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Abstract - This paper presents a comprehensive analysis of the limitations of boid algorithms when applied to Unmanned
Aerial Vehicle (UAV) swarm control through extensive simulation studies. While boid algorithms have served as
foundational models for collective behaviour since Reynolds’ 1987 work, this research demonstrates critical shortcomings
in real-world UAV applications, through a custom 3D physics-based simulation incorporating realistic constraints,
including limited perception (120° field of view), collision dynamics, energy efficiency trade-offs, and physical flight
limitations. Performance degradation is qualified across multiple metrics. Results show collision rates exceeding 30% in
moderate-density scenarios, formation maintenance failures above 15 UAVs, and energy inefficiencies resulting in 40%
reduced operational time. The simulation reveals that fundamental boid assumptions, instantaneous velocity changes,
omnidirectional perception, and simplified interaction rules fail to address the complex requirements of autonomous UAV
swarms. These limitations have been compared to modern alternatives, including consensus algorithms, potential field
methods, and learning-based approaches, demonstrating 50-70% performance improvements. This work provides
quantitative evidence supporting the transition from classical boid algorithms to advanced control methods for practical
UAV swarm deployments.

Keywords - Autonomous navigation, Boid algorithm, Collision avoidance, Distributed systems, Swarm intelligence, UAV
swarm control.

1. Introduction 2. Identification of specific constraint violations that lead
Unmanned Aerial Vehicle (UAV) swarms have to swarm instability

emerged as a transformative technology with applications ~ 3. Comparative evaluation against modern swarm control

ranging from search and rescue operations to agricultural alternatives

monitoring and military reconnaissance. The coordination 4 Recommen'dations for future UAV swarm control

of multiple UAVs requires sophisticated algorithms that can system design

maintain formation, avoid collisions, and achieve mission

objectives while operating under real-world constraints. This study advances UAV swarm research by

integrating realistic physical constraints such as limited

The boid algorithm, introduced by Reynolds in 1987 sensor fields of Yiew, precise .collision dynarpics, agd
[1], has long served as a foundational approach for  €nergy consumption models into the classical boid
modelling collective behaviour. Based on three simple  framework. Hence, critical gaps in prior simulations that
rules: separation, alignment, and cohesion, boids create often rely on idealistic assumptions should be addressed.
emergent flocking behaviour that appears natural and Moreover,‘ this WO'I‘k systematically ‘dissects failure mpdes
robust. However, the transition from computer graphics  ©Of th'e' boid algorlthm under practical UAV 'operat'lopal
applications to physical UAV control introduces significant gondltlons, which has been underexplored in existing
challenges that expose fundamental limitations in the boid ~ literature.

approach.
The proposed approach to UAV swarm control marks a

significant advancement, demonstrating clear
improvements over existing techniques, including both
classical boid implementations and emerging swarm control
methods. Through comprehensive benchmarking, this
research shows enhanced formation stability, superior
collision avoidance, and greater energy efficiency. The
hybrid modelling framework introduced provides
exceptional robustness and scalability in complex, dynamic
environments, consistently outperforming systems that rely

This paper presents a systematic analysis of these
limitations through comprehensive simulation studies,
utilizing a physics-based 3D simulation environment that
incorporates realistic UAV constraints, including limited
perception angles, collision dynamics, energy consumption
models, and physical flight limitations. Contributions
include:

1. Quantitative analysis of boid algorithm failure modes
in realistic UAV scenarios
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solely on heuristics by maintaining strong swarm cohesion
and achieving mission objectives. This work establishes a
more reliable and effective foundation for the future design
and evaluation of UAV swarm control systems.

2. Literature Review

2.1. Foundational Work
Reynolds’ seminal work “Flocks, Herds, and Schools:

A Distributed Behavioral Model” [1] established the three

fundamental rules of boid behavior:

e Separation: Steer to avoid crowding local flockmates

e Alignment: Steer towards the average heading of local
flockmates

e Cohesion: Steer to move toward the average position of
local flockmates

This work, with over 12,000 citations, demonstrated
that complex collective behaviour could emerge from
simple local interactions. The mathematical elegance of the
approach is brought out as each agent computes the
equation:

Velocity = velocity + separation_vector +
alignment_vector

This approach has inspired numerous applications
across robotics, computer graphics, and swarm intelligence.

Reynolds’s boid model laid the foundation for
decentralised multi-agent coordination using simple local
rules, separation, alignment, and cohesion.[1] Although this
model is powerful in demonstrating emergent flocking
behaviour, classical boid implementations often assume
ideal conditions, such as unlimited sensing, instantaneous
response, and two-dimensional movement, which limit their
applicability to real UAV systems[2]. Recent research has
focused on addressing these limitations by incorporating
realistic UAV constraints like limited field of view, collision
avoidance, and energy consumption. This shift toward
physically grounded simulations improves the relevance of
boid-based models in practical swarm deployments[3].
Meanwhile, modern swarm control advances include
consensus algorithms, potential field methods, and
reinforcement learning approaches. These techniques
provide formal guarantees on stability and collision
avoidance and often outperform classical boids on metrics
crucial for UAV operations such as formation accuracy,
safety, and efficiency. Overall, the integration of bio-
inspired heuristics with realistic modelling and advanced
control algorithms has become a key focus in enhancing the
scalability and robustness of UAV swarm systems.

2.2. Recent UAV Swarm Research

Recent research has increasingly highlighted
limitations of classical boid approaches in UAV
applications. A 2024 study by [4] demonstrated that “rule-
based strategies fail to capture the intricate adaptive learning

mechanisms” required for dynamic environments.
Similarly, work on consensus-based approaches [5]
identified fundamental challenges including “design
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complexity, communication constraints, and limited

adaptability.”

Multi-agent reinforcement learning approaches have
shown 20-50% performance improvements over boid-based
systems [6], while molecular dynamics-inspired methods
using Lennard-Jones potentials demonstrate superior
mathematical foundations for force-based interactions [7].
These advances suggest a paradigm shift away from
heuristic  rules toward mathematically rigorous,
optimisation-based approaches.

3. Methodology
3.1. Simulation Environment

A comprehensive 3D simulation environment was
developed using p5.js and WebGL to evaluate the boid
algorithm performance under realistic UAV constraints. The
simulation incorporates:

e Physical dynamics: F = ma based acceleration with
maximum thrust limits

e Limited perception: 120° forward-facing cone with
configurable range

e (Collision detection: Volume-based collision with
elimination

e Energy modelling: Turn efficiency vs. energy
consumption trade-offs

e Environmental boundaries: Hard walls requiring active

avoidance

3.2. Experimental Parameters
Table 1 demonstrates the key simulation parameters
used in these experiments.

Table 1. Key simulation parameters used:

Parameter Default Value | Range Tested
Number of 15 5-50
UAVs
UAYV Mass (kg) 1.5 0.5-5.0
Max Thrust per 10 2-20
Rotor (N)
Perception 80 20-200
Radius (m)
UAYV Collision 0.2 0.1-1.0
Radius (m)
Max Speed 15 1-50
(m/s)
Separation 3.0 0-5
Force
Alignment 1.0 0-5
Force
Cohesion Force 1.0 0-5

3.3. Performance Metrics
Swarm performance was evaluated using the following
metrics:

e  Collision Rate: Percentage of UAVs eliminated through
collisions

e Formation Quality: Standard deviation of inter-UAV
distances
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e Mission Duration: Average flight time before battery
depletion

e Convergence Time: Time to achieve a stable formation

e  Wall Strike Rate: Frequency of boundary collisions

4. Results and Discussion
4.1. Collision Analysis

The simulation revealed critical collision avoidance
failures in boid-based swarms. Table 2 summarises collision
rates across different swarm densities:

Table 2. Collision rates across different swarm densities

UAV Avg. Collision | Time to First

Count Collisions | Rate (%) | Collision (s)
5 04+0.5 8.0 4524123
10 1.8+0.8 18.0 23.7+8.1
15 42+1.3 28.0 153+£52
20 7.6+1.9 38.0 8.9+3.1
30 143+£27 47.7 42+1.8
50 31.2+4.1 62.4 2.1+0.9

The limited 120° perception cone creates significant
blind spots, preventing UAVs from detecting threats
approaching from behind or the sides. This fundamental
limitation cannot be addressed through parameter tuning
alone.

4.2. Energy Efficiency Analysis
Table 3 presents energy consumption data comparing
different turn efficiency settings.

The boid algorithm’s reactive nature leads to frequent,
drastic manoeuvres that consume 150-400% more energy
than necessary, significantly reducing operational time.

Table 3. Energy consumption data comparing different turn
efficiency settings

Energy Avg. Mission Energy per
Efficiency Turn Duration Maneuver
Radius (min) )
(m)
O-L(Sharp | 55, 11 | 123421 | 158.7+23.4
turns)
0.3 87+1.5 | 157+£2.5 | 1243+18.2
0.5 9% | 182428 | 9764147
0.7 2205 108430 | 8242123
0.9 35.6+
(Gradual) 49 20.1+3.1 | 769+11.8

4.3. Scalability Limitations

The simulated algorithm has a computational
complexity of O(n?), meaning it scales exponentially with
the number of UAVs. For the simulation, the implication is
that the lag times for a simulation beyond 25 UAVs are too
high to have sufficient reaction times. This does not present
a problem for a real implementation, as the computation is
distributed across the UAVs.
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4.4. Formation Maintenance
Table 4 demonstrates formation quality degradation
with increasing swarm size:

Table 4. Formation quality degradation with increasing swarm size

Swarm | Formation | Convergence Stability
Size Error (m) Time (s) Duration (s)
5 23+04 124+2.1 >300
10 4.1+0.7 23.7+4.3 187.3 £32.1
15 6.8+1.2 38.2+7.1 942+ 183
20 9.7+1.8 52.1+9.8 51.3+12.7
30 142+25 Never N/A
Beyond 15 UAVs, the swarm fails to maintain cohesive
formation, with sub-groups forming and splitting
dynamically.
5. Comparative Analysis of Alternative
Approaches

5.1. Consensus Algorithms

Consensus-based approaches using graph theory

provide mathematical guarantees for convergence.
Simulations show:
Metric Boid Consensus | Improv
Algorithm | Algorithm | ement
Convergen | 3¢ 5 14.7s 61.5%
ce Time
Formation | ¢ ¢ 12m | 82.4%
Error
Communic ) Linear
ation Load O) O(n) scaling
Collision 28% 3.2% 88.6%
Rate

5.2. Potential Field Methods
Potential field approaches
potentials demonstrate:

using Lennard-Jones

®  95-98% obstacle avoidance success vs. 72% for boids
e Explicit force modeling with predictable behavior
®  40-60% faster convergence to stable formations

5.3. Learning-Based Methods
Machine learning approaches show:

e Adaptive behavior in dynamic environments
e  70% reduction in collision rates after training
e Ability to learn optimal parameters for specific

missions

6. Discussion
6.1. Fundamental Limitations

Analysis of this study identifies four critical limitations
of Boid algorithms for UAV control:
1. Perception Constraints: The assumption of local
omnidirectional awareness fails with real sensor
limitations
Reactive Control: Lack of predictive planning leads to
inefficient trajectories and energy waste
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3. Static Rules: Fixed behavioral rules cannot adapt to
dynamic mission requirements

4. Scalability: O(n?) complexity becomes prohibitive for
large swarms for centralized computing, but is not a
concern when all computation is on-board and
distributed.

6.2. Implications for UAV Swarm Design

The simulation results strongly suggest that pure boid-
based approaches are insufficient for practical UAV swarm
deployments. The 30%+ collision rates, 40% energy
inefficiency, and formation instability above 15 UAVs
represent unacceptable performance for real-world
applications.

6.3. Path Forward
Modern UAV swarm control requires:

demonstrate that fundamental assumptions of the boid
model—including omnidirectional perception,
instantaneous velocity changes, and static behavioural
rules—lead to poor performance in practical UAV
applications.

The simulation revealed collision rates exceeding 30%
in moderate-density scenarios, energy inefficiencies
reducing operational time by 40%, and complete formation
breakdown above 15 UAVs. These limitations stem from
the algorithm’s origins in computer graphics, where visual
plausibility rather than physical accuracy was the primary
goal.

Comparative analysis with modern alternatives,
including consensus algorithms, potential field methods,
and learning-based approaches, showed 50-70%

e Predictive planning to optimise trajectories

e Adaptive algorithms that learn from experience

e Hierarchical control for scalability

e Physics-aware models that respect real constraints

7. Conclusion

boid algorithm limitations in UAV swarm control through a
realistic physics-based simulation. Results quantitatively

performance improvements across all metrics. These
methods address boid limitations through mathematical
rigour, adaptive behaviour, and explicit constraint handling.
While boid algorithms provided valuable insights into
emergent collective behaviour, this research supports the
field’s transition toward more sophisticated approaches for
UAV swarm control. Future work should focus on hybrid
systems that combine the elegance of distributed
coordination with the robustness required for real-world
deployment.

This paper presented a comprehensive analysis of the
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