
SSRG International Journal of Computer Science and Engineering Volume 12 Issue 9, 12-23, September 2025

ISSN: 2348–8387 / https://doi.org/10.14445/23488387/IJCSE-V12I9P103 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Efficient Spark-Based Parallel FP-Growth For Big

Data Mining With Key-Value Pair Model

Baokui Liao1,2*, Mohd Nurul Hafiz Ibrahim3, Mustafa Muwafak Alobaedy4, S. B. Goyal5

1City Graduate School, City University Malaysia, Petaling Jaya, 46100, Kuala Lumpur, Malaysia.
2Guizhou Light Industry Polytechnic University, Guizhou, China.

3,4Faculty of Information Technology, City University Malaysia, Kuala Lumpur, Malaysia.
5Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India.

*Corresponding Author : liaobaokui1988@gmail.com

Received: 21 July 2025 Revised: 25 August 2025 Accepted: 08 September 2025 Published: 30 September 2025

Abstract - In the era of big data, the exponential growth of information has made extracting valuable insights from massive

datasets an urgent challenge. Association rule mining, particularly the FP-Growth, plays a crucial role in discovering high-

frequency patterns. Traditional FP-Growth faces significant challenges when processing large-scale data, including memory

overflow and computational inefficiency. Existing improvements to FP-Growth have achieved some success in parallelization,

with the PFP being a notable example. This paper proposes an algorithmic parallelization scheme based on Spark, enhancing

mining efficiency by splitting FP trees using key-value pairs and optimizing database scanning processes. Unlike traditional

methods relying on global FP trees, this algorithm leverages Spark's distributed in-memory computing model to eliminate time-

consuming FP tree traversal operations and reduce inter-node communication. Tests demonstrate that the KVBFP exhibits high

stability, achieving approximately 55% lower communication overhead compared to PFP. It also reduces the mean variance of

cluster CPU and memory utilization by 87.2% and 92.4%, respectively, while boosting overall mining efficiency by 44.7%.

Keywords - FP-Growth, Spark, Parallel Mining, Big Data, Data Mining.

1. Introduction
Data mining is a key technique for analyzing big data and

aims to extract meaningful patterns, associations, and trends

from large-scale datasets. It uses algorithms in the fields of

machine learning, statistics, and artificial intelligence to

discover hidden relationships in data that may not be detected

by traditional analytics. The main goal of data mining is to

transform raw data into useful knowledge to aid in decision-

making and prediction [1]. FP-Growth, as an important

algorithm in the association rule mining branch of data

mining, stores Frequent Item (FI) sets by constructing a global

FP-tree, and then finds frequent item sets by traversing the tree

structure [2].

The rise of Big Data stems from the proliferation of digital

technologies such as the Internet of Things (IoT), social media

platforms, and mobile devices that are generating

unprecedented data [3]. Millions of social media posts,

financial transactions, and sensor data from smart devices are

recorded every minute. Extracting valuable information from

this massive amount of data can give organizations a

competitive advantage, speed up the decision-making process,

and lead to innovations in a variety of areas such as healthcare,

finance, and urban planning [4]. Among the many big data

processing frameworks, Apache Spark is one of the most

widely used. It provides a distributed computing engine

featuring in-memory processing and Resilient Distributed

Datasets (RDDs), which significantly speed up computation

and reduce I/O overhead [5]. Its streamlined application

program interface and dynamic task scheduling make it easier

for developers to build scalable data pipelines without having

to deal with the complexities of underlying distributed

programming [6]. Big data and data mining technologies are

two hot research topics at present, and there have been many

research results in their intersection. This study focuses on the

parallelization of FP-Growth in data mining technology on the

big data platform Spark, and proposes a more efficient

parallelization strategy based on existing research results.

FP-Growth was designed to run on a single machine and

was not intended for distributed or parallel execution [7]. As

the size of the dataset increases, the global FP tree expands

accordingly, which can easily lead to memory overflow when

its size exceeds the available system memory [8]. In addition,

traversing the global FP-tree requires a huge amount of

computation, which consumes a lot of CPU resources, and

when the FP-tree becomes very large, the traversal operation

will lead to CPU overload [9]. The strong reliance on the

http://www.internationaljournalssrg.org/

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

13

global FP-Tree creates a bottleneck in parallel frameworks

such as Spark [10], as this structure cannot be fully replicated

across all executors, and traversing the global FP-Tree in a

distributed environment places stringent requirements on

memory synchronization and coordination.

To address the limitations of the FP-Growth, existing

research has introduced various parallelization strategies.

These approaches address the load balancing problem to some

extent but have inherent flaws, such as load balancing, I/O

bottlenecks, excessive dependence on hardware, and

cumbersome algorithm complexity. This study proposes an

enhanced version of the FP-Growth, which replaces the global

FP-Tree structure with a key-value pair for data mining. This

study also proposes a database scanning strategy. This

approach preprocesses and reorganizes the source database

through two Spark tasks to efficiently filter and sort high-

frequency items. Through designed experiments, the

algorithm demonstrates high stability, reduces hardware

consumption compared to existing parallel FP-Growth

implementations, and enhances cluster communication

efficiency, load balancing, and mining efficiency.

2. Related Work
A systematic review of FP-Growth parallelization

research over the past five years reveals current research gaps.

This paper introduces six of the most highly cited FP-Growth

parallelization approaches and provides a detailed comparison

of their respective shortcomings. Senthilkumar et al. proposed

an efficient MapReduce-based FP-Growth in 2020 to address

memory consumption and communication bottlenecks in

traditional FP-Growth under big data scenarios [11]. This

approach employs four key optimizations: dictionary

encoding for item set compression, improved hash

partitioning to reduce network load, compression strategies to

enhance data transfer efficiency, and a combiner to optimize

the reduction phase load. Experiments demonstrate that this

algorithm exhibits excellent execution efficiency and

scalability in Hadoop cluster environments, making it suitable

for distributed frequent item set mining tasks. In 2021, Zakria

Mahrousa et al. proposed an improved FP-Growth that

combines MapReduce with directed graph structures to

enhance frequent item set mining efficiency on large-scale

datasets [12].

This algorithm distributes raw data across multiple nodes,

compresses transaction databases using graph structures, and

constructs FP-Trees in parallel, thereby effectively reducing

memory consumption and computation time. Research results

show that PGFP-Growth outperforms standard MapReduce

implementations when processing high-dimensional, high-

density transaction databases and offers significant

advantages in memory management. Amr Essam et al.

proposed an enhanced balanced parallel frequent pattern

mining algorithm in 2021 [13] to optimize load balancing and

efficiency for Parallel FP-Growth on Spark during big data

processing. This method introduces a load-balanced grouping

strategy to achieve even task distribution across cluster nodes.

