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Abstract - In the era of big data, the exponential growth of information has made extracting valuable insights from massive 

datasets an urgent challenge. Association rule mining, particularly the FP-Growth, plays a crucial role in discovering high-

frequency patterns. Traditional FP-Growth faces significant challenges when processing large-scale data, including memory 

overflow and computational inefficiency. Existing improvements to FP-Growth have achieved some success in parallelization, 

with the PFP being a notable example. This paper proposes an algorithmic parallelization scheme based on Spark, enhancing 

mining efficiency by splitting FP trees using key-value pairs and optimizing database scanning processes. Unlike traditional 

methods relying on global FP trees, this algorithm leverages Spark's distributed in-memory computing model to eliminate time-

consuming FP tree traversal operations and reduce inter-node communication. Tests demonstrate that the KVBFP exhibits high 

stability, achieving approximately 55% lower communication overhead compared to PFP. It also reduces the mean variance of 

cluster CPU and memory utilization by 87.2% and 92.4%, respectively, while boosting overall mining efficiency by 44.7%. 

Keywords - FP-Growth, Spark, Parallel Mining, Big Data, Data Mining. 

1. Introduction 
Data mining is a key technique for analyzing big data and 

aims to extract meaningful patterns, associations, and trends 

from large-scale datasets. It uses algorithms in the fields of 

machine learning, statistics, and artificial intelligence to 

discover hidden relationships in data that may not be detected 

by traditional analytics. The main goal of data mining is to 

transform raw data into useful knowledge to aid in decision-

making and prediction [1]. FP-Growth, as an important 

algorithm in the association rule mining branch of data 

mining, stores Frequent Item (FI) sets by constructing a global 

FP-tree, and then finds frequent item sets by traversing the tree 

structure [2]. 

The rise of Big Data stems from the proliferation of digital 

technologies such as the Internet of Things (IoT), social media 

platforms, and mobile devices that are generating 

unprecedented data [3]. Millions of social media posts, 

financial transactions, and sensor data from smart devices are 

recorded every minute. Extracting valuable information from 

this massive amount of data can give organizations a 

competitive advantage, speed up the decision-making process, 

and lead to innovations in a variety of areas such as healthcare, 

finance, and urban planning [4]. Among the many big data 

processing frameworks, Apache Spark is one of the most 

widely used. It provides a distributed computing engine 

featuring in-memory processing and Resilient Distributed 

Datasets (RDDs), which significantly speed up computation 

and reduce I/O overhead [5]. Its streamlined application 

program interface and dynamic task scheduling make it easier 

for developers to build scalable data pipelines without having 

to deal with the complexities of underlying distributed 

programming [6]. Big data and data mining technologies are 

two hot research topics at present, and there have been many 

research results in their intersection. This study focuses on the 

parallelization of FP-Growth in data mining technology on the 

big data platform Spark, and proposes a more efficient 

parallelization strategy based on existing research results. 

FP-Growth was designed to run on a single machine and 

was not intended for distributed or parallel execution [7]. As 

the size of the dataset increases, the global FP tree expands 

accordingly, which can easily lead to memory overflow when 

its size exceeds the available system memory [8]. In addition, 

traversing the global FP-tree requires a huge amount of 

computation, which consumes a lot of CPU resources, and 

when the FP-tree becomes very large, the traversal operation 

will lead to CPU overload [9]. The strong reliance on the 
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global FP-Tree creates a bottleneck in parallel frameworks 

such as Spark [10], as this structure cannot be fully replicated 

across all executors, and traversing the global FP-Tree in a 

distributed environment places stringent requirements on 

memory synchronization and coordination.  

To address the limitations of the FP-Growth, existing 

research has introduced various parallelization strategies. 

These approaches address the load balancing problem to some 

extent but have inherent flaws, such as load balancing, I/O 

bottlenecks, excessive dependence on hardware, and 

cumbersome algorithm complexity. This study proposes an 

enhanced version of the FP-Growth, which replaces the global 

FP-Tree structure with a key-value pair for data mining. This 

study also proposes a database scanning strategy. This 

approach preprocesses and reorganizes the source database 

through two Spark tasks to efficiently filter and sort high-

frequency items. Through designed experiments, the 

algorithm demonstrates high stability, reduces hardware 

consumption compared to existing parallel FP-Growth 

implementations, and enhances cluster communication 

efficiency, load balancing, and mining efficiency. 

2. Related Work 
A systematic review of FP-Growth parallelization 

research over the past five years reveals current research gaps. 

This paper introduces six of the most highly cited FP-Growth 

parallelization approaches and provides a detailed comparison 

of their respective shortcomings. Senthilkumar et al. proposed 

an efficient MapReduce-based FP-Growth in 2020 to address 

memory consumption and communication bottlenecks in 

traditional FP-Growth under big data scenarios [11]. This 

approach employs four key optimizations: dictionary 

encoding for item set compression, improved hash 

partitioning to reduce network load, compression strategies to 

enhance data transfer efficiency, and a combiner to optimize 

the reduction phase load. Experiments demonstrate that this 

algorithm exhibits excellent execution efficiency and 

scalability in Hadoop cluster environments, making it suitable 

for distributed frequent item set mining tasks. In 2021, Zakria 

Mahrousa et al. proposed an improved FP-Growth that 

combines MapReduce with directed graph structures to 

enhance frequent item set mining efficiency on large-scale 

datasets [12].  

