2
2 40
“ 30
0 50 100 150 200 250 300 350
Time (s)
(@)
30 PFP CPU usage per Worker
- — Workerl Worker2 Worker3
° 70| ——Worker4 —— Worker5 Worker6
2 60/ \ A A/
B \ \)
S 50} \ X Y v:
D 40l A%
= 40
© 39 ‘
0 50 100 150 200 250 300 350
Time (s)

(b)
Fig. 12 CPU usage of KVBFP and PFP

At each time sampling point, the degree of dispersion in
CPU and memory usage across workers represents the load
balance of the cluster at that moment. The variance
corresponding to each time sampling point can be calculated
by computing the average variance. This average variance

21

serves as a measure of load balance, with the calculation
formula referencing Equation 8.

m
—_ 1 1 n 1wn 2
Var = - E <;Z]_=1 (Xij - k:1)(ik) >)]

i=1

m: Number of Workers

n: Number of sampling points per Worker

xij: CPU/memory utilization of the i-th Worker at the j-th
sampling point

By calculation, Average variance bar charts of memory
and CPU usage for PFP and KVBFP are plotted at each
sampling point. The calculation interval spans from 10
seconds after program startup until at least two computers
remain operational. For the KVBFP, this ranges from 10 to
200 seconds; for the PFP, it ranges from 10 to 340 seconds.
The average CPM/memory variance bar chart between
KVBFP and PFP is shown in Figure 13.

u KVBFP ®=PFP

50 41.79

40

30

20
10 -

0 A

Average Variance (%2)

CPU

Memory

Fig. 13 Comparison of average CPU/memory variance between KVBFP
and PFP

Figure 11(a) shows that the KVBFP exhibits uniform
memory curves with minimal fluctuations across all worker
nodes, generally maintaining usage between 64% and 68%.
This indicates KVBFP achieves more balanced task
partitioning, preventing resource bottlenecks on specific
nodes. In Figure 11(b), the memory curve for the PFP is
noticeably more dispersed, with some nodes experiencing
utilization rates exceeding 80% during operation. This reflects
the frequent task redistribution and data replication during its
execution, leading to uneven memory usage. A similar trend
is evident in the CPU utilization graph (Figure 12). KVBFP
maintains CPU usage across all worker nodes between 45%
and 57%, with a smooth line indicating that KVBFP's
approach of splitting the Global FP-Tree using key-value pairs
effectively reduces redundant scans and intermediate result
calculations, thereby lowering computational resource
consumption. In contrast, the PFP's CPU usage exhibits
significantly more pronounced fluctuations, with some nodes
even experiencing instantaneous spikes. This is closely related

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

to its computation involving full table scans of global frequent
item sets and the recursive construction of conditional FP-
trees. Figure 11 and Figure 12 also reveal trailing phenomena
in some nodes during the later stages of algorithm execution.
Worker6 was the last node to complete mining tasks, but
KVBFP exhibited significantly less trailing than PFP. Figure
13 quantifies the dispersion of CPU and memory usage across
nodes using variance metrics. KVBFP exhibits an 87.2%
lower CPU usage variance and a 92.4% lower memory usage
variance compared to PFP. This stems from KVBFP's
implementation of key-value pairs throughout the entire
process (from database scanning to mining), achieving true
compatibility with Spark. Spark leverages its superior task
scheduling capabilities to maximize load balancing across all
nodes in the cluster.

4.6. Algorithm Efficiency Comparison Test

This test group compares the time consumed by FP-
Growth, PFP, and KVVBFP when mining the dataset, with FP-
Growth testing conducted on a single computer. Under fixed
software and hardware conditions, the mining time for all
three algorithms depends solely on the support threshold and
transaction count. Therefore, this test group comprises two
experiments: the first fixes the support threshold while
varying the transaction count; the second fixes the transaction
count while varying the support threshold.

Node runtime collection Java code:
long start = System.currentTimeMillis();
... Il process
long end= System.currentTimeMillis();
long duration = end - start;

4.6.1. Fixed Support Threshold

The minimum support threshold is fixed at 0.01, with the
transaction count ranging from 500,000 to 5,000,000,
increasing by 500,000 transactions each time. For each
algorithm, the total mining time is recorded. The test results
are shown in Figure 14.