Simultaneously, it refines the conditional pattern base to

eliminate low-frequency items, thereby reducing memory

consumption and the overhead of constructing local FP-Trees.

Test results demonstrate that this algorithm achieves a 21.56%

to 39.72% improvement in runtime compared to FP-Growth,

significantly enhancing execution efficiency and scalability.

Priyanka Gupta et al. proposed parallel Apriori and FP-

Growth in 2021 [14], deployed on the Apache Spark platform

to boost frequent item set mining efficiency in big data

environments. This approach leverages Spark's in-memory

computing capabilities, utilizing RDD-supported data

partitioning and parallel processing to run both Apriori and

FP-Growth concurrently across multiple datasets, comparing

and enhancing their performance. Experimental results

demonstrate faster execution speeds and good scalability

when adjusting support thresholds. Youssef Fakir et al.

proposed a parallel FP-Growth algorithm based on Apache

Spark in 2024 for large-scale medical data mining in diabetes

prediction tasks [15].

This algorithm employs a horizontal data partitioning

strategy combined with Spark's distributed computing

framework, significantly accelerating frequent item set mining

while maintaining accuracy. Experimental validation on

medical datasets demonstrates superiority over traditional

methods in both prediction accuracy and operational

efficiency. Shubhangi Chaturvedi et al. proposed a vector-

distance-based FP-Growth in 2023 [16]. This approach

constructs local FP-Trees based on the prefix distance from

each frequent item to the root node as the load-balancing

grouping criterion. These local FP-Trees are then distributed

to computational nodes for parallel mining. Test results

demonstrate that the Parallel FP-growth (PFP) achieves

significant improvements in load balancing, maintains stable

performance when handling massive datasets, and exhibits

highly efficient mining capabilities. While all six

parallelization approaches can accomplish parallel mining

tasks, each possesses inherent limitations. Table 1 summarizes

the shortcomings of each algorithm.

Given the limitations of the algorithms listed in Table 1,

the current parallel FP-Growth domain still lacks an efficient

parallelization scheme that simultaneously achieves load

balancing, low complexity, and minimal cluster

communication overhead. Therefore, this paper proposes an

improved parallel algorithm based on key-value pairs, termed

Key-based Vertical Based FP-Growth (KVBFP). By replacing

key-value pairs across all stages of FP-Growth, this approach

maximizes compatibility with the Spark platform to address

existing algorithmic limitations. Among the reviewed

algorithms, PFP introduced the concept of vector distance for

the first time, significantly enhancing load balancing. This

study selects PFP as the reference point for further

investigation.

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

14

Table 1. Related research limitations summary

Author Limitation

Priyanka Gupta

et al.（2021）

Parallel implementation of classical

methods fails to address FP-tree

expansion, Apriori candidate set

explosion issues, and has poor pruning

capability.

Amr Essam

et al.（2021）

Focused on load balancing

optimization, but local FP-Tree

redundancy remains severe, lacking

tree pruning and compression

strategies.

Youssef Fakir

et al.（2024）

The algorithm is based on Spark but

does not incorporate path optimization

or compressed structures; frequent item

set generation is relatively broad,

limiting its applicability.

Senthilkumar et

al.（2020）

Optimized networking and storage, but

slow due to disk I/O; lacks FP-Tree

hierarchical optimization.

Zakria

Mahrousa

et al.（2021）

Path compression using directed graph

structures lacks support for adaptability

and pruning/merging mechanisms;

redundant paths may still be generated

for high-dimensional data.

Shubhangi

Chaturvedi

et al.（2023）

Vector distance calculations are

computationally complex and can

easily lead to excessive communication

frequency between clusters.

3. Algorithm Proposal
3.1. Algorithm Process

The KVBFP is implemented in two main stages. The first

phase transforms the raw transaction dataset into a vertical

data structure (Swap the rows and columns of the source

dataset) that compresses and filters transactions based on item

frequency. The second phase performs frequent item set

mining by applying a series of key-value transformations

using Spark's RDD operations. The entire process flow chart

of KVBFP is shown in Figure 1.

Transaction

dataset

Vertical

data table

Compressed and

sorted data table

Prefix Key-Value

pairs

Final result

1st Key-value:

vertical Structure

process

2nd Key-value:

data compression

process

3rd Key-value:

prefix splitting

process

4th Key-value:

data mining

process

Phase 1: Vertical

compression of

transaction data

Phrase2:

Parallelized

Mining

Fig. 1 Entire procedure of KVBFP

3.1.1. Phase 1: Vertical Compression of Transaction Data

If the original transaction database consists of a set of

records as shown in Table 2, where each transaction contains

a set of item sets, here the support threshold is preset to 2 to

mine the database for frequent item sets. Spark's Distributed

Data Processing framework converts and compresses the

dataset into a vertical data format in two steps. In these Tables

and Figures, ‘Sup’ is the support for each element, ‘Num’ is

the transaction number, ‘E’ represents the items in each

transaction, and ‘N’ represents the specific label value

corresponding to each transaction.

Table 2. Original transaction database

Num Trans

N1 E1, E2, E5

N2 E2, E4, E6

N3 E2, E3

N4 E1, E2, E4

N5 E1, E3, E7

N6 E2, E3

N7 E1, E3, E8

N8 E1, E2, E3, E5

N9 E1, E2, E3

Step 1: Load all transactions into the RDD and map each

item to the list of transaction IDs that appear in it. Calculate

the support count for each item using flatMap() and

reduceByKey(). Items that do not meet the support threshold

are filtered out. The remaining frequent items are sorted in

descending order of support to form a vertical item sets table.

The results of Step 1 are shown in Table 3.

Table 3. Vertical data table

Element E2 E1 E3 E4 E5

Sup 7 6 6 2 2

Num

N1, N2, N3,

N4, N6, N8,

N9

N1, N4,

N5, N7,

N8, N9

N3, N5,

N6, N7,

N8, N9

N2, N4 N1, N8

The data flow of Job1 from Table 2 to Table 3 is shown

in Figure 2.

flatMap() reduceByKey()

<E, N>…

<En, (Ni,...Nj)>…
Table 3

Original

data Table 2

Fig. 2 Data flow of vertical compression process

Step 2: Each transaction is then reconstructed by

removing the infrequent items using the vertical table and

sorting the remaining items in descending order according to

the support threshold.This results in a compressed database

containing only frequent items, which facilitates the

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

15

subsequent mining phase. The results of Step 2 are shown in

Table 4.