This algorithm distributes raw data across multiple nodes, 

compresses transaction databases using graph structures, and 

constructs FP-Trees in parallel, thereby effectively reducing 

memory consumption and computation time. Research results 

show that PGFP-Growth outperforms standard MapReduce 

implementations when processing high-dimensional, high-

density transaction databases and offers significant 

advantages in memory management. Amr Essam et al. 

proposed an enhanced balanced parallel frequent pattern 

mining algorithm in 2021 [13] to optimize load balancing and 

efficiency for Parallel FP-Growth on Spark during big data 

processing. This method introduces a load-balanced grouping 

strategy to achieve even task distribution across cluster nodes. 

Simultaneously, it refines the conditional pattern base to 

eliminate low-frequency items, thereby reducing memory 

consumption and the overhead of constructing local FP-Trees. 

Test results demonstrate that this algorithm achieves a 21.56% 

to 39.72% improvement in runtime compared to FP-Growth, 

significantly enhancing execution efficiency and scalability. 

Priyanka Gupta et al. proposed parallel Apriori and FP-

Growth in 2021 [14], deployed on the Apache Spark platform 

to boost frequent item set mining efficiency in big data 

environments. This approach leverages Spark's in-memory 

computing capabilities, utilizing RDD-supported data 

partitioning and parallel processing to run both Apriori and 

FP-Growth concurrently across multiple datasets, comparing 

and enhancing their performance. Experimental results 

demonstrate faster execution speeds and good scalability 

when adjusting support thresholds. Youssef Fakir et al. 

proposed a parallel FP-Growth algorithm based on Apache 

Spark in 2024 for large-scale medical data mining in diabetes 

prediction tasks [15].  

This algorithm employs a horizontal data partitioning 

strategy combined with Spark's distributed computing 

framework, significantly accelerating frequent item set mining 

while maintaining accuracy. Experimental validation on 

medical datasets demonstrates superiority over traditional 

methods in both prediction accuracy and operational 

efficiency. Shubhangi Chaturvedi et al. proposed a vector-

distance-based FP-Growth in 2023 [16]. This approach 

constructs local FP-Trees based on the prefix distance from 

each frequent item to the root node as the load-balancing 

grouping criterion. These local FP-Trees are then distributed 

to computational nodes for parallel mining. Test results 

demonstrate that the Parallel FP-growth (PFP) achieves 

significant improvements in load balancing, maintains stable 

performance when handling massive datasets, and exhibits 

highly efficient mining capabilities. While all six 

parallelization approaches can accomplish parallel mining 

tasks, each possesses inherent limitations. Table 1 summarizes 

the shortcomings of each algorithm. 

Given the limitations of the algorithms listed in Table 1, 

the current parallel FP-Growth domain still lacks an efficient 

parallelization scheme that simultaneously achieves load 

balancing, low complexity, and minimal cluster 

communication overhead. Therefore, this paper proposes an 

improved parallel algorithm based on key-value pairs, termed 

Key-based Vertical Based FP-Growth (KVBFP). By replacing 

key-value pairs across all stages of FP-Growth, this approach 

maximizes compatibility with the Spark platform to address 

existing algorithmic limitations. Among the reviewed 

algorithms, PFP introduced the concept of vector distance for 

the first time, significantly enhancing load balancing. This 

study selects PFP as the reference point for further 

investigation. 
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Table 1. Related research limitations summary 

Author Limitation 

Priyanka Gupta 

et al.（2021） 

Parallel implementation of classical 

methods fails to address FP-tree 

expansion, Apriori candidate set 

explosion issues, and has poor pruning 

capability. 

Amr Essam  

et al.（2021） 

Focused on load balancing 

optimization, but local FP-Tree 

redundancy remains severe, lacking 

tree pruning and compression 

strategies. 

Youssef Fakir 

et al.（2024） 

The algorithm is based on Spark but 

does not incorporate path optimization 

or compressed structures; frequent item 

set generation is relatively broad, 

limiting its applicability. 

Senthilkumar et 

al.（2020） 

Optimized networking and storage, but 

slow due to disk I/O; lacks FP-Tree 

hierarchical optimization. 

Zakria 

Mahrousa  

et al.（2021） 

Path compression using directed graph 

structures lacks support for adaptability 

and pruning/merging mechanisms; 

redundant paths may still be generated 

for high-dimensional data. 

Shubhangi 

Chaturvedi  

et al.（2023） 

Vector distance calculations are 

computationally complex and can 

easily lead to excessive communication 

frequency between clusters. 

 

3. Algorithm Proposal 
3.1. Algorithm Process 

The KVBFP is implemented in two main stages. The first 

phase transforms the raw transaction dataset into a vertical 

data structure (Swap the rows and columns of the source 

dataset) that compresses and filters transactions based on item 

frequency. The second phase performs frequent item set 

mining by applying a series of key-value transformations 

using Spark's RDD operations. The entire process flow chart 

of KVBFP is shown in Figure 1. 

Transaction 

dataset

Vertical 

data table

Compressed and 

sorted data table

Prefix Key-Value 

pairs

Final result

1st Key-value:

vertical Structure 

process

2nd Key-value:

data compression 

process

3rd Key-value:

prefix splitting 

process

4th Key-value:

data mining 

process

Phase 1: Vertical 

compression of 

transaction data

Phrase2: 

Parallelized 

Mining

 
Fig. 1 Entire procedure of KVBFP 

3.1.1. Phase 1: Vertical Compression of Transaction Data 

If the original transaction database consists of a set of 

records as shown in Table 2, where each transaction contains 

a set of item sets, here the support threshold is preset to 2 to 

mine the database for frequent item sets. Spark's Distributed 

Data Processing framework converts and compresses the 

dataset into a vertical data format in two steps. In these Tables 

and Figures, ‘Sup’ is the support for each element, ‘Num’ is 

the transaction number, ‘E’ represents the items in each 

transaction, and ‘N’ represents the specific label value 

corresponding to each transaction. 