—4—FP-Growth =fli=PFP KVBFP

700
600
500
400
300
200 -
100
0 A== !
05 1 15 2 25 3 35 4 45 5
Transaction Count (Millions)

Runtime (seconds)

Fig. 14 Efficiency of FP-growth, PFP, and KVBFP (fixed support)

22

As shown in Figure 14, the KVBFP consistently
demonstrates the lowest runtime, completing processing of 5
million transactions in just 214 seconds-significantly
outperforming PFP's 371 seconds and FP-Growth's 572
seconds. Compared to FP-Growth, K\VBFP achieves a 62.6%
improvement, and compared to PFP, it achieves a 42.3%
improvement. The KVBFP curve exhibits minimal fluctuation
and a gentler growth slope, indicating higher mining
efficiency and stability, making it particularly suitable for
large-scale data mining scenarios.

4.6.2. Fixed Transaction Count

With the transaction count fixed at 5 million, the support
threshold was varied from 0.1 to 0.8, and the total mining time
was recorded for each setting. The test results are shown in
Figure 15.

KVBFP

—¢—FP-Growth =fl=PFP
700
600

500 K
400

300 L
200 A=

100
0

\

Runtime (seconds)

01 02 03 04 05 06 07 038

Transaction Count (Millions)

Fig. 15 Efficiency of FP-growth, PFP, and KVBFP (fixed transactions)

With a fixed transaction count of 5 million, the runtime of
all three algorithms decreases as the minimum support
threshold increases from 0.1 to 0.8. KVBFP demonstrated
lower runtime and a more stable decline trend across all
support levels. Overall, its mining efficiency improved by
approximately 44.7% on average compared to PFP and by as
much as 67.7% compared to FP-Growth. FP-Growth and PFP
incurred significant overhead at low support levels, being
heavily influenced by the number of frequent itemsets,
resulting in lower efficiency than KVBFP.

5. Conclusion

In the era of big data, traditional association rule mining
algorithms like FP-Growth can no longer meet practical
demands when handling massive datasets. Therefore,
parallelization modifications are required to make FP-Growth
compatible with big data platforms. This study proposes a key-
value pair-based FP-Growth, KVBFP. This algorithm
simulates the entire FP-Growth process using key-value pairs,
enabling compatibility with the Spark platform. It achieves

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

significant improvements over existing parallelization lacking real-world data validation. Addressing these
schemes in mining efficiency, load balancing, and limitations represents key directions for future research.
communication overhead. The proposed algorithm provides a

theoretical reference for parallelizing other data mining Conflict of Interest

algorithms. In practical applications, particularly in industries The authors declare that there are no financial or non-

demanding high mining efficiency, this approach offers a financial conflicts of interest influencing this work.
novel solution. However, this study has limitations:

experiments conducted on only six computers cannot Funding
comprehensively evaluate all algorithmic metrics, and the

. o . . This work was not rt ny fundin n
tested dataset is specialized for the experimental environment, s Wo as not supported by any funding agency,

grant, or sponsorship

References

[1] Raghavendra Kumar Chunduri, and Aswani Kumar Cherukuri, “Scalable Algorithm for Generation of Attribute Implication Base using
FP-Growth and Spark,” Soft Computing, vol. 25, pp. 9219-92401, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Jeffri Prayitno Bangkit Saputra, Silvia Anggun Rahayu, and Taqwa Hariguna, “Market Basket Analysis Using FP-Growth Algorithm to
Design Marketing Strategy by Determining Consumer Purchasing Patterns,” Journal of Applied Data Sciences, vol. 4, no. 1, pp. 1-12,
2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Ali Hassani et al., “Escaping the Big Data Paradigm with Compact Transformers,” arXiv Preprint, pp. 1-18, 2021. [CrossRef] [Google
Scholar] [Publisher Link]