Table 4. Data table after compression and sorting

Num Trans

N1 E2, E1, E5

N2 E2, E4

N3 E2, E3

N4 E2, E1, E4

N5 E1, E3

N6 E2, E3

N7 E1, E3

N8 E2, E1, E3, E5

N9 E2, E1, E3

The data flow of Job2 from Table 3 to Table 4 is shown

in Figure 3.

flatMap() reduceByKey()

<N, E>…
<Nn, (Ei…)>…

Table 4Table 3

Fig. 3 Data flow of sorting process

As can be seen from Table 4, relative to Table 2, E6, E7,

and E8, which do not satisfy the support thresholds, have been

deleted, and the items in each transaction are listed in order of

decreasing support.

Phase 1 Pseudocode

Input:

 D ← original table: mapping Num → [E₁, E₂, ...,

Eₙ]

 σ ← minimum support threshold

Phase 1: Build Item-to-Column Map and Count

Frequencies

1. For each (Num, [E₁, ..., Eₙ]) in D:

 For each item Eᵢ:

 Emit (Eᵢ, Num)

2. Group by Eᵢ to form inverted index: Eᵢ → [Num₁,

Num₂, ..., Numₖ]

3. For each Eᵢ:

 Count support = length of [Num list]

4. Filter: retain only Eᵢ where support ≥ σ

5. Store frequency table: freq(Eᵢ) = support count

Phase 2: Reconstruct Column-to-Items Mapping

6. For each Eᵢ in the frequency table:

 For each Num in Eᵢ's list:

 Emit (Num, Eᵢ)

7. Group by Num to get: Num → [E₁, ..., Eₙ]

8. For each Num:

 Remove items not in the frequency table

 Sort items in descending order by freq(Eᵢ)

9. Return sorted lists per Num

3.1.2. Phase 2: Mining Frequent Item Sets through Key-Value

Transformations

Using the preprocessed data in Table 4, each transaction

is decomposed into multiple key-value pairs, with the key

being the item in the transaction and the value being the item

preceding that item. This decomposition is accomplished

using Spark's flatMap function. Each transaction is converted

into multiple key-value pairs of the form <E, prefix>. For

example, transaction [E2, E1, E5] is decomposed into <E2,

null>, <E1, E2>, and <E5, (E2 E1)>, and the splitting results

are shown in Table 5.

Phase 2 Pseudocode of the splitting process

Input:

 T ← filtered and sorted transaction table: Num →

[E₁, E₂, ..., Eₙ]

flatMap:

 1.For each (Num, [E₁, E₂, ..., Eₙ]) in T:

 For i from 0 to length(items) - 1:

 key ← Eᵢ

 value ← items[0:i]

 Emit (key, value)

reduceByKey:

2. Group by key Eᵢ:

 Collect all value lists as a conditional pattern

base of Eᵢ

 Emit (Eᵢ, [prefix₁, prefix₂, ..., prefixₖ])

Table 5. Results of Table 4 after splitting by flatMap

Num Key-value

N1 <E2, NULL>, <E1, E2>, <E5, (E2, E1)>

N2 <E2, NULL>, <E4, E2>

N3 <E2, NULL>, <E3, E2>

N4 <E2, NULL>, <E1, E2>, <E4, (E2, E1)>

N5 <E1, NULL>, <E3, E1>

N6 <E2, NULL>, <E3, E2>

N7 <E1, NULL>, <E3, E1>

N8
<E2, NULL>, <E1, E2>, <E3, (E2, E1)>,

 <E5, (E2, E1, E3)>

N9 <E2, NULL>, <E1, E2>, <E3, (E2, E1)>

 The data flow of Job3 from Table 4 to Table 5 is shown

in Figure 4.

flatMap() reduceByKey()

<E, prefix>

Conditional Pattern

Base Database

Table 5

Table 4

Fig. 4 Data flow splitting process

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

16

Then all key-value pairs are grouped using the

reduceByKey operation. For each key, a conditional FP-Tree

is constructed locally with all its corresponding values, and at

the same time, the conditional FP-Tree is mined for frequent

item sets in the reduceByKey function to obtain the final

result. The key-value pairs after grouping by reduceByKey

and the constructed conditional FP-Tree are shown in Table 6.

Phase 2 Pseudocode of mining process

Input:

 T ← filtered and sorted transaction table: Num →

[E₁, E₂, ..., Eₙ]

flatMap:

1.For each (Num, [E₁, E₂, ..., Eₙ]) in T:

 For i from 0 to length(items) - 1:

 key ← Eᵢ

 value ← items[0:i]

 Emit (key, value)

reduceByKey:

2. Group by key Eᵢ:

 Collect all value lists as a conditional pattern

base of Eᵢ

 Emit (Eᵢ, [prefix₁, prefix₂, ..., prefixₖ])

Table 6. Mining results from Table 4

Key E1 E2 E3 E4 E5

Value
(E2), (E2),

(E2), (E2)
-

(E2),

(E1),

(E2),

(E1),

(E2, E1),

(E2, E1)

(E2),

(E2, E1)

(E2, E1),

(E2, E1, E3)

FI {E2, E1:4} -

{E2, E1,

E3:2},

{E2,

E3:4},

{E1,

E3:4}

{E2, E4:2}

{E2, E5:2},

{E1, E5:2},

{E2, E1, E5:2}

The data flow of Job4 from Table 5 to the final results is

shown in Figure 5.

flatMap() reduceByKey()

<E, Frequent itemset>

Table 6

Frequent itemsetsTable 5

Fig. 5 Data flow of mining process

3.2. Algorithm Complexity Analysis

Complexity analysis requires quantifying each stage of

the KVBFP's mining process. From the algorithmic procedure,

two key metrics influencing computational complexity

emerge: computational complexity and communication

complexity. Let the dataset contain D transactions, with an

average transaction length of T and an average length of T'

after infrequent item filtering. The algorithm's execution flow

on Spark is divided into two phases by two Shuffle operations.

3.2.1. Phrase 1 - Step 1: Item Frequency Counting

This step is accomplished using flatMap and

reduceByKey. It performs a single linear scan of the dataset

with a computational complexity of O(D·T). The

reduceByKey operation triggers the first shuffle, whose

communication complexity is O(D·T).

3.2.2. Phrase 1 - Step 2: Transaction Preprocessing

This step uses flatMap to filter and sort each transaction.