Table 2. Original transaction database 

Num Trans 

N1 E1, E2, E5 

N2 E2, E4, E6 

N3 E2, E3 

N4 E1, E2, E4 

N5 E1, E3, E7 

N6 E2, E3 

N7 E1, E3, E8 

N8 E1, E2, E3, E5 

N9 E1, E2, E3 

Step 1: Load all transactions into the RDD and map each 

item to the list of transaction IDs that appear in it. Calculate 

the support count for each item using flatMap() and 

reduceByKey(). Items that do not meet the support threshold 

are filtered out. The remaining frequent items are sorted in 

descending order of support to form a vertical item sets table. 

The results of Step 1 are shown in Table 3. 

Table 3. Vertical data table 

Element E2 E1 E3 E4 E5 

Sup 7 6 6 2 2 

Num 

N1, N2, N3, 

N4, N6, N8, 

N9 

N1, N4, 

N5, N7, 

N8, N9 

N3, N5, 

N6, N7, 

N8, N9 

N2, N4 N1, N8 

The data flow of Job1 from Table 2 to Table 3 is shown 

in Figure 2. 

flatMap() reduceByKey()

<E, N>…

<En, (Ni,...Nj)>…
Table 3

Original 

data Table 2
 

Fig. 2 Data flow of vertical compression process 

 

Step 2: Each transaction is then reconstructed by 

removing the infrequent items using the vertical table and 

sorting the remaining items in descending order according to 

the support threshold.This results in a compressed database 

containing only frequent items, which facilitates the 
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subsequent mining phase. The results of Step 2 are shown in 

Table 4. 

 
Table 4. Data table after compression and sorting 

Num Trans 

N1 E2, E1, E5 

N2 E2, E4 

N3 E2, E3 

N4 E2, E1, E4 

N5 E1, E3 

N6 E2, E3 

N7 E1, E3 

N8 E2, E1, E3, E5 

N9 E2, E1, E3 

The data flow of Job2 from Table 3 to Table 4 is shown 

in Figure 3. 
 

flatMap() reduceByKey()

<N, E>…
<Nn, (Ei…)>…

Table 4Table 3

Fig. 3 Data flow of sorting process 
 

As can be seen from Table 4, relative to Table 2, E6, E7, 

and E8, which do not satisfy the support thresholds, have been 

deleted, and the items in each transaction are listed in order of 

decreasing support. 

Phase 1 Pseudocode 

Input: 

 D ← original table: mapping Num → [E₁, E₂, ..., 

Eₙ] 

 σ ← minimum support threshold 

Phase 1: Build Item-to-Column Map and Count 

Frequencies 

1. For each (Num, [E₁, ..., Eₙ]) in D: 

  For each item Eᵢ: 

   Emit (Eᵢ, Num) 

2. Group by Eᵢ to form inverted index: Eᵢ → [Num₁, 

Num₂, ..., Numₖ] 

3. For each Eᵢ: 

  Count support = length of [Num list] 

4. Filter: retain only Eᵢ where support ≥ σ 

5. Store frequency table: freq(Eᵢ) = support count 

Phase 2: Reconstruct Column-to-Items Mapping 

6. For each Eᵢ in the frequency table: 

  For each Num in Eᵢ's list: 

   Emit (Num, Eᵢ) 

7. Group by Num to get: Num → [E₁, ..., Eₙ] 

8. For each Num: 

  Remove items not in the frequency table 

  Sort items in descending order by freq(Eᵢ) 

9. Return sorted lists per Num 

3.1.2. Phase 2: Mining Frequent Item Sets through Key-Value 

Transformations 

Using the preprocessed data in Table 4, each transaction 

is decomposed into multiple key-value pairs, with the key 

being the item in the transaction and the value being the item 

preceding that item. This decomposition is accomplished 

using Spark's flatMap function. Each transaction is converted 

into multiple key-value pairs of the form <E, prefix>. For 

example, transaction [E2, E1, E5] is decomposed into <E2, 

null>, <E1, E2>, and <E5, (E2 E1)>, and the splitting results 

are shown in Table 5. 

Phase 2 Pseudocode of the splitting process 

Input: 

 T ← filtered and sorted transaction table: Num → 

[E₁, E₂, ..., Eₙ] 

flatMap: 

 1.For each (Num, [E₁, E₂, ..., Eₙ]) in T: 

  For i from 0 to length(items) - 1: 

   key ← Eᵢ 

   value ← items[0:i] 

   Emit (key, value) 

reduceByKey: 

2. Group by key Eᵢ: 

  Collect all value lists as a conditional pattern 

base of Eᵢ 

  Emit (Eᵢ, [prefix₁, prefix₂, ..., prefixₖ]) 

Table 5. Results of Table 4 after splitting by flatMap 

Num Key-value 

N1 <E2, NULL>, <E1, E2>, <E5, (E2, E1)> 

N2 <E2, NULL>, <E4, E2> 

N3 <E2, NULL>, <E3, E2> 

N4 <E2, NULL>, <E1, E2>, <E4, (E2, E1)> 

N5 <E1, NULL>, <E3, E1> 

N6 <E2, NULL>, <E3, E2> 

N7 <E1, NULL>, <E3, E1> 

N8 
<E2, NULL>, <E1, E2>, <E3, (E2, E1)>, 

 <E5, (E2, E1, E3)> 

N9 <E2, NULL>, <E1, E2>, <E3, (E2, E1)> 

 The data flow of Job3 from Table 4 to Table 5 is shown 

in Figure 4. 

flatMap() reduceByKey()

<E, prefix>

Conditional Pattern 

Base Database

Table 5

Table 4

 
Fig. 4 Data flow splitting process 
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Then all key-value pairs are grouped using the 

reduceByKey operation. For each key, a conditional FP-Tree 

is constructed locally with all its corresponding values, and at 

the same time, the conditional FP-Tree is mined for frequent 

item sets in the reduceByKey function to obtain the final 

result. The key-value pairs after grouping by reduceByKey 

and the constructed conditional FP-Tree are shown in Table 6. 