[4] Trevor Hastie et al., “The Elements of Statistical Learning: Data Mining, Inference, and Prediction,” Journal of the Royal Statistical
Society Series A: Statistics in Society, vol. 173, no. 3, pp. 693-694, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[5] Chaganti Sri Karthikeya Sahith, Satish Muppidi, and Suneetha Merugula, “Apache Spark Big data Analysis, Performance Tuning, and
Spark Application Optimization,” 2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT),
pp. 1-8, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[6] Farhan Ullah et al., “NIDS-VSB: Network Intrusion Detection System for VANET using Spark-Based Big Data Optimization and Transfer
Learning,” IEEE Transactions on Consumer Electronics, vol. 70, no. 1, pp. 1798-1809, 2024. [CrossRef] [Google Scholar] [Publisher
Link]

[7] Dewi Anisa Istigomah, Yuli Astuti, and Siti Nurjanah, “Implementation of FP-Growth and Apriori Algorithms for Product Inventory,”
Polinema Informatics Journal, vol. 8, no. 2, pp. 1-6, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] Yang Yang et al., “A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data,” International
Journal of Computers Communications & Control, vol. 17, no. 4, pp. 1-16, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[9] Mingzheng Li et al., “TCM Constitution Analysis Method Based on Parallel FP-Growth Algorithm in Hadoop Framework,” Journal of
Healthcare Engineering, vol. 2022, no. 1, pp. 1-14, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[10] Xinyan Wang, and Guie Jiao, “Research on Association Rules of Course Grades based on Parallel FP-Growth Algorithm,” Journal of
Computational Methods in Sciences and Engineering, vol. 20, no. 3, pp. 759-769, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[11] A. Senthilkumar, and D. Hariprasad, “A Spark Based Frequent Itemset Mining Using Resource Management for Implementation of FP-
Growth Algorithm in Cloud Environment,” Annals of the Romanian Society for Cell Biology, vol. 25, no. 4, pp. 6050-6059, 2021. [Google
Scholar] [Publisher Link]

[12] Zakria Mahrousa, Dima Mufti Alchawafa, and Hasan Kazzaz, “Frequent Itemset Mining Based on Development of FP-Growth Algorithm
and Use MapReduce Technique,” Association of Arab Universities Journal of Engineering Sciences, vol. 28, no. 1, pp. 1-16, 2021.
[CrossRef] [Google Scholar] [Publisher Link]

[13] Amr Essam, Manal A. Abdel-Fattah, and Laila Abdelhamid, “Towards Enhancing the Performance of Parallel FP-Growth on Spark,”
IEEE Access, vol. 10, pp. 286-296, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Priyanka Gupta, and Vinaya Sawant, “A Parallel Apriori Algorithm and FP- Growth Based on SPARK,” International Conference on
Automation, Computing and Communication, vol. 40, pp. 1-5, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Youssef Fakir, Salim Khalil, and Mohamed Fakir, “Extraction of Association Rules in a Diabetic Dataset using Parallel FP-growth
Algorithm under Apache Spark,” International Journal of Informatics and Communication Technology, vol. 13, no. 3, pp. 445-452, 2024.
[CrossRef] [Google Scholar] [Publisher Link]

[16] Shubhangi Chaturvedi, Sri Khetwat Saritha, and Animesh Chaturvedi, “Spark based Parallel Frequent Pattern Rules for Social Media Data
Analytics,” 2023 IEEE/ACM 23" International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW), Bangalore,
India, pp. 168-175, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[17] Jeff Heaton, “Comparing Dataset Characteristics that Favor the Apriori, Eclat or FP-Growth Frequent Itemset Mining Algorithms,”
SoutheastCon 2016, Norfolk, VA, USA, pp. 1-7, 2016. [CrossRef] [Google Scholar] [Publisher Link]