By distributing the item frequency table via broadcast

variables, this stage avoids shuffle operations. It involves

sorting operations with a computational complexity of O(D·(T

+ T'logT')).

3.2.3. Phrase 2 : Parallelized Mining

This Phrase first generates prefix paths using flatMap,

then groups paths by item using groupByKey. Its

computational cost is O(D·T'). The groupByKey operator

triggers a second Shuffle, with communication complexity of

O(D·T').

The total computational complexity is the sum of all stage

computations. Its expression refers to Equation 1.

Ccomp = O(D · T + D · (T + T′log T′) + D · T′) (1)

The overall algorithmic complexity exhibits a linear

positive correlation with the number of transactions D, the

average transaction length T, and the number of sorting

operations. Meanwhile, the sorting operations show a

logarithmic positive correlation with the filtered average

transaction length.

The total communication complexity C_comm is

primarily determined by the shuffle data volume in Spark,

representing the sum of two shuffles. Its expression is given

by Equation 2.

Ccomm = O(D · T + D · T′) (2)

The overall communication complexity of the algorithm

exhibits a linear positive correlation with the number of

transactions D, the average transaction length T, and the

filtered average transaction length T'.

3.2.4. Algorithm Correctness Discussion

 The algorithmic process demonstrates that the KVBFP is

a key-value pair description of FP-Growth, preserving its

original logic. Consequently, the mining results remain

consistent with FP-Growth. Table 7 maps each step of KVBFP

to its corresponding FP-Growth step and conducts an

equivalence analysis for each.

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

17

Table 7. Comparison of KVBFP and FP-growth

Core Phase FP-Growth KVBFP Equivalence Analysis

Frequency

Statistics

First scan: Traverse the entire dataset

and compute the support count for each

item

Job1: Parallel computation of

support counts for each item

using flatMap and

reduceByKey

Equivalent results: Both methods

counted the frequency of each item's

occurrence in the global dataset

Data

Preprocess

Second Scan: 1. Remove all infrequent

items. 2. Sort frequent items within each

transaction by descending global

frequency

Job2: Utilize the frequency

table from the previous step to

filter and sort each transaction

in parallel using the flatMap

operation

Data equivalence: Upon completion of

this phase, both algorithms have

produced datasets that are identical in

both content and sequence

Construct

Data

Structures

Constructing the global FP-Tree:

Compress the entire preprocessed

dataset into an FP-Tree

Job3-flatMap: Use flatMap to

split each transaction into

multiple <E, prefix> pairs

Logical decomposition: KVBFP skips

the step of constructing a global FP-

Tree, directly decomposing it into a set

of prefix paths indexed by each frequent

item

Mining

Process

Recursive Mining: 1. Select a frequent

item E from the FP-Tree. 2. Extract its

conditional pattern base. 3. Construct a

conditional FP-Tree based on this

pattern base. 4. Perform recursive

mining on this conditional FP-Tree

Job3-groupByKey: 1.

Aggregate all prefix paths of E

into a single groupByKey; 2.

Construct a conditional FP-

tree and perform mining

within this task

Process Equivalence: KVBFP's

groupByKey operation simulates the

process of extracting conditional pattern

bases in FP-Growth. Each groupByKey

task is logically equivalent to a single

recursive call to FP-Growth.

Results

Merge

Stepwise Accumulation: During the

recursive process, the final result is

obtained by combining the item sets

extracted from each conditional FP tree

with their corresponding suffixes

Job4: All groupByKey tasks

directly output the frequent

item sets they mine, then

aggregate and output the final

results

Complete and non-redundant results:

Each frequent item is processed as a

suffix in only one groupByKey task,

ensuring results are identical to those

from FP-Growth

4. Performance And Evaluation
To comprehensively evaluate the KVBFP, this study

designed tests for algorithm stability, cluster interaction

frequency, load balancing, and operational efficiency

comparisons. By simulating real-world scenarios, we

measured various algorithm metrics and compared the mining

efficiency gains achieved by KVBFP relative to PFP and FP-

Growth.

4.1. Dataset

The experimental data originates from a paper cited on

the Kaggle website [17]. The data was generated by the paper's

authors using scripts and made freely available to researchers.

The fundamental characteristics of the data are shown in Table

8.
Table 8. Experimental data characteristics table

Characteristics Value

Transaction 5,000,000

Number of items 50,000

Max transaction 5 – 100

Frequent set density 0.1 – 0.8

Data file size 854.71M

4.2. Platform Configuration

The experimental platform consists of six PCs and a

network switch, connected in a star topology. Table 9

summarizes the hardware and software specifications used in

the experiment.

Table 9. Platform details of software and hardware

Hardware Software

CPU

Intel i7-

12700K, 12-

Core, 3.6GHz
OS CentOS 7.9

RAM 32GB DDR4 Java Runtime OpenJDK 11

Storage
2TB HDD,

7200 RPM
Distributed

Engine

Apache Spark

3.3.2

Motherboard

Gigabyte

B660M DS3H

AX

Simulation

Tool

MATLAB

R2021a

Network

Switch

Cisco Nexus

3172PQ

10GbE

Monitoring

Stack

Prometheus

2.43

Development

IDE

Eclipse IDE for

Enterprise Java

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

18

4.3. Algorithm Stability Testing

To validate the stability of the KVBFP in real distributed

environments, three types of typical fault simulation

experiments were designed on a Spark cluster. These

scenarios include: worker node crashes, HDFS data block loss,

and network communication failures. The support threshold

was set to 0.01 for all three test sets.

4.3.1. Work Node Failure Test

Launch the cluster, upload the dataset to HDFS, and run

KVBFP to mine the dataset continuously. At the 110th second

of task execution, manually shut down one Worker node to

simulate a failure scenario. Observe three metrics-CPU

utilization, memory utilization, and task completion progress-

after the Spark cluster detects the node failure. Test results are

shown in Figure 6.

CPU Data Acquisition Script：sar -u 30

The calculation method for CPU Usage refers to Equation

3.

𝐶𝑃𝑈(𝑡) =
∑ (𝑢𝑠𝑟𝑛(𝑡)+𝑠𝑦𝑠𝑛(𝑡))

𝑁
𝑛=0 ·𝑐𝑜𝑟𝑒𝑠𝑛

∑ 100·𝑐𝑜𝑟𝑒𝑠𝑛
𝑁
𝑛=0

× 100% (3)

Where usrn and sysn represent the CPU usage percentage

for node n, and coresn denotes the number of CPU cores

corresponding to node n. The weighted average is employed

primarily to account for varying CPU configurations across

cluster computers. By calculating CPU usage based on these

weights, the method ensures that CPU utilization accurately

reflects the actual computational load across the entire cluster.