 

Phase 2 Pseudocode of mining process 

Input: 

 T ← filtered and sorted transaction table: Num → 

[E₁, E₂, ..., Eₙ] 

flatMap: 

1.For each (Num, [E₁, E₂, ..., Eₙ]) in T: 

  For i from 0 to length(items) - 1: 

   key ← Eᵢ 

   value ← items[0:i] 

   Emit (key, value) 

reduceByKey: 

2. Group by key Eᵢ: 

  Collect all value lists as a conditional pattern 

base of Eᵢ 

  Emit (Eᵢ, [prefix₁, prefix₂, ..., prefixₖ]) 

Table 6. Mining results from Table 4 

Key E1 E2 E3 E4 E5 

Value  
(E2), (E2), 

(E2), (E2) 
- 

(E2), 

(E1), 

(E2), 

(E1), 

(E2, E1), 

(E2, E1) 

(E2), 

(E2, E1) 

(E2, E1), 

(E2, E1, E3) 

FI {E2, E1:4} - 

{E2, E1, 

E3:2}, 

{E2, 

E3:4}, 

{E1, 

E3:4} 

{E2, E4:2} 

{E2, E5:2}, 

{E1, E5:2}, 

{E2, E1, E5:2} 

 

The data flow of Job4 from Table 5 to the final results is 

shown in Figure 5. 

flatMap() reduceByKey()

<E, Frequent itemset>

Table 6

Frequent itemsetsTable 5

 
Fig. 5 Data flow of mining process 

3.2. Algorithm Complexity Analysis 

Complexity analysis requires quantifying each stage of 

the KVBFP's mining process. From the algorithmic procedure, 

two key metrics influencing computational complexity 

emerge: computational complexity and communication 

complexity. Let the dataset contain D transactions, with an 

average transaction length of T and an average length of T' 

after infrequent item filtering. The algorithm's execution flow 

on Spark is divided into two phases by two Shuffle operations. 

3.2.1. Phrase 1 - Step 1: Item Frequency Counting 

This step is accomplished using flatMap and 

reduceByKey. It performs a single linear scan of the dataset 

with a computational complexity of O(D·T). The 

reduceByKey operation triggers the first shuffle, whose 

communication complexity is O(D·T). 

3.2.2. Phrase 1 - Step 2: Transaction Preprocessing 

This step uses flatMap to filter and sort each transaction. 

By distributing the item frequency table via broadcast 

variables, this stage avoids shuffle operations. It involves 

sorting operations with a computational complexity of O(D·(T 

+ T'logT')). 

3.2.3. Phrase 2 : Parallelized Mining 

This Phrase first generates prefix paths using flatMap, 

then groups paths by item using groupByKey. Its 

computational cost is O(D·T'). The groupByKey operator 

triggers a second Shuffle, with communication complexity of 

O(D·T'). 
 

The total computational complexity is the sum of all stage 

computations. Its expression refers to Equation 1. 

Ccomp =  O(D · T + D · (T + T′log T′) + D · T′)       (1) 

The overall algorithmic complexity exhibits a linear 

positive correlation with the number of transactions D, the 

average transaction length T, and the number of sorting 

operations. Meanwhile, the sorting operations show a 

logarithmic positive correlation with the filtered average 

transaction length. 

The total communication complexity C_comm is 

primarily determined by the shuffle data volume in Spark, 

representing the sum of two shuffles. Its expression is given 

by Equation 2. 

Ccomm = O(D · T +  D · T′)    (2) 

The overall communication complexity of the algorithm 

exhibits a linear positive correlation with the number of 

transactions D, the average transaction length T, and the 

filtered average transaction length T'. 

3.2.4. Algorithm Correctness Discussion 

 The algorithmic process demonstrates that the KVBFP is 

a key-value pair description of FP-Growth, preserving its 

original logic. Consequently, the mining results remain 

consistent with FP-Growth. Table 7 maps each step of KVBFP 

to its corresponding FP-Growth step and conducts an 

equivalence analysis for each. 
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Table 7. Comparison of KVBFP and FP-growth 

Core Phase FP-Growth KVBFP Equivalence Analysis 

Frequency 

Statistics 

First scan: Traverse the entire dataset 

and compute the support count for each 

item 

 

Job1: Parallel computation of 

support counts for each item 

using flatMap and 

reduceByKey 

Equivalent results: Both methods 

counted the frequency of each item's 

occurrence in the global dataset 

Data 

Preprocess 

Second Scan: 1. Remove all infrequent 

items. 2. Sort frequent items within each 

transaction by descending global 

frequency 

Job2: Utilize the frequency 

table from the previous step to 

filter and sort each transaction 

in parallel using the flatMap 

operation 

Data equivalence: Upon completion of 

this phase, both algorithms have 

produced datasets that are identical in 

both content and sequence 

Construct 

Data 

Structures 

Constructing the global FP-Tree: 

Compress the entire preprocessed 

dataset into an FP-Tree 

Job3-flatMap: Use flatMap to 

split each transaction into 

multiple <E, prefix> pairs 

Logical decomposition: KVBFP skips 

the step of constructing a global FP-

Tree, directly decomposing it into a set 

of prefix paths indexed by each frequent 

item 

Mining 

Process 

Recursive Mining: 1. Select a frequent 

item E from the FP-Tree. 2. Extract its 

conditional pattern base. 3. Construct a 

conditional FP-Tree based on this 

pattern base. 4. Perform recursive 

mining on this conditional FP-Tree 

Job3-groupByKey: 1. 