23

https://doi.org/10.1007/s00500-021-05844-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scalable+algorithm+for+generation+of+attribute+implication+base+using+FP-growth+and+spark&btnG=
https://link.springer.com/article/10.1007/s00500-021-05844-9
https://doi.org/10.47738/jads.v4i1.83
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Market+Basket+Analysis+Using+FP-Growth+Algorithm+to+Design+Marketing+Strategy+by+Determining+Consumer+Purchasing+Patterns&btnG=
https://www.bright-journal.org/Journal/index.php/JADS/article/view/83
https://doi.org/10.48550/arXiv.2104.05704
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ali+Hassani%2C+Escaping+the+Big+Data+Paradigm+with+Compact+Transformers&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ali+Hassani%2C+Escaping+the+Big+Data+Paradigm+with+Compact+Transformers&btnG=
https://arxiv.org/abs/2104.05704
https://doi.org/10.1111/j.1467-985X.2010.00646_6.x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Elements+of+Statistical+Learning%3A+Data+Mining%2C+Inference%2C+and+Prediction+2nd+Edition&btnG=
https://academic.oup.com/jrsssa/article/173/3/693/7077651
https://doi.org/10.1109/EASCT59475.2023.10393086
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Apache+Spark+Big+data+Analysis%2C+Performance+Tuning%2C+and+Spark+Application+Optimization&btnG=
https://ieeexplore.ieee.org/abstract/document/10393086
https://doi.org/10.1109/TCE.2023.3328320
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=NIDS-VSB%3A+Network+Intrusion+Detection+System+for+VANET+using+Spark-Based+Big+Data+Optimization+and+Transfer+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/10299718
https://ieeexplore.ieee.org/abstract/document/10299718
https://doi.org/10.33795/jip.v8i2.845
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementasi+Algoritma+FP-Growth+dan+Apriori+Untuk+Persediaan+Produk&btnG=
https://jurnal.polinema.ac.id/index.php/jip/article/view/2481
https://doi.org/10.15837/ijccc.2022.4.4806
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Parallel+FP-Growth+Mining+Algorithm+with+Load+Balancing+Constraints+for+Traffic+Crash+Data&btnG=
https://fsja.univagora.ro/jour/index.php/ijccc/article/view/4806
https://doi.org/10.1155/2022/9006096
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=TCM+Constitution+Analysis+Method+Based+on+Parallel+FP-Growth+Algorithm+in+Hadoop+Framework&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2022/9006096
https://doi.org/10.3233/JCM-194079
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+on+association+rules+of+course+grades+based+on+parallel+FP-Growth+algorithm&btnG=
https://journals.sagepub.com/doi/abs/10.3233/JCM-194079
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Spark+Based+Frequent+Itemset+Mining+Using+Resource+Management+for+Implementation+of+Fp-Growth+Algorithm+in+Cloud+Environment&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Spark+Based+Frequent+Itemset+Mining+Using+Resource+Management+for+Implementation+of+Fp-Growth+Algorithm+in+Cloud+Environment&btnG=
http://annalsofrscb.ro/index.php/journal/article/view/3170
https://doi.org/10.33261/jaaru.2021.28.1.008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Frequent+Itemset+Mining+Based+on+Development+of+FP-growth+Algorithm+and+Use+MapReduce+Technique&btnG=
https://jaaru.org/index.php/auisseng/article/view/496
https://doi.org/10.1109/ACCESS.2021.3137789
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+enhancing+the+performance+of+parallel+FP-Growth+on+Spark&btnG=
https://ieeexplore.ieee.org/abstract/document/9661337
https://doi.org/10.1051/itmconf/20214003046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Parallel+Apriori+Algorithm+and+FP-+Growth+Based+on+SPARK&btnG=
https://www.itm-conferences.org/articles/itmconf/abs/2021/05/itmconf_icacc2021_03046/itmconf_icacc2021_03046.html
http://doi.org/10.11591/ijict.v13i3.pp445-452
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Parallel+Apriori+Algorithm+and+FP-+Growth+Based+on+SPARK&btnG=
https://ijict.iaescore.com/index.php/IJICT/article/view/20794
https://doi.org/10.1109/CCGridW59191.2023.00039
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Spark+based+Parallel+Frequent+Pattern+Rules+for+Social+Media+Data+Analytics&btnG=
https://ieeexplore.ieee.org/abstract/document/10181165
https://doi.org/10.1109/SECON.2016.7506659
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparing+Dataset+Characteristics+that+Favor+the+Apriori%2C+Eclat+or+FP-Growth+Frequent+Itemset+Mining+Algorithms&btnG=
https://ieeexplore.ieee.org/abstract/document/7506659