Memory data collection script: sar -r 30. The memory usage

calculation method refers to Equation 4.

𝑀𝑒𝑚(𝑡) =
∑ (𝑢𝑠𝑒𝑑𝑚𝑒𝑚𝑛(𝑡))

𝑁

𝑛=0

∑ 𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚𝑛

𝑁

𝑛=0

× 100% (4)

Where used_memn represents the memory usage of the

nth node, and total_memn denotes the memory size of the nth

node.

Task completion progress data collection command:

curl http://<driver>:4040/api/v1/applications/<appId>/stages

Memory usage calculation method:

Assume at time t, the number of completed tasks is C(t),

the number of tasks currently running is R(t), the number of

tasks waiting to be executed is P(t), and the total number of

tasks is T = C + R + P. Task progress definition refers to

Equation 5.

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠(𝑡) =
𝐶(𝑡)

𝑇
× 100% (5)

Fig. 6 Cluster indicators under worker node failure

As shown in Figure 6, when the mining task reached 110

seconds, one PC was shut down, causing a brief, sharp drop in

both CPU and memory utilization. This occurred because the

system halted data mining for approximately 60 seconds to

reallocate system resources. By approximately 180 seconds,

resource reallocation concluded, and mining resumed. CPU

and memory utilization returned to pre-failure levels, though

slightly elevated compared to before. This increase resulted

from the cluster compensating for the lost computational

resources of one PC by raising overall CPU and memory usage.

Task progress virtually halted between 120 and 180 seconds,

confirming no data mining occurred during this minute-long

interval. Overall, despite the node failure, the KVBFP

successfully completed the data mining task.

4.3.2. Data Block Loss Test

In this test, HDFS's default Data Block size of 128MB

and default redundancy level of 3 were used. The 854.71MB

test data file could be divided into 7 blocks, totaling 21 blocks,

including redundancy copies. Therefore, manually deleting 2

random blocks could ensure the system could recover the

original data. After starting the cluster and uploading the

dataset to HDFS, KVBFP was run to perform continuous

mining on the dataset. At 50 seconds into the algorithm's

execution, two random blocks were manually deleted from

HDFS. Four metrics were monitored: CPU usage, memory

usage, block count, and task progress within the Spark cluster.

Test results are shown in Figure 7.

Command for collecting data block counts:

hdfs fsck /path/to/dataset -files -blocks -locations

The data block calculation method refers to Equation 6.

𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝐶𝑜𝑢𝑛𝑡(𝑡) = ∑ 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑏, 𝑡)
b∈B(t) (6)

Here, B(t) denotes the set of logical blocks for the file. In

this example, with a block size of 128 MB, the 854 MB file is

divided into 7 blocks. Given a replication factor of 3, B(t)

equals 21, where b represents the number of blocks per node.

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

19

Fig. 7 Cluster indicators under block loss

As shown in Figure 7, when the mining task reached 60

seconds, two blocks were randomly deleted manually. Both

CPU and memory usage experienced a slight increase. This

occurred because the system invoked HDFS's recovery

mechanism to replenish the deleted blocks, thereby increasing

CPU and memory consumption. Once the replenishment task

was completed, both usage metrics returned to their previous

levels. After the Replica Count was deleted, the system

detected a reduction from 21 to 19 replicas. Following

approximately 30 seconds of adjustment, the first block was

recovered. After roughly 30 seconds, the second block was

recovered, restoring the previous state. The task execution

progress remained unaffected, and all mining tasks were

successfully completed around 210 seconds. Overall data

indicates that even when data block loss occurs in the system,

the KVBFP can still complete the mining task.

4.3.3. Network Communication Error

The Shuffle phase is the most network-intensive stage in

the Spark system, generating massive data transfers. Network

load during Shuffle typically accounts for over 70% of the

entire task's I/O. Shuffle Fetch retrieves data from shuffle files

on other nodes and delivers it to reduceByKey. When network

failures occur, Shuffle Fetch interrupts and continuously

retries. Therefore, we inject network failures during the

Shuffle phase and characterize network status by the number

of Shuffle Fetch failures. After cluster startup, the KVBFP

runs to perform data mining on the dataset. At 80 seconds into

execution, delay and packet loss are injected into two arbitrary

PCs (Worker1 and Worker2 in this example). After 60 seconds,

the faults are removed. Four metrics are observed: CPU,

memory, Shuffle Fetch Failures, and task execution progress.

Test results are shown in Figure 8.

Fault injection command: sudo tc qdisc add dev eth0 root

netem delay 400ms loss 10%

Fault removal command: sudo tc qdisc del dev eth0 root

Shuffle Fetch Failures collection command:

curl -s http://<driver_host>:4040/api/v1/applications/

<appId>/stages (Execute command every 30 seconds)

Fig. 8 Cluster indicators under network fault

As shown in Figure 8, CPU utilization remained nearly

stable before fault injection. After injecting network failures,

some compute threads entered a blocked state due to failed

data fetching, causing a brief dip in CPU utilization. Upon

removing the faults, utilization gradually recovered to its

previous state.

Memory usage slightly increased after the network fault

injection. This occurred because workers needed to cache

more unfinished shuffle blocks and intermediate data,

increasing memory pressure. After network recovery, the

caches were gradually released, and memory usage returned

to normal levels. Shuffle Fetch Failures surged sharply during

the fault injection.

This was due to frequent data fetch failures in workers.

However, Spark's retry mechanism promptly handled these

failed requests, allowing the system to stabilize again after the

fault ended. Task progress noticeably slowed during the 90-

150s fault window, indicating the algorithm entered a waiting

state due to the failure. As network connectivity recovered, the

progress curve accelerated upward again, ultimately reaching

100% at 240s. Compared to fault-free conditions, task

completion time was delayed, but the task was still completed

successfully overall. This demonstrates that KVBFP

maintains good fault tolerance under network failures.

4.4. Communication Frequency Test

This test group compared the communication frequency

between clusters during mining tasks between the KVBFP and

PFP. After launching the clusters, both KVBFP and PFP were

run on the Spark platform with a support threshold of 0.01.

The communication volume per PC during execution for both

algorithms is shown in Figure 9.

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

20

Data Collection Method: A cluster monitoring system

built using Prometheus + Node Exporter was employed to

design a data collection mechanism for communication

behavior. The Node Exporter service was deployed on each

Worker node. Through Prometheus configuration files, nodes

were identified as independent job instances, enabling the

separate collection of inbound and outbound network metrics

for each node. The sampling frequency was set to 10 seconds,

with the sampling interval spanning from 10 seconds after

program startup to 10 seconds before completion. PromQL

queries are used to extract the network interaction frequency

per unit time between each pair of Worker nodes until the

algorithm completes.