Aggregate all prefix paths of E 

into a single groupByKey; 2. 

Construct a conditional FP-

tree and perform mining 

within this task 

Process Equivalence: KVBFP's 

groupByKey operation simulates the 

process of extracting conditional pattern 

bases in FP-Growth. Each groupByKey 

task is logically equivalent to a single 

recursive call to FP-Growth. 

Results 

Merge 

Stepwise Accumulation: During the 

recursive process, the final result is 

obtained by combining the item sets 

extracted from each conditional FP tree 

with their corresponding suffixes 

 

Job4: All groupByKey tasks 

directly output the frequent 

item sets they mine, then 

aggregate and output the final 

results 

 

Complete and non-redundant results: 

Each frequent item is processed as a 

suffix in only one groupByKey task, 

ensuring results are identical to those 

from FP-Growth 

 

 

4. Performance And Evaluation 
To comprehensively evaluate the KVBFP, this study 

designed tests for algorithm stability, cluster interaction 

frequency, load balancing, and operational efficiency 

comparisons. By simulating real-world scenarios, we 

measured various algorithm metrics and compared the mining 

efficiency gains achieved by KVBFP relative to PFP and FP-

Growth. 

4.1. Dataset 

The experimental data originates from a paper cited on 

the Kaggle website [17]. The data was generated by the paper's 

authors using scripts and made freely available to researchers. 

The fundamental characteristics of the data are shown in Table 

8. 
Table 8. Experimental data characteristics table 

Characteristics Value 

Transaction 5,000,000 

Number of items 50,000 

Max transaction 5 – 100 

Frequent set density 0.1 – 0.8 

Data file size 854.71M 

4.2. Platform Configuration 

The experimental platform consists of six PCs and a 

network switch, connected in a star topology. Table 9 

summarizes the hardware and software specifications used in 

the experiment. 

Table 9. Platform details of software and hardware 

Hardware Software 

CPU 

Intel i7-

12700K, 12-

Core, 3.6GHz 
OS CentOS 7.9 

RAM 32GB DDR4 Java Runtime OpenJDK 11 

Storage 
2TB HDD, 

7200 RPM 
Distributed 

Engine 

Apache Spark 

3.3.2 

Motherboard 

Gigabyte 

B660M DS3H 

AX 

Simulation 

Tool 

MATLAB 

R2021a 

Network 

Switch 

Cisco Nexus 

3172PQ 

10GbE 

Monitoring 

Stack 

Prometheus 

2.43  

Development 

IDE 

Eclipse IDE for 

Enterprise Java 
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4.3. Algorithm Stability Testing 

To validate the stability of the KVBFP in real distributed 

environments, three types of typical fault simulation 

experiments were designed on a Spark cluster. These 

scenarios include: worker node crashes, HDFS data block loss, 

and network communication failures. The support threshold 

was set to 0.01 for all three test sets. 

4.3.1. Work Node Failure Test 

Launch the cluster, upload the dataset to HDFS, and run 

KVBFP to mine the dataset continuously. At the 110th second 

of task execution, manually shut down one Worker node to 

simulate a failure scenario. Observe three metrics-CPU 

utilization, memory utilization, and task completion progress-

after the Spark cluster detects the node failure. Test results are 

shown in Figure 6. 

 

CPU Data Acquisition Script：sar -u 30 

 

The calculation method for CPU Usage refers to Equation 

3. 

 

𝐶𝑃𝑈(𝑡) =
∑ (𝑢𝑠𝑟𝑛(𝑡)+𝑠𝑦𝑠𝑛(𝑡))

𝑁
𝑛=0 ·𝑐𝑜𝑟𝑒𝑠𝑛

∑ 100·𝑐𝑜𝑟𝑒𝑠𝑛
𝑁
𝑛=0

× 100%       (3) 

Where usrn and sysn represent the CPU usage percentage 

for node n, and coresn denotes the number of CPU cores 

corresponding to node n. The weighted average is employed 

primarily to account for varying CPU configurations across 

cluster computers. By calculating CPU usage based on these 

weights, the method ensures that CPU utilization accurately 

reflects the actual computational load across the entire cluster. 

Memory data collection script: sar -r 30. The memory usage 

calculation method refers to Equation 4. 

 

𝑀𝑒𝑚(𝑡) =
∑ (𝑢𝑠𝑒𝑑𝑚𝑒𝑚𝑛(𝑡))

𝑁

𝑛=0

∑ 𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚𝑛

𝑁

𝑛=0

× 100%             (4) 

Where used_memn represents the memory usage of the 

nth node, and total_memn denotes the memory size of the nth 

node. 

 

Task completion progress data collection command: 

curl http://<driver>:4040/api/v1/applications/<appId>/stages 

Memory usage calculation method: 

 

Assume at time t, the number of completed tasks is C(t), 

the number of tasks currently running is R(t), the number of 

tasks waiting to be executed is P(t), and the total number of 

tasks is T = C + R + P. Task progress definition refers to 

Equation 5. 

