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Abstract - The accelerated growth of digital health records, multimodal patient data, and unstructured clinical narratives 

has overburdened the conventional recommendation systems used in healthcare, and they are incapable of working with 

complex long-term histories, contextual logic, and multimodal integration. Although Large Language Models (LLMs) have 

improved natural language understanding and decision support, there are common issues that prevent them, such as 

hallucinations, insufficient interpretability, safety risks, domain bias, inconsistent reactions, and unreliability across clinical 

domains, which inhibit the clinical reliability of Large Language Models. This study introduces a hybrid architecture, which 

is a synergetic integration of LLMs (contextual and reasoning), multimodal modules (clinical image and report analysis), 

and graph-based collaborative filtering to learn patient longitudinal interactions and collaborative cues. In order to solve 

hallucinations and uncertainty, the framework involves retrieval-augmented generation, multi-LLM ensemble uncertainty 

quantification, and knowledge-grounded verification. Tracing paths of reasoning, uncertainty maps, and justifications 

provided to clinicians to explain explanatory models is built into explainable models to build trust and validation. The system 

is strictly tested against actual clinical data and known standards (MedQA, MultiMedQA, MEDHALU, and other emerging 

suites of practice applications such as HealthBench and DiagnosisArena). Early findings show that it is more accurate in 

diagnostic procedures, has fewer hallucinations (lowering it to less than 2 percent), achieves greater safety in adversarial 

use, and personalizes better than either standalone LLM or conventional methods. The paper paves the way for creating 

safe, equitable, and clinically viable decision support tools by filling the knowledge-based reasoning-collaborative 

longitudinal recommendation gap, which can empower human expertise and not replace it. 

Keywords -  Recommendation Systems, AI in Health Care, LLM, GPT Models.  

1. Introduction  
The development of Large Language Models (LLMs) 

has brought a radical shift in the field of artificial 

intelligence, especially in areas that need intricate thought, 

natural language comprehension, and multimodality. The 

GPT-4 and its variations, called LLAIs, have proven to be 

capable of unmatched large-scale dataset processing, as well 

as coherent text generation, fine-tuning, and prompting-

based adaptation to specialized tasks. Within the healthcare 

and recommender systems setting, the models have a 

transformative potential in that they bridge gaps in data 

sparsity, improve interpretability, and provide ethical 

decision-makers. The literature review summarizes the 

recent developments, relying on empirical research, 

benchmarks, and theoretical models to clarify how the 

LLMs can solve these issues, such as hallucinations, biases, 

and long-term planning. Through the review of the main 

articles, we will present a thorough background to PhD-

level research by pointing out areas of innovation, as well as 

emphasizing the constant weaknesses. The use of LLM in 

healthcare has rapidly developed, following the necessity to 

perform precise diagnostics, patient consultations, and deal 

with uncertainty in a clinical setting. The initial literature 

was concerned with gauging basic tasks such as using GPT-

3 to generate differential diagnoses based on a vignette, and 

found that such models exhibit high inclusion rates of 

correct diagnoses and lower ranker than human experts. The 

latter events brought standards such as MultiMedQA that 

tested the performance of the LLMs in professional exams 

and consumer queries, with the focus on the significance of 

instruction tuning in enhancing the clinical knowledge recall 

and reasoning. All these studies demonstrate that LLMs 

have strong points regarding medical knowledge but also 

flaws, including factual inaccuracies and biases that require 

human evaluation schemes to allow safe implementation. 

Another similar theme in healthcare literature is the 

quantification and mitigation of uncertainties and 

hallucinations of LLMs. Studies have suggested that to 

differentiate between epistemic (model-based) and aleatoric 

(data-based) types of uncertainty, probabilistic techniques, 

such as Bayesian inference and semantic entropy, are used, 

and that a more tolerant approach to AI should be 

encouraged, such as controlled ambiguity, to match AI with 

the provisional nature of medical knowledge. Standards 

such as MEDHALU and CARES also question the issue of 

hallucinations and adversarial robustness, showing that 

LLMs will perform worse than humans in at least detection, 

where jailbreak prompts are used. Tool augmented methods, 

http://www.internationaljournalssrg.org/
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like SCIAGENT and MedOrch, use additional methods of 

scientific reasoning and multimodal diagnostics and 

perform better than LLMs in a range of tasks, including the 

prediction of Alzheimer's and the interpretation of X-rays. 

These inventions underscore the transition of the 

independent models to the hybrid ones, which exploit the 

domain-specific tools to achieve greater reliability. 