Collection Commands (using Worker1 as an example):

Worker1 send packet count:

rate(node_network_transmit_packets_total{instance="worke

r1-ip:9100", device=~"eth0|ens.*"}[1m])

Worker1 receive packet count:

rate(node_network_receive_packets_total{instance="worker

1-ip:9100", device=~"eth0|ens.*"}[1m])

To illustrate communication traffic trends during algorithm

execution, collect PC1-PC6 communication data (send +

receive) every 10 seconds on each node.

(a)

(b)

Fig. 9 Communication rate of KVBFP and PFP

To observe the overall send and receive data volumes of

KVBFP and PFP at each node, the communication volume

throughout the entire execution process can be accumulated.

The calculation formula refers to Equation 7, where T is the

program runtime and Δt is the sampling interval. The

accumulated results are shown in Figure 10.

𝐷𝑎𝑡𝑎 𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑒𝑛𝑑/𝑟𝑒𝑐𝑣 = ∑ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑅𝑎𝑡𝑒𝑠𝑒𝑛𝑑/𝑟𝑒𝑐𝑣(𝑡) ×
 𝑇

t=0
𝛥𝑡 （7）

Fig. 10 Stacked communication volume of KVBFP and PFP

Figure 9(a) shows that the KVBFP maintains a relatively

stable communication rate of 1~2 MB/s throughout its 210-

second runtime, with minimal overall fluctuation. In Figure

9(b), the PFP generally maintains a communication rate of 2~4

MB/s throughout its 370-second runtime cycle. Its average

rate is nearly double that of KVBFP, with multiple instances

of noticeable peak fluctuations. This indicates that PFP relies

more heavily on network transmission during execution and

involves more frequent interactions between nodes. This

difference stems from the algorithms' underlying principles:

KVBFP performs two rounds of key-value pair operations to

count frequent items and reconstruct the transaction table. It

then employs parallel mining using local sub-FP-Trees,

avoiding the centralized construction of a global FP-Tree. This

approach localizes communication and maintains low, stable

communication demands. In contrast, PFP must first establish

a global FP-Tree during execution, group items based on

prefix distance, and redistribute them to nodes. This process

involves multiple rounds of global communication and data

distribution, resulting in a heavier and more volatile

communication load. As shown in Figure 10, KVBFP reduces

total communication volume by approximately 55%

compared to PFP. Communication across KVBFP nodes

remains relatively balanced, ranging between 180 and 500 MB.

In contrast, PFP's communication volume generally exceeds

500 MB, with some nodes approaching 1000 MB—nearly

double that of KVBFP. Notably, Worker5 and Worker6

exhibit significantly higher communication volumes than

other nodes, reflecting an uneven distribution. This imbalance

stems directly from PFP's prefix-distance-based grouping

strategy, which cannot guarantee complete equilibrium under

large-scale data and data skew conditions, consequently

overloading certain nodes with excessive communication

pressure.

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

21

4.5. Load Balancing Test

This test group compares the load balancing across cluster

nodes during runtime between the KVBFP and the PFP, with

a support threshold of 0.01. For both algorithms, CPU and

memory usage data from all PCs in the cluster are collected

every 10 seconds. The sampling interval spans from 10

seconds after program startup to 10 seconds before shutdown,

enabling continuous tracking of the entire load balancing

process. Test results are shown in Figures 11 and 12.

CPU usage collection command: sar -u 10

Memory usage collection command: sar -r 10

(a)

(b)

Fig. 11 Memory usage of KVBFP and PFP

(a)

(b)

Fig. 12 CPU usage of KVBFP and PFP

At each time sampling point, the degree of dispersion in

CPU and memory usage across workers represents the load

balance of the cluster at that moment. The variance

corresponding to each time sampling point can be calculated

by computing the average variance. This average variance

serves as a measure of load balance, with the calculation

formula referencing Equation 8.

𝑉𝑎𝑟̅̅ ̅̅ ̅ =
1

𝑚
∑ (

1

𝑛
∑ (𝜒𝑖𝑗 −

1

𝑛
∑ 𝜒𝑖𝑘

𝑛
𝑘=1)

2𝑛

𝑗=1
)

𝑚

𝑖=1

 (8)

m: Number of Workers

n: Number of sampling points per Worker

xij: CPU/memory utilization of the i-th Worker at the j-th

sampling point

By calculation, Average variance bar charts of memory

and CPU usage for PFP and KVBFP are plotted at each

sampling point. The calculation interval spans from 10

seconds after program startup until at least two computers

remain operational. For the KVBFP, this ranges from 10 to

200 seconds; for the PFP, it ranges from 10 to 340 seconds.

The average CPM/memory variance bar chart between

KVBFP and PFP is shown in Figure 13.

Fig. 13 Comparison of average CPU/memory variance between KVBFP

and PFP

Figure 11(a) shows that the KVBFP exhibits uniform

memory curves with minimal fluctuations across all worker

nodes, generally maintaining usage between 64% and 68%.

This indicates KVBFP achieves more balanced task

partitioning, preventing resource bottlenecks on specific

nodes. In Figure 11(b), the memory curve for the PFP is

noticeably more dispersed, with some nodes experiencing

utilization rates exceeding 80% during operation. This reflects

the frequent task redistribution and data replication during its

execution, leading to uneven memory usage. A similar trend

is evident in the CPU utilization graph (Figure 12). KVBFP

maintains CPU usage across all worker nodes between 45%

and 57%, with a smooth line indicating that KVBFP's

approach of splitting the Global FP-Tree using key-value pairs

effectively reduces redundant scans and intermediate result

calculations, thereby lowering computational resource

consumption. In contrast, the PFP's CPU usage exhibits

significantly more pronounced fluctuations, with some nodes

even experiencing instantaneous spikes. This is closely related

1.98 3.19

15.45

41.79

0

10

20

30

40

50

Memory CPUA
v
er

ag
e

V
ar

ia
n
ce

 (
%

2
)

KVBFP PFP

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

22

to its computation involving full table scans of global frequent

item sets and the recursive construction of conditional FP-

trees. Figure 11 and Figure 12 also reveal trailing phenomena

in some nodes during the later stages of algorithm execution.