 

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠(𝑡) =
𝐶(𝑡)

𝑇
× 100%           (5) 

 
Fig. 6 Cluster indicators under worker node failure 

 

As shown in Figure 6, when the mining task reached 110 

seconds, one PC was shut down, causing a brief, sharp drop in 

both CPU and memory utilization. This occurred because the 

system halted data mining for approximately 60 seconds to 

reallocate system resources. By approximately 180 seconds, 

resource reallocation concluded, and mining resumed. CPU 

and memory utilization returned to pre-failure levels, though 

slightly elevated compared to before. This increase resulted 

from the cluster compensating for the lost computational 

resources of one PC by raising overall CPU and memory usage. 

Task progress virtually halted between 120 and 180 seconds, 

confirming no data mining occurred during this minute-long 

interval. Overall, despite the node failure, the KVBFP 

successfully completed the data mining task. 

4.3.2. Data Block Loss Test 

In this test, HDFS's default Data Block size of 128MB 

and default redundancy level of 3 were used. The 854.71MB 

test data file could be divided into 7 blocks, totaling 21 blocks, 

including redundancy copies. Therefore, manually deleting 2 

random blocks could ensure the system could recover the 

original data. After starting the cluster and uploading the 

dataset to HDFS, KVBFP was run to perform continuous 

mining on the dataset. At 50 seconds into the algorithm's 

execution, two random blocks were manually deleted from 

HDFS. Four metrics were monitored: CPU usage, memory 

usage, block count, and task progress within the Spark cluster. 

Test results are shown in Figure 7. 

 

Command for collecting data block counts: 

hdfs fsck /path/to/dataset -files -blocks -locations 

The data block calculation method refers to Equation 6. 

𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝐶𝑜𝑢𝑛𝑡(𝑡) = ∑ 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑏, 𝑡) 
b∈B(t)  (6) 

Here, B(t) denotes the set of logical blocks for the file. In 

this example, with a block size of 128 MB, the 854 MB file is 

divided into 7 blocks. Given a replication factor of 3, B(t) 

equals 21, where b represents the number of blocks per node. 
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Fig. 7 Cluster indicators under block loss 

As shown in Figure 7, when the mining task reached 60 

seconds, two blocks were randomly deleted manually. Both 

CPU and memory usage experienced a slight increase. This 

occurred because the system invoked HDFS's recovery 

mechanism to replenish the deleted blocks, thereby increasing 

CPU and memory consumption. Once the replenishment task 

was completed, both usage metrics returned to their previous 

levels. After the Replica Count was deleted, the system 

detected a reduction from 21 to 19 replicas. Following 

approximately 30 seconds of adjustment, the first block was 

recovered. After roughly 30 seconds, the second block was 

recovered, restoring the previous state. The task execution 

progress remained unaffected, and all mining tasks were 

successfully completed around 210 seconds. Overall data 

indicates that even when data block loss occurs in the system, 

the KVBFP can still complete the mining task. 

4.3.3. Network Communication Error 

The Shuffle phase is the most network-intensive stage in 

the Spark system, generating massive data transfers. Network 

load during Shuffle typically accounts for over 70% of the 

entire task's I/O. Shuffle Fetch retrieves data from shuffle files 

on other nodes and delivers it to reduceByKey. When network 

failures occur, Shuffle Fetch interrupts and continuously 

retries. Therefore, we inject network failures during the 

Shuffle phase and characterize network status by the number 

of Shuffle Fetch failures. After cluster startup, the KVBFP 

runs to perform data mining on the dataset. At 80 seconds into 

execution, delay and packet loss are injected into two arbitrary 

PCs (Worker1 and Worker2 in this example). After 60 seconds, 

the faults are removed. Four metrics are observed: CPU, 

memory, Shuffle Fetch Failures, and task execution progress. 

Test results are shown in Figure 8. 

 

Fault injection command: sudo tc qdisc add dev eth0 root 

netem delay 400ms loss 10% 

Fault removal command: sudo tc qdisc del dev eth0 root 

Shuffle Fetch Failures collection command: 

curl -s http://<driver_host>:4040/api/v1/applications/ 

<appId>/stages (Execute command every 30 seconds) 

 

 
Fig. 8 Cluster indicators under network fault 

 

As shown in Figure 8, CPU utilization remained nearly 

stable before fault injection. After injecting network failures, 

some compute threads entered a blocked state due to failed 

data fetching, causing a brief dip in CPU utilization. Upon 

removing the faults, utilization gradually recovered to its 

previous state.  
 

Memory usage slightly increased after the network fault 

injection. This occurred because workers needed to cache 

more unfinished shuffle blocks and intermediate data, 

increasing memory pressure. After network recovery, the 

caches were gradually released, and memory usage returned 

to normal levels. Shuffle Fetch Failures surged sharply during 

the fault injection.  
 

This was due to frequent data fetch failures in workers. 

However, Spark's retry mechanism promptly handled these 

failed requests, allowing the system to stabilize again after the 

fault ended. Task progress noticeably slowed during the 90-

150s fault window, indicating the algorithm entered a waiting 

state due to the failure. As network connectivity recovered, the 

progress curve accelerated upward again, ultimately reaching 

100% at 240s. Compared to fault-free conditions, task 

completion time was delayed, but the task was still completed 

successfully overall. This demonstrates that KVBFP 

maintains good fault tolerance under network failures. 
 