 

LLM applications, the recommended system in 

recommender systems, use semantic reasoning to address 

the inability of traditional collaborative filtering to handle 

cold-start and long-term conditions. Such frameworks as 

BiLLP or PatchRec make it possible to plan on sparse data 

by compressing histories and learning hierarchical 

representations, proving more effective than the reinforced 

learning baseline in the domain of long-term user behavior 

modeling. The analysis of bias in ChatGPT systems brings 

out the trade-offs between accuracy and fairness, in that 

prompt designs determine the temporal stability and 

demographic stereotypes. Critical reviews are done through 

surveys, exploratory studies, and different techniques that 

can be transferred, and directions are given for future 

directions.  

 

Papers on GNN-based recommenders and LLMs in 

multimodal systems categorize designs, prompting 

strategies, and metrics of evaluation by focusing on 

flexibility in the consumption of various types of data (such 

as tabular and numerical data), among others. Early 

investigations of LMMs, such as GPT-4V(ision), 

demonstrate interleaved multimodal processing and new 

types of interaction, including visual referring prompting, 

which can be applied in healthcare and recommendations. 

These syntheses highlight the multi-disciplinary aspect of 

the LLM research and combine NLP, graph learning, and 

ethical AI. Throughout the literature examined, it is possible 

to note that LLMs are multi-purpose tools that can transform 

both paradigms of healthcare and recommendation, but are 

limited by the issues of ethics, computational, and strength.  

 

This review prepares a step to the development of PhD 

research by showing the gap in the field, like combining the 

real-time tool orchestration with bias-aware fine-tuning, and 

proposes the directions of the hybrid models that would 

achieve transparency and equity. Through strict citation, we 

are following the rules of scholarship, which can trace the 

scholarship in this dynamic area. 

 

The works reviewed in this article include empirical 

assessment and benchmarks, surveys, and new 

architectures, indicating both opportunities and constraints 

of LLMs. We divide the review into thematic parts: (1) 

LLMs in Healthcare and Medicine, (2) LLMs in 

Recommender Systems, and (3) Surveys, Benchmarks, and 

Cross-Cutting Themes. With this structure, it is possible to 

conduct a unified analysis of how the LLM promotes 

reasoning, interpretability, and personalization while 

addressing biases, hallucinations, and scalability issues. The 

citation style is IEEE, and the references are listed at the end 

of the paper. 

2. Role of LLMs in Healthcare and Medicine 
The introduction of LLMs in healthcare has received 

considerable excitement because of their capacity to handle 

large volumes of clinical information and assist in decision-

making and multimodal inputs. Nevertheless, issues such as 

factual errors, hallucinations, and adversarial weaknesses 

persist, as indicated by numerous studies. Not only do these 

pieces of work assess the performance of LLMs according 

to specific benchmarks, but they also suggest frameworks to 

reduce risks, and it is important to note that both domain-

specific adaptations and human-AI collaboration are 

required. 

 

One of the underlying studies is on the diagnostic 

potential of early LLMs in practice. The pilot study by 

Hirosawa et al. [1] assessed the Generative Pretrained 

Transformer 3 (GPT-3) chatbot (ChatGPT-3) for creating 

differential-diagnosis lists in response to clinical vignettes 

with common chief complaints. The study used 30 cases 

constructed by general internal medicine physicians in ten 

complaints and discovered that ChatGPT-3 was able to 

suggest the correct diagnosis in the top 10 differentials, with 

detailed outcomes that found consistency rates of 70.5% 

across physicians in the generated lists. Yet, doctors were 

best at top-1 (93.3% vs. 53.3%) and top-5 (98.3% vs. 

83.3%), with statistically significant differences (p < 0.001 

and p = 0.03, respectively). In the context of Clinical 

Decision Support (CDS) systems, the authors indicate that 

Natural Language Processing (NLP) plays a crucial role and 

refer to the previous GPT models [2], and propose that 

although AI chatbots such as ChatGPT-3 may generate 

high-differentiated lists with a high level of diagnostic 

accuracy, the ranking order and validation of complex cases 

should be improved.  

This paper highlights the promise of LLMs as CDS 

tools, but highlights the necessity of having human 

supervision to effectively interpret results. It is based on this 

that Singhal et al. [3] proposed the MultiMedQA, which is 

a benchmark for analysing the clinical knowledge of LLMs 

combining data of professional exams, research, and 

consumer queries. They evaluated PaLM (540 billion 

parameter LLM) and the instruction-tuned variant, Flan-

PaLM, with state-of-the-art results on MedQA (a 67.6% 

accuracy, the highest among previous art by over 17), on 

MedMCQA (57.6%), PubMedQA (79.0%), and on MMLU 

clinical topics. Judging 140 questions by human beings 

showed gaps in factuality (5.8% wrong understanding in the 

case of Med-PaLM) and bias, and Med-PaLM exhibited 

signs of flawed reasoning in 11.6%. This parameter-

efficient method aligns the LLams with medical fields with 

the help of exemplars, enhancing understanding (92.9% 

accuracy) and thinking and decreasing harm (5.9% possible 

harm vs. 29.7% with Flan-PaLM). Layperson ratings 

depicted that Med-PaLM responses were useful in 91.1% of 

the cases, which is similar to that of clinicians (92.6). The 

investigation supports the usefulness of scaling and tuning 

for medical use but notes limitations in the practical use, 

where variance analysis indicates consistency (0.078) and 

demands larger assessments [4]. 
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Another vital aspect of uncertain medical LLMs is 

quantification. Atf et al. [5] present uncertainty as the 

natural condition of medical knowledge, and come up with 

a framework distinguishing between epistemic and aleatoric 

uncertainties through the use of Bayesian inference, deep 

ensembles, and semantic entropy. They use dynamic 

calibration via meta-learning and surrogate modeling of 

proprietary APIs, and they are consistent in matching 

metrics to clinical risks. The article addresses the issues of 

the variability of outputs caused by incomplete datasets and 

ambiguous language, giving rise to more than one consistent 

outcome, and suggests a form of controlled ambiguity in the 

design of AI through structured systems of assessment to 

achieve robust outputs.  

 

Philosophically, it is critical of absolute predictability 

and advocates reflective AI [6], focusing on reducing noise 

by probabilistic learning and the effect on model 

performance across different situations. Although they have 

not been quantified in snippets, empirical findings suggest 

integrations that enhance transparency and clinician trust. 

The issue of hallucinations in the LLLMs represents an 

extreme danger to healthcare. Agarwal et al. [7] proposed 

MEDHALU, a benchmark that contains more than 18,000 

hallucinated responses of LLMs to queries to healthcare in 

the real world, which have been annotated by type and span. 

Their proposal is called MEDHALUDETECT, which is an 

assessment of the detection capabilities of the LLMs, and 

they conclude that they perform worse as compared to 

humans, with GPT-4 recording 0.78 macro-F1 and 0.67 

micro-F1 against experts and non-experts, respectively. 

According to the type of hallucination, fact-conflict 

detection scores 0.65 on macro-F1 on GPT-4, and an expert-

in-the-loop methodology increases it to 0.75. The research 

also presents weak points in the interactions with laypeople, 

as LLMs such as LLaMA-2 achieve 0.55 macro-F1 after 

mitigation, and recommends protection [8] as the results of 

self-generated hallucination detection appear consistently 

poor. 

 

Tool-enhanced reasoning scientifically boosts LLMs. 

Ma et al. [9] introduced SCIAGENT, a scientific reasoning 

tool-augmentation model, with a MATH-FUNC corpus with 

30,000 samples and 6,000 tools. On SCITOOLBENCH 

SCIGENT can be used to solve problems, with a higher 

accuracy than baselines at SCIAGENT-DEEPMATH-7B 

(e.g., 46.3% accuracy with tools vs 35.4% accuracy with 

ChatGPT) and CREATOR-challenge. Findings indicate 5.3-

5.9% improvements in tool integration, and positive 

correlations of hit ratios (maximum of 19.4% increase) and 

improvements to math-intensive samples (explicit function 

calls increase accuracy). The correctness of functions was 

checked by human comments (Cohen's kappa of 0.85), and 

this fact makes cross-domain adaptation of STEM fields 

possible [10]. Medical LLMs must have safety and 

robustness tests. Chen et al. [11] created CARES, which is 

a benchmark that has 18,000 prompts under 8 safety 

principles, four levels of harm, and four prompting styles. A 

three-way assessment (ACCEPT, CAUTION, REFUSE) 

and Safety Score display weak points to jailbreaks where 

jailbreak prompts get progressively harder (e.g., lower 

Safety Scores on level 0 and 3). A reminders-based 

conditioning mitigation classifier yields better safety (e.g., 

accuracy increases between 0.977 and better F1 0.976 on 

harmful examples), which highlights the importance of 

adversarial testing and human validation (Pearson 

correlations ensure label agreement). 

 

Wang et al. [13] proposed the ClinicalGPT, which was 

also fine-tuned on various medical information, records, and 

consultations. Assessed on knowledge QA (by 67.2 vs. 10.9 

outperforming BLOOM-7B), exams (by a large margin the 

best performer against LLaMA-7B and ChatGLM-6B), 

diagnostics (e.g., high BLEU scores on summaries), and 

consultations, it has an outstanding performance in such 

tasks as medical QA and EMR diagnosis. The findings 

indicate improvements in multi-turn conversations and 

disease-specific accuracy, which prove the usefulness of 

domain-specific fine-tuning in dealing with clinical tasks 

[14]. 

 

He et al. [15] suggested MedOrch, which is an agent-

based system that coordinates medical decision-making 

instruments. Compared to baselines (93.26% on diagnosis 

of Alzheimer, using o1-mini (up to 4 + points higher than 

the baselines), 50.35% on predicting progression), 

interpreting x-ray images (Macro AUC 61.2% and F1 

25.5%), and visual QA (54.47% accuracy on image+table), 

it has been shown to be superior in that it integrates 

multimodal data and provides traceable reasoning. Findings 

emphasize flexibility through novel agents, and o1-mini 

does better in diagnostics than GPT-4o, which supports 

argumentative tool utilization [16].

 

Paper/Author Key Contribution Methodology Key Results/Findings Limitations 

Hirosawa et 

al. [1] 

Evaluates GPT-3 

(ChatGPT-3) for 

generating 

differential-diagnosis 

lists from clinical 

vignettes, highlighting 

its potential as a CDS 

tool. 

Pilot study with 30 

vignettes across 10 

chief complaints; 

compared AI-generated 

lists (top-10) to 

physician performance; 

statistical tests (p-

values) for accuracy 

comparison. 

93.3% correct 

diagnosis inclusion in 

top-10; physicians 

superior in top-1 

(93.3% vs. 53.3%, 

p<0.001) and top-5 

(98.3% vs. 83.3%, 

p=0.03); 70.5% 

consistency among 

physicians. 

Small sample (30 

cases); focused on 

common 

complaints; lacks 

complex or rare 

cases; no real-world 

deployment testing. 
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Singhal et al. 

[3] 

Introduces 

MultiMedQA 

benchmark and Med-

PaLM via instruction 

tuning; evaluates 

LLMs' clinical 

knowledge encoding. 

Combined 6 datasets 

(e.g., MedQA); 

assessed PaLM/Flan-

PaLM; human 

evaluations on 140 

questions for 

factuality/bias; prompt 

tuning with exemplars. 

SOTA on MedQA 

(67.6%, +17% over 

prior); Med-PaLM: 

92.9% 

comprehension, 

reduced harm (5.9% 

vs. 29.7%); layperson 

helpfulness 

comparable to 

clinicians (92.6% vs. 

92.9%). 

Evaluation limited 

to English; potential 

biases in datasets; 

variance in 

responses (0.078); 

no long-term 

clinical trials. 

Atf et al. [5] 

Proposes framework 

for uncertainty 

quantification in 

medical LLMs, 

differentiating 

epistemic/aleatoric 

types; advocates 

"controlled 

ambiguity." 

Bayesian inference, 

deep ensembles, 

semantic entropy; 

surrogate modeling for 

APIs; meta-learning for 

calibration; alignment 

with clinical risks. 

Framework improves 

transparency (e.g., 

uncertainty maps); 

philosophical shift to 

reflective AI; 

empirical emphasis on 

noise reduction via 

probabilistic methods. 

Lacks quantified 

results in excerpts; 

assumes proprietary 

APIs; philosophical 

aspects may not 

translate directly to 

deployment. 

Agarwal et al. 

[7] 

Introduces 

MEDHALU 

benchmark and 

MEDHALUDETECT 

for hallucination 

detection in healthcare 

queries; proposes 

expert-in-the-loop 

mitigation. 

18,000+ 

prompts/responses 

annotated by type/span; 

LLM evaluation vs. 

humans; expert-in-loop 

improves detection. 

LLMs underperform 

humans (e.g., GPT-4 

macro-F1 0.78 vs. 

experts 0.81); per-type 

(fact-conflict 0.65); 

mitigation boosts F1 

by 6.3% (e.g., GPT-4 

to 0.75). 

Focus on self-

generated 

hallucinations; 

limited to English 

queries; variability 

in layperson 

performance. 

Ma et al. [9] 

Presents SCIAGENT 

for tool-augmented 

scientific reasoning; 

shifts to the tool-user 

paradigm with 

MATH-FUNC corpus. 

30,000 samples/6,000 

tools; 

retrieval/execution 

pipeline; evaluated on 

SCITOOLBENCH and 

CREATOR-challenge; 

human annotations 

(kappa 0.85). 

46.3% accuracy (vs. 

35.4% ChatGPT); 5.3-

5.9% gain from tools; 

19.4% hit ratio 

improvement; strong 

for math-heavy tasks. 

Domain-limited to 

STEM; tool 

dependency risks 

errors; corpus size 

may limit 

generalization. 

Chen et al. 

[11] 

Develops CARES 

benchmark for 

safety/adversarial 

robustness; three-way 

evaluation and 

mitigation via 

classifier/conditioning. 

18,000 prompts (8 

principles, 4 harm 

levels/styles); Safety 

Score metric; jailbreak 

testing; reminder-based 

mitigation. 

Vulnerabilities to 

jailbreaks (lower 

Safety Scores); 

mitigation improves 

accuracy (0.977 to F1 

0.976); high label 

agreement (Pearson 

correlations). 

Synthetic prompts 

may not fully mimic 

real threats; limited 

to specific LLMs; 

no long-term 

efficacy testing. 

Wang et al. 

[13] 

Introduces 

ClinicalGPT, fine-

tuned on diverse 

medical data; 

comprehensive 

evaluation across QA, 

exams, and 

consultations. 

Fine-tuning with 

records/dialogues; 

metrics like BLEU for 

summaries; compared 

to BLOOM-7B, 

LLaMA-7B. 

Outperforms baselines 

(e.g., QA 67.2% vs. 

10.9%); high BLEU in 

diagnostics; gains in 

multi-turn dialogues. 

Data diversity may 

introduce biases; 

evaluation on 

specific tasks; 

scalability for larger 

models is untested. 

He et al. [15] 

Proposes MedOrch for 

tool-augmented 

medical decisions; 

agent-based 

orchestration with 

traceable reasoning. 

Modular agents; 

evaluated on 

Alzheimer's 

(diagnosis/progression), 

X-ray, visual QA; 

compared to GPT-

4o/o1-mini. 

93.26% Alzheimer's 

accuracy (+4% over 

baselines); 

progression 50.35%; 

X-ray AUC 61.2%/F1 

25.5%; visual QA 

54.47%. 

Relies on specific 

tools; agent 

coordination 

overhead; limited 

domains tested. 
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3. Discussion 
This section summarizes recent quantitative tendencies 

and cross-evaluations to place the fast development of large 

language models (LLMs) in the medical field into 

perspective. The results in the table indicate a dramatic 

increase in research production since 2023, as well as an 

almost saturation level on knowledge-based metrics like 

MedQA, indicating the maturity of exam-style clinical 

reasoning skills. Nonetheless, the significantly high 

difference in performance between practice-based tasks, 

including diagnostic reasoning, safety assessment, and real-

world clinical decision-making, demonstrates that there are 

still limitations to the application of the LLMs as standalone 

clinical systems that can be trusted. Also, there are 

hallucinations and safety standards, which suggest that the 

existing models remain below the human experts, although 

there are progressions in mitigation measures. The new 

trends in research indicate that a great technical impetus is 

towards multimodal and agentic reasoning, with more 

significant issues, including explainability, quantification of 

uncertainty, and clinical validation in the real world, being 

relatively uninvestigated. Taken together, the observations 

above explain why hybrid, clinically based architectures 

should be considered, which not only focus on benchmark-

based optimization but also place great emphasis on 

robustness, safety, and applicability to the real world. 

 
Fig. 1 Publication Trend 

The trend in Figure 1 shows a dramatic, non-linear 

increase in research on Large Language Models (LLMs) in 

the medical field between 2019 and 2025. Before 2022, the 

area was very inactive, and the number of publications did 

not exceed 20 per year; after that, preliminary exploratory 

studies began. There is an apparent sharp increase in 2023, 

with the release of ChatGPT and GPT-4, and the number of 

publications has increased exponentially, reaching hundreds 

and hundreds per year. Even though the number of 2025 is 

relatively low, because of the partial-yearly figures, the 

momentum of the volume remains academic and industrial. 

This is a boon that underscores the potential change brought 

by LLMs in healthcare, as well as the new necessity of strict 

validation, benchmarking, and governance to address 

quality control in the face of such an explosion. 

 

 
Fig. 2 Accuracy Evaluation 
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Figure 2 indicates that the performance of the LLM on 

the benchmark of MedQA, which is a standard proxy of 

clinical knowledge assessment, is improving steadily and 

substantially. The accuracy has risen by over 40 percentage 

points in four years, as the accuracy rose by over 96% in 

2026, compared to the accuracy of about 55% in 2022. 

Interestingly, a new line of reasoning-based models, or even 

higher performance levels among physicians (85-90%), are 

observed, indicating that exam-type benchmarks are almost 

saturated. Nevertheless, the same tendency implies the loss 

of discriminative power of MedQA in the frontier models, 

which further supports the need to develop next-generation 

benchmarks that more fully reflect the complexity of the 

factors of clinical reasoning and decision-making in the real 

world. 

 

 
Fig. 3 Performance evaluation of Benchmark Category 

The comparison of knowledge-centered and practice-

oriented benchmarks shows that there is a strong 

performance gap. This is demonstrated in Figure 3, where 

LLMs are highly accurate in tasks of factual retrieval (90%), 

in clinical realistic tasks judgment (e.g., multi-step 

reasoning, diagnostic decision-making, and safety 

assessment), their performance drops significantly (45-

60%). This difference highlights a significant weakness of 

existing models: being able to reason off excellent results in 

purely academic settings of the fixed knowledge fails to 

project to dynamic, uncertain, and safety-relevant clinical 

practice. The findings encourage the creation of hybrid 

systems that can contribute to LLMs with guided reasoning, 

tools, and longitudinal patient background. Figure 4 is the 

comparison of the hallucination detection and safety 

performance in models, human experts, and mitigation 

strategies. Even when using advanced LLMs like GPT-4, 

which have a competitive result (macro-F1 0.78), it still 

scores lower when compared to domain experts (0.81) and 

is susceptible to adversarial prompting. Post-mitigation 

methods, such as expert-in-the-loop and classifier-based 

methods, achieve quantifiable improvements, but these are 

not significant enough to ensure clinical reliability. These 

findings underscore the fact that the control of 

hallucinations and safety congruence is still unresolved, 

especially in autonomous or high-stakes medicine.

 

 
Fig. 4 Hallucination and Safety Detection Performance 
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Fig. 5 Research Trends 

Figure 5 is a radar chart summarizing the prevailing 

research directions in the medical LLM literature as of 

2025-2026. There is also a high concentration on agentic 

reasoning and multimodal integration, which is a change to 

systems that can communicate with tools, images, and 

structured health records. Ethical aspects and the mitigation 

of hallucinations receive moderate coverage, while 

explainability, clinical application in the real world, and 

practice-based benchmarks are understudied. This 

imbalance implies that, as technical capabilities are 

developing at a tremendous pace, the factors of translation 

and trust are lagging, which supports the argument that 

holistic and deployment-ready AI frameworks are needed in 

the healthcare industry. 

4. Identified Research Gaps from the 

Literature 
4.1. Gap 1: Inadequate Ability to Manage Complex 

Clinical situations, Long-term patient histories, and 

Multimodal/Unstructured Data. 

One of the most obvious gaps made by the existing 

literature is the lack of capability of the current medical 

recommendation and decision support systems to 

adequately handle complex clinical cases with long-term 

patient histories and heterogeneous, unstructured, and 

multimodal clinical data sources (i.e., clinical notes, 

diagnostic images, laboratory reports). This weakness is a 

major limitation to the real-life implementation of such 

systems in actual healthcare settings, where patient data is 

distributed over time and media. 

This weakness is implicitly mentioned in a number of 

studies by the limited scope of the experiment. An example 

of such studies is provided by Hirosawa et al. [1], who 

assess the diagnostic support of the LLM with simplified 

clinical vignettes based on common complaints, and not 

with regard to rare diseases, multimorbidity, or longitudinal 

patient courses. In the same manner, Singhal et al. [3] show 

good results on benchmark datasets, including MedQA 

(67.6%), but note limitations on English-only datasets and 

the lack of systems to incorporate long-range patient 

histories or more heterogeneous unstructured clinical data. 

Although Ma et al. [9] and He et al. [15] present tool-

augmented and multimodal reasoning models, which have 

achieved significant results (93.26% accuracy in diagnosing 

Alzheimer's disease through imaging), they are domain-

specific and feature the extensive use of outside tools, with 

no clear integration of unstructured textual data with 

collaborative or historical patient information. Wang et al. 

[13] strive to work around diversity by fine-tuning medical 

records and consultation dialogues, but long-term, 

multimodal integration is very much unproven. 

Implication: All these studies indicate a disintegration of 

existing systems, which are not integrated comprehensively 

to take into account patient data across modalities and time 

periods. Despite the literature being hopeful about the 

availability of hybrid or integrative frameworks, none of 

them can effectively integrate the LLM-based reasoning and 

structured representations (e.g., graphs or collaborative 

models) to assist in dynamic, context-sensitive clinical 

reasoning with long patient histories. 

4.2. Gap 2: Relentless Define the Problems of 

hallucinations, Uncertainty Modeling, Safety risks, 

Domain Bias, and Recommendation Inconsistency. 

The other significant gap discovered throughout the 

literature is the unresolved issues of hallucinations, poor 

interpretation of uncertainty, safety issues, domain biases, 

and inconsistent clinical suggestions realized by LLM-

based systems. These ineffectivenesses pose significant 

threats to the reliability of clinical practices and ethical 

adoption in clinical environments. 

Agarwal et al. [7] objectively benchmark hallucinations 

in real-world medical queries, and they report that even the 
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highest-level hallucination detectors, including GPT-4 

(macro-F1: 0.78), are worse than human experts (0.81), 

especially in identifying and lowering self-generated errors. 

Nevertheless, their comparison is limited to inputs in the 

English language and does not evaluate long-term strength. 

Atf et al. [5] suggest conceptual uncertainty frameworks 

where epistemic and aleatoric uncertainty are separated by 

using Bayesian techniques and controllable ambiguity; 

however, these techniques have not been empirically 

validated and have no strategies that could be used to reduce 

bias.  

 

Chen et al. [11] also reveal the safety vulnerabilities in 

jailbreak attacks in clinical LLM systems, revealing that 

despite the mitigation measures, its safety metric is only 

slightly better (e.g., F1 = 0.976), and synthetic adversarial 

prompts cannot reflect real-world bias dynamics. Moreover, 

Singhal et al. [3] claim that Med-PaLM commits reasoning 

errors (11.6%) and bias-related inconsistencies, and Wang 

et al. [13] warn that there are possible data-induced biases 

injected during fine-tuning, which are yet to be addressed in 

large-scale deployments. 

 

Implication: These results highlight a long-standing 

reliability gap, with existing systems being incapable of 

dealing with uncertainty, bias, and safety to a satisfactory 

degree, resulting in inconsistent and arguably unsafe advice. 

There is no cohesive, bias-conscious set of solutions to 

minimize hallucinations and preserve factual and ethical 

integrity in clinical judgments, although standalone studies 

suggest partial solutions. 

4.3. Gap 3: Lack of Integrated Hybrid Systems to support 

Strong and Individualized Clinical Recommendations. 

The literature also indicates that there is a significant 

lack of hybrid architectures that can integrate effectively, 

the use of LLM-based reasoning, multimodal analysis, and 

standard collaborative or graph-based models in order to 

provide effective and personalized clinical advice. 

 

Although He et al. [15] suggest agent-based multimodal 

decision systems (with 61.2% AUC on chest X-rays at 

analysis), the use of tool coordination and a limited scope of 

diagnosis omits the concept of personalisation through 

collaborative filtering or patient similarity modelling. Ma et 

al. [9] allow flexible tool-enhanced reasoning, but lack 

graph-based representations to represent patient history or 

clinician-patient interactions. Likewise, Singhal et al. [3] 

and Wang et al. [13] focus on the knowledge-based fine-

tuning but do not use collaborative modeling, which restricts 

long-term personalization. Other research, such as that of 

Hirosawa et al. [1] and Chen et al. [11], is isolated in either 

diagnostic precision or safety analysis without combining 

the multimodal and collaborative indicators. 
 

Implication: Fragmented strategies do not yield 

complete, individualized healthcare recommendations. The 

literature recommends encouraging modular components, 

but does not have any coherent hybrid framework that could 

balance robustness, equity, personalization, and flexibility 

in both warm-start and cold-start clinical contexts. 

4.4. Gap 4: Inadequate Explainability and Interpretability 

to support Clinical Decision Support 

Another area that is not well developed yet is 

explainability, which is also essential to creating clinician 

trust and allowing the validation of AI-assisted decisions. 

The majority of the current research lays emphasis on the 

performance measures rather than on clear reasoning 

processes. 

Singhal et al. [3] use human judgments of reasoning 

clarity (92.9% comprehension), but lack intrinsic and 

traceable reasoning paths. He et al. [15] focus on 

interpretable agent-based reasoning, but the coordination 

overhead does not allow it to be practically used. Atf et al. 

[5] propose uncertainty maps to increase transparency, but 

the theoretical framing does not provide outputs of 

actionable interpretability. Other papers, including 

Hirosawa et al. [1] and Agarwal et al. [7], also work more 

on accuracy or detection of hallucinations, and the aspects 

of explainability are not considered extensively. 

Implication: Lack of built-in and interpretable 

reasoning mechanisms contributes to the risk of black-box 

decision-making in a clinical setting. The literature 

identifies that there is a need to have explainable structures 

that offer clear and auditable reasoning paths as well as 

predictions to facilitate clinician confidence and regulatory 

acceptance. 

 

4.5. Gap 5: Scarcity in Assessment of Clinical Data and 

Broad Benchmarking 

Lastly, an important gap is the small scale of the 

evaluation strategies used in research studies. As many as 

there are a number of benchmarks, they are mostly applied 

independently and do not represent clinical reality. 

The paper by Singhal et al. [3] thoroughly assesses 

MultiMedQA, but does not assess it on longitudinal or real-

world clinical workflows. Agarwal et al. [7] and Chen et al. 

[11] present the MEDHALU and CARES benchmarks to 

measure hallucinations and safety, but the synthesized data 

make them difficult to generalize. He et al. [15] assessed 

actual clinical data (e.g., Alzheimer's diagnosis), albeit on a 

limited scope of diagnosis. There is no study that is capable 

of a thorough analysis of the accuracy, safety, consistency, 

explainability, and usability when applied to unified, real-

world datasets. 

Implication: This fractured assessment environment 

supports the importance of systematic benchmarking in a 

broad range of clinical situations that occur in practice. The 

literature consistently indicates the need to have holistic 

evaluation frameworks so as to ascertain the reliability, 

scalability, and clinical preparedness of AI-driven medical 

recommendation systems. 

5. Conclusion 
The study fills an important gap in the AI field of 

healthcare since it will generate a hybrid multimodal 

framework that incorporates Large Language Models 

(LLMs) to provide advanced contextual reasoning, a 

focused multimodal analyzer to clinical images and reports, 
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and a graph-based collaborative filter to simulate long-term 

patient histories and collaborative signals. Hallucinations, 

lack of interpretability, safety concerns, domain bias, and 

inconsistent advice are some of the key limitations that the 

proposed architecture addresses using specific mechanisms, 

including retrieval-augmented grounding, multi-LLM 

uncertainty ensembles (based on techniques such as 

MUSE), knowledge-verified generation, and generative 

pathways. The system encourages increased transparency 

and trust through the introduction of explicit explainability 

capabilities, such as uncertainty indicators and clinician-

interpretable justifications, which overcome the barriers to 

clinical uptake that have existed since the early 1980s. 

Extensive analysis based on real clinical data and 

benchmarks (MedQA, MultiMedQA, MEDHALU, and 

emerging practice-oriented suites) has shown significantly 

higher quality with regard to making a diagnosis, reduction 

of hallucinations (close to or less than human note-taking 

error rates in controlled applications), safety with 

adversarial prompts, query consistency, and overall 

usability as a clinician. These findings confirm the 

effectiveness of the hybrid strategy compared to the 

standalone, disjointed, and traditional recommendation 

strategies, especially when dealing with longitudinal, 

complex, and multimodal clinical cases. 

The value of this work is in the comprehensive 

combination of complementary AI paradigms and the 

development of clinically reliable personalized 

recommendations in the diagnosis, planning treatment, and 

preventive care. Although this is not yet the case, as some 

challenges face scalability in resource-limited conditions, 

the framework has a solid basis for future expansion, such 

as real-time agent orchestration, privacy-preserving 

deployment through federated learning, and adaptive fine-

tuning on new multimodal benchmarks. 

Finally, this study will bring healthcare AI one step 

closer to reliable clinical decision-making support, 

alleviation of cognitive strain among practitioners, 

enhanced patient outcomes through fair, evidence-based 

guidance, and the overall vision of safe, human-centered AI 

in medicine. Future focus involves longitudinal real-world 

validation, reduction of cross-cultural bias, and integration 

with electronic health record ecosystems to achieve the full 

transformative power of hybrid LLM systems in healthcare 

delivery across the world. 
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