Worker6 was the last node to complete mining tasks, but

KVBFP exhibited significantly less trailing than PFP. Figure

13 quantifies the dispersion of CPU and memory usage across

nodes using variance metrics. KVBFP exhibits an 87.2%

lower CPU usage variance and a 92.4% lower memory usage

variance compared to PFP. This stems from KVBFP's

implementation of key-value pairs throughout the entire

process (from database scanning to mining), achieving true

compatibility with Spark. Spark leverages its superior task

scheduling capabilities to maximize load balancing across all

nodes in the cluster.

4.6. Algorithm Efficiency Comparison Test

This test group compares the time consumed by FP-

Growth, PFP, and KVBFP when mining the dataset, with FP-

Growth testing conducted on a single computer. Under fixed

software and hardware conditions, the mining time for all

three algorithms depends solely on the support threshold and

transaction count. Therefore, this test group comprises two

experiments: the first fixes the support threshold while

varying the transaction count; the second fixes the transaction

count while varying the support threshold.

Node runtime collection Java code:

long start = System.currentTimeMillis();

... // process

long end= System.currentTimeMillis();

long duration = end - start;

4.6.1. Fixed Support Threshold

The minimum support threshold is fixed at 0.01, with the

transaction count ranging from 500,000 to 5,000,000,

increasing by 500,000 transactions each time. For each

algorithm, the total mining time is recorded. The test results

are shown in Figure 14.

Fig. 14 Efficiency of FP-growth, PFP, and KVBFP (fixed support)

As shown in Figure 14, the KVBFP consistently

demonstrates the lowest runtime, completing processing of 5

million transactions in just 214 seconds-significantly

outperforming PFP's 371 seconds and FP-Growth's 572

seconds. Compared to FP-Growth, KVBFP achieves a 62.6%

improvement, and compared to PFP, it achieves a 42.3%

improvement. The KVBFP curve exhibits minimal fluctuation

and a gentler growth slope, indicating higher mining

efficiency and stability, making it particularly suitable for

large-scale data mining scenarios.

4.6.2. Fixed Transaction Count

With the transaction count fixed at 5 million, the support

threshold was varied from 0.1 to 0.8, and the total mining time

was recorded for each setting. The test results are shown in

Figure 15.

Fig. 15 Efficiency of FP-growth, PFP, and KVBFP (fixed transactions)

With a fixed transaction count of 5 million, the runtime of

all three algorithms decreases as the minimum support

threshold increases from 0.1 to 0.8. KVBFP demonstrated

lower runtime and a more stable decline trend across all

support levels. Overall, its mining efficiency improved by

approximately 44.7% on average compared to PFP and by as

much as 67.7% compared to FP-Growth. FP-Growth and PFP

incurred significant overhead at low support levels, being

heavily influenced by the number of frequent itemsets,

resulting in lower efficiency than KVBFP.

5. Conclusion
In the era of big data, traditional association rule mining

algorithms like FP-Growth can no longer meet practical

demands when handling massive datasets. Therefore,

parallelization modifications are required to make FP-Growth

compatible with big data platforms. This study proposes a key-

value pair-based FP-Growth, KVBFP. This algorithm

simulates the entire FP-Growth process using key-value pairs,

enabling compatibility with the Spark platform. It achieves

0

100

200

300

400

500

600

700

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
u
n
ti

m
e

(s
ec

o
n
d

s)

Transaction Count (Millions)

FP-Growth PFP KVBFP

0

100

200

300

400

500

600

700

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
u
n
ti

m
e

(s
ec

o
n
d

s)

Transaction Count (Millions)

FP-Growth PFP KVBFP

Baokui Liao et al. / IJCSE, 12(9), 12-23, 2025

23

significant improvements over existing parallelization

schemes in mining efficiency, load balancing, and

communication overhead. The proposed algorithm provides a

theoretical reference for parallelizing other data mining

algorithms. In practical applications, particularly in industries

demanding high mining efficiency, this approach offers a

novel solution. However, this study has limitations:

experiments conducted on only six computers cannot

comprehensively evaluate all algorithmic metrics, and the

tested dataset is specialized for the experimental environment,

lacking real-world data validation. Addressing these

limitations represents key directions for future research.

Conflict of Interest
 The authors declare that there are no financial or non-

financial conflicts of interest influencing this work.

Funding
 This work was not supported by any funding agency,

grant, or sponsorship

References
[1] Raghavendra Kumar Chunduri, and Aswani Kumar Cherukuri, “Scalable Algorithm for Generation of Attribute Implication Base using

FP-Growth and Spark,” Soft Computing, vol. 25, pp. 9219-92401, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Jeffri Prayitno Bangkit Saputra, Silvia Anggun Rahayu, and Taqwa Hariguna, “Market Basket Analysis Using FP-Growth Algorithm to

Design Marketing Strategy by Determining Consumer Purchasing Patterns,” Journal of Applied Data Sciences, vol. 4, no. 1, pp. 1-12,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Ali Hassani et al., “Escaping the Big Data Paradigm with Compact Transformers,” arXiv Preprint, pp. 1-18, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[4] Trevor Hastie et al., “The Elements of Statistical Learning: Data Mining, Inference, and Prediction,” Journal of the Royal Statistical

Society Series A: Statistics in Society, vol. 173, no. 3, pp. 693-694, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[5] Chaganti Sri Karthikeya Sahith, Satish Muppidi, and Suneetha Merugula, “Apache Spark Big data Analysis, Performance Tuning, and

Spark Application Optimization,” 2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT),

pp. 1-8, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[6] Farhan Ullah et al., “NIDS-VSB: Network Intrusion Detection System for VANET using Spark-Based Big Data Optimization and Transfer

Learning,” IEEE Transactions on Consumer Electronics, vol. 70, no. 1, pp. 1798-1809, 2024. [CrossRef] [Google Scholar] [Publisher

Link]

[7] Dewi Anisa Istiqomah, Yuli Astuti, and Siti Nurjanah, “Implementation of FP-Growth and Apriori Algorithms for Product Inventory,”

Polinema Informatics Journal, vol. 8, no. 2, pp. 1-6, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] Yang Yang et al., “A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data,” International

Journal of Computers Communications & Control, vol. 17, no. 4, pp. 1-16, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[9] Mingzheng Li et al., “TCM Constitution Analysis Method Based on Parallel FP-Growth Algorithm in Hadoop Framework,” Journal of

Healthcare Engineering, vol. 2022, no. 1, pp. 1-14, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[10] Xinyan Wang, and Guie Jiao, “Research on Association Rules of Course Grades based on Parallel FP-Growth Algorithm,” Journal of

Computational Methods in Sciences and Engineering, vol. 20, no. 3, pp. 759-769, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[11] A. Senthilkumar, and D. Hariprasad, “A Spark Based Frequent Itemset Mining Using Resource Management for Implementation of FP-

Growth Algorithm in Cloud Environment,” Annals of the Romanian Society for Cell Biology, vol. 25, no. 4, pp. 6050-6059, 2021. [Google

Scholar] [Publisher Link]

[12] Zakria Mahrousa, Dima Mufti Alchawafa, and Hasan Kazzaz, “Frequent Itemset Mining Based on Development of FP-Growth Algorithm

and Use MapReduce Technique,” Association of Arab Universities Journal of Engineering Sciences, vol. 28, no. 1, pp. 1-16, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[13] Amr Essam, Manal A. Abdel-Fattah, and Laila Abdelhamid, “Towards Enhancing the Performance of Parallel FP-Growth on Spark,”

IEEE Access, vol. 10, pp. 286-296, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Priyanka Gupta, and Vinaya Sawant, “A Parallel Apriori Algorithm and FP- Growth Based on SPARK,” International Conference on

Automation, Computing and Communication, vol. 40, pp. 1-5, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Youssef Fakir, Salim Khalil, and Mohamed Fakir, “Extraction of Association Rules in a Diabetic Dataset using Parallel FP-growth

Algorithm under Apache Spark,” International Journal of Informatics and Communication Technology, vol. 13, no. 3, pp. 445-452, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[16] Shubhangi Chaturvedi, Sri Khetwat Saritha, and Animesh Chaturvedi, “Spark based Parallel Frequent Pattern Rules for Social Media Data

Analytics,” 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW), Bangalore,

India, pp. 168-175, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[17] Jeff Heaton, “Comparing Dataset Characteristics that Favor the Apriori, Eclat or FP-Growth Frequent Itemset Mining Algorithms,”

SoutheastCon 2016, Norfolk, VA, USA, pp. 1-7, 2016. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/s00500-021-05844-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scalable+algorithm+for+generation+of+attribute+implication+base+using+FP-growth+and+spark&btnG=
https://link.springer.com/article/10.1007/s00500-021-05844-9
https://doi.org/10.47738/jads.v4i1.83
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Market+Basket+Analysis+Using+FP-Growth+Algorithm+to+Design+Marketing+Strategy+by+Determining+Consumer+Purchasing+Patterns&btnG=
https://www.bright-journal.org/Journal/index.php/JADS/article/view/83
https://doi.org/10.48550/arXiv.2104.05704
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ali+Hassani%2C+Escaping+the+Big+Data+Paradigm+with+Compact+Transformers&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ali+Hassani%2C+Escaping+the+Big+Data+Paradigm+with+Compact+Transformers&btnG=
https://arxiv.org/abs/2104.05704
https://doi.org/10.1111/j.1467-985X.2010.00646_6.x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Elements+of+Statistical+Learning%3A+Data+Mining%2C+Inference%2C+and+Prediction+2nd+Edition&btnG=
https://academic.oup.com/jrsssa/article/173/3/693/7077651
https://doi.org/10.1109/EASCT59475.2023.10393086
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Apache+Spark+Big+data+Analysis%2C+Performance+Tuning%2C+and+Spark+Application+Optimization&btnG=
https://ieeexplore.ieee.org/abstract/document/10393086
https://doi.org/10.1109/TCE.2023.3328320
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=NIDS-VSB%3A+Network+Intrusion+Detection+System+for+VANET+using+Spark-Based+Big+Data+Optimization+and+Transfer+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/10299718
https://ieeexplore.ieee.org/abstract/document/10299718
https://doi.org/10.33795/jip.v8i2.845
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementasi+Algoritma+FP-Growth+dan+Apriori+Untuk+Persediaan+Produk&btnG=
https://jurnal.polinema.ac.id/index.php/jip/article/view/2481
https://doi.org/10.15837/ijccc.2022.4.4806
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Parallel+FP-Growth+Mining+Algorithm+with+Load+Balancing+Constraints+for+Traffic+Crash+Data&btnG=
https://fsja.univagora.ro/jour/index.php/ijccc/article/view/4806
https://doi.org/10.1155/2022/9006096
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=TCM+Constitution+Analysis+Method+Based+on+Parallel+FP-Growth+Algorithm+in+Hadoop+Framework&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2022/9006096
https://doi.org/10.3233/JCM-194079
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+on+association+rules+of+course+grades+based+on+parallel+FP-Growth+algorithm&btnG=
https://journals.sagepub.com/doi/abs/10.3233/JCM-194079
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Spark+Based+Frequent+Itemset+Mining+Using+Resource+Management+for+Implementation+of+Fp-Growth+Algorithm+in+Cloud+Environment&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Spark+Based+Frequent+Itemset+Mining+Using+Resource+Management+for+Implementation+of+Fp-Growth+Algorithm+in+Cloud+Environment&btnG=
http://annalsofrscb.ro/index.php/journal/article/view/3170
https://doi.org/10.33261/jaaru.2021.28.1.008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Frequent+Itemset+Mining+Based+on+Development+of+FP-growth+Algorithm+and+Use+MapReduce+Technique&btnG=
https://jaaru.org/index.php/auisseng/article/view/496
https://doi.org/10.1109/ACCESS.2021.3137789
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+enhancing+the+performance+of+parallel+FP-Growth+on+Spark&btnG=
https://ieeexplore.ieee.org/abstract/document/9661337
https://doi.org/10.1051/itmconf/20214003046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Parallel+Apriori+Algorithm+and+FP-+Growth+Based+on+SPARK&btnG=
https://www.itm-conferences.org/articles/itmconf/abs/2021/05/itmconf_icacc2021_03046/itmconf_icacc2021_03046.html
http://doi.org/10.11591/ijict.v13i3.pp445-452
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Parallel+Apriori+Algorithm+and+FP-+Growth+Based+on+SPARK&btnG=
https://ijict.iaescore.com/index.php/IJICT/article/view/20794
https://doi.org/10.1109/CCGridW59191.2023.00039
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Spark+based+Parallel+Frequent+Pattern+Rules+for+Social+Media+Data+Analytics&btnG=
https://ieeexplore.ieee.org/abstract/document/10181165
https://doi.org/10.1109/SECON.2016.7506659
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparing+Dataset+Characteristics+that+Favor+the+Apriori%2C+Eclat+or+FP-Growth+Frequent+Itemset+Mining+Algorithms&btnG=
https://ieeexplore.ieee.org/abstract/document/7506659