4.4. Communication Frequency Test 

This test group compared the communication frequency 

between clusters during mining tasks between the KVBFP and 

PFP. After launching the clusters, both KVBFP and PFP were 

run on the Spark platform with a support threshold of 0.01. 

The communication volume per PC during execution for both 

algorithms is shown in Figure 9. 
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Data Collection Method: A cluster monitoring system 

built using Prometheus + Node Exporter was employed to 

design a data collection mechanism for communication 

behavior. The Node Exporter service was deployed on each 

Worker node. Through Prometheus configuration files, nodes 

were identified as independent job instances, enabling the 

separate collection of inbound and outbound network metrics 

for each node. The sampling frequency was set to 10 seconds, 

with the sampling interval spanning from 10 seconds after 

program startup to 10 seconds before completion. PromQL 

queries are used to extract the network interaction frequency 

per unit time between each pair of Worker nodes until the 

algorithm completes. 

Collection Commands (using Worker1 as an example): 

Worker1 send packet count: 

rate(node_network_transmit_packets_total{instance="worke

r1-ip:9100", device=~"eth0|ens.*"}[1m])  

Worker1 receive packet count: 

rate(node_network_receive_packets_total{instance="worker

1-ip:9100", device=~"eth0|ens.*"}[1m]) 

To illustrate communication traffic trends during algorithm 

execution, collect PC1-PC6 communication data (send + 

receive) every 10 seconds on each node. 

 

 
(a) 

 
(b) 

Fig. 9 Communication rate of KVBFP and PFP 

 

To observe the overall send and receive data volumes of 

KVBFP and PFP at each node, the communication volume 

throughout the entire execution process can be accumulated. 

The calculation formula refers to Equation 7, where T is the 

program runtime and Δt is the sampling interval. The 

accumulated results are shown in Figure 10.

𝐷𝑎𝑡𝑎 𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑒𝑛𝑑/𝑟𝑒𝑐𝑣 = ∑ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑅𝑎𝑡𝑒𝑠𝑒𝑛𝑑/𝑟𝑒𝑐𝑣(𝑡) ×
 𝑇

t=0
𝛥𝑡                      （7）

 

 
Fig. 10 Stacked communication volume of KVBFP and PFP 

Figure 9(a) shows that the KVBFP maintains a relatively 

stable communication rate of 1~2 MB/s throughout its 210-

second runtime, with minimal overall fluctuation. In Figure 

9(b), the PFP generally maintains a communication rate of 2~4 

MB/s throughout its 370-second runtime cycle. Its average 

rate is nearly double that of KVBFP, with multiple instances 

of noticeable peak fluctuations. This indicates that PFP relies 

more heavily on network transmission during execution and 

involves more frequent interactions between nodes. This 

difference stems from the algorithms' underlying principles: 

KVBFP performs two rounds of key-value pair operations to 

count frequent items and reconstruct the transaction table. It 

then employs parallel mining using local sub-FP-Trees, 

avoiding the centralized construction of a global FP-Tree. This 

approach localizes communication and maintains low, stable 

communication demands. In contrast, PFP must first establish 

a global FP-Tree during execution, group items based on 

prefix distance, and redistribute them to nodes. This process 

involves multiple rounds of global communication and data 

distribution, resulting in a heavier and more volatile 

communication load. As shown in Figure 10, KVBFP reduces 

total communication volume by approximately 55% 

compared to PFP. Communication across KVBFP nodes 

remains relatively balanced, ranging between 180 and 500 MB. 

In contrast, PFP's communication volume generally exceeds 

500 MB, with some nodes approaching 1000 MB—nearly 

double that of KVBFP. Notably, Worker5 and Worker6 

exhibit significantly higher communication volumes than 

other nodes, reflecting an uneven distribution. This imbalance 

stems directly from PFP's prefix-distance-based grouping 

strategy, which cannot guarantee complete equilibrium under 

large-scale data and data skew conditions, consequently 

overloading certain nodes with excessive communication 

pressure. 
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4.5. Load Balancing Test 

This test group compares the load balancing across cluster 

nodes during runtime between the KVBFP and the PFP, with 

a support threshold of 0.01. For both algorithms, CPU and 

memory usage data from all PCs in the cluster are collected 

every 10 seconds. The sampling interval spans from 10 

seconds after program startup to 10 seconds before shutdown, 

enabling continuous tracking of the entire load balancing 

process. Test results are shown in Figures 11 and 12. 

CPU usage collection command: sar -u 10 

Memory usage collection command: sar -r 10 

 

 
(a) 

 
(b) 

Fig. 11 Memory usage of KVBFP and PFP 

 
(a) 

 

(b) 

Fig. 12 CPU usage of KVBFP and PFP 

 

At each time sampling point, the degree of dispersion in 

CPU and memory usage across workers represents the load 

balance of the cluster at that moment. The variance 

corresponding to each time sampling point can be calculated 

by computing the average variance. This average variance 

serves as a measure of load balance, with the calculation 

formula referencing Equation 8. 

𝑉𝑎𝑟̅̅ ̅̅ ̅ =
1

𝑚
∑ (

1

𝑛
∑ (𝜒𝑖𝑗 −

1

𝑛
∑ 𝜒𝑖𝑘

𝑛
𝑘=1 )

2𝑛

𝑗=1
)

𝑚

𝑖=1

  (8) 

m: Number of Workers 

n: Number of sampling points per Worker 

xij: CPU/memory utilization of the i-th Worker at the j-th 

sampling point 

By calculation, Average variance bar charts of memory 

and CPU usage for PFP and KVBFP are plotted at each 

sampling point. The calculation interval spans from 10 

seconds after program startup until at least two computers 

remain operational. For the KVBFP, this ranges from 10 to 

200 seconds; for the PFP, it ranges from 10 to 340 seconds. 

The average CPM/memory variance bar chart between 

KVBFP and PFP is shown in Figure 13. 

 
Fig. 13 Comparison of average CPU/memory variance between KVBFP 

and PFP 

 

Figure 11(a) shows that the KVBFP exhibits uniform 

memory curves with minimal fluctuations across all worker 

nodes, generally maintaining usage between 64% and 68%. 

This indicates KVBFP achieves more balanced task 

partitioning, preventing resource bottlenecks on specific 

nodes. In Figure 11(b), the memory curve for the PFP is 

noticeably more dispersed, with some nodes experiencing 

utilization rates exceeding 80% during operation. This reflects 

the frequent task redistribution and data replication during its 

execution, leading to uneven memory usage. A similar trend 

is evident in the CPU utilization graph (Figure 12). KVBFP 

maintains CPU usage across all worker nodes between 45% 

and 57%, with a smooth line indicating that KVBFP's 

approach of splitting the Global FP-Tree using key-value pairs 

effectively reduces redundant scans and intermediate result 

calculations, thereby lowering computational resource 

consumption. In contrast, the PFP's CPU usage exhibits 

significantly more pronounced fluctuations, with some nodes 

even experiencing instantaneous spikes. This is closely related 
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to its computation involving full table scans of global frequent 

item sets and the recursive construction of conditional FP-

trees. Figure 11 and Figure 12 also reveal trailing phenomena 

in some nodes during the later stages of algorithm execution. 

Worker6 was the last node to complete mining tasks, but 

KVBFP exhibited significantly less trailing than PFP. Figure 

13 quantifies the dispersion of CPU and memory usage across 

nodes using variance metrics. KVBFP exhibits an 87.2% 

lower CPU usage variance and a 92.4% lower memory usage 

variance compared to PFP. This stems from KVBFP's 

implementation of key-value pairs throughout the entire 

process (from database scanning to mining), achieving true 

compatibility with Spark. Spark leverages its superior task 

scheduling capabilities to maximize load balancing across all 

nodes in the cluster. 

4.6. Algorithm Efficiency Comparison Test 

This test group compares the time consumed by FP-

Growth, PFP, and KVBFP when mining the dataset, with FP-

Growth testing conducted on a single computer. Under fixed 

software and hardware conditions, the mining time for all 

three algorithms depends solely on the support threshold and 

transaction count. Therefore, this test group comprises two 

experiments: the first fixes the support threshold while 

varying the transaction count; the second fixes the transaction 

count while varying the support threshold. 

 

Node runtime collection Java code: 

long start = System.currentTimeMillis(); 

... // process 

long end= System.currentTimeMillis(); 

long duration = end - start; 

4.6.1. Fixed Support Threshold 

The minimum support threshold is fixed at 0.01, with the 

transaction count ranging from 500,000 to 5,000,000, 

increasing by 500,000 transactions each time. For each 

algorithm, the total mining time is recorded. The test results 

are shown in Figure 14. 

 

 
Fig. 14 Efficiency of FP-growth, PFP, and KVBFP (fixed support) 

As shown in Figure 14, the KVBFP consistently 

demonstrates the lowest runtime, completing processing of 5 

million transactions in just 214 seconds-significantly 

outperforming PFP's 371 seconds and FP-Growth's 572 

seconds. Compared to FP-Growth, KVBFP achieves a 62.6% 

improvement, and compared to PFP, it achieves a 42.3% 

improvement. The KVBFP curve exhibits minimal fluctuation 

and a gentler growth slope, indicating higher mining 

efficiency and stability, making it particularly suitable for 

large-scale data mining scenarios. 

4.6.2. Fixed Transaction Count 

With the transaction count fixed at 5 million, the support 

threshold was varied from 0.1 to 0.8, and the total mining time 

was recorded for each setting. The test results are shown in 

Figure 15. 

 
Fig. 15 Efficiency of FP-growth, PFP, and KVBFP (fixed transactions) 

With a fixed transaction count of 5 million, the runtime of 

all three algorithms decreases as the minimum support 

threshold increases from 0.1 to 0.8. KVBFP demonstrated 

lower runtime and a more stable decline trend across all 

support levels. Overall, its mining efficiency improved by 

approximately 44.7% on average compared to PFP and by as 

much as 67.7% compared to FP-Growth. FP-Growth and PFP 

incurred significant overhead at low support levels, being 

heavily influenced by the number of frequent itemsets, 

resulting in lower efficiency than KVBFP. 

5. Conclusion 
In the era of big data, traditional association rule mining 

algorithms like FP-Growth can no longer meet practical 

demands when handling massive datasets. Therefore, 

parallelization modifications are required to make FP-Growth 

compatible with big data platforms. This study proposes a key-

value pair-based FP-Growth, KVBFP. This algorithm 

simulates the entire FP-Growth process using key-value pairs, 

enabling compatibility with the Spark platform. It achieves 
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significant improvements over existing parallelization 

schemes in mining efficiency, load balancing, and 

communication overhead. The proposed algorithm provides a 

theoretical reference for parallelizing other data mining 

algorithms. In practical applications, particularly in industries 

demanding high mining efficiency, this approach offers a 

novel solution. However, this study has limitations: 

experiments conducted on only six computers cannot 

comprehensively evaluate all algorithmic metrics, and the 

tested dataset is specialized for the experimental environment, 

lacking real-world data validation. Addressing these 

limitations represents key directions for future research. 
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