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Abstract - Cyber-Physical Systems (CPS) are the foundation of current smart infrastructure, but the growing interoperability
of heterogeneous CPS elements makes them highly susceptible to cascading cyber-physical attacks. To overcome this issue,
the paper presents a resilience-first security framework that combines data quality improvement, interoperability-conscious
dependency modeling, and system-level risk and resilience analysis. The suggested method is tested using the SWaT
industrial water treatment dataset, a collection of multivariate time-series data sampled at 1 Hz. CPS subsystems are
decomposed and represented in the form of dependency graphs, and anomaly detection is performed through multivariate
feature engineering. A CPS-aware data repair mechanism is used to cope with severe data incompleteness. Experimental
findings indicate that the proposed repair method reduces approximately 7 X 10° missing values to nearly zero, achieving
almost 100% data completeness. Dependency-based risk analysis demonstrates that during an attack, system risk increases
to the range of 0.85-0.95 for more than 30,000 samples. Chemical Dosing (=0.75) and Distribution (=0.65) are major
contributors to risk propagation in subsystem analysis. Resilience evaluation shows rapid detection (1-2 samples), recovery
within approximately 25 samples, and a composite resilience index of 0.03, validating the effectiveness of the proposed

framework in enhancing CPS robustness and recovery.

Keywords - Cyber-Physical Systems (CPS), Resilience-First Security, Interoperability and Cascading Dependencies,

Anomaly Detection and Risk Propagation, Smart Infrastructure Security.

1. Introduction

The quick merging of sensing, computing,
communication, and control technologies has brought about
the rise of CPS as a basic support of current smart
infrastructure. CPS are tightly coupled through feedback
loops to allow real-time monitoring, intelligent processing,
and autonomous control of physical processes with their
cyber components [1].

Such systems are already widely deployed in
the operation of critical infrastructures: smart power
grids, intelligent transportation systems, healthcare
systems, and industrial automation. Their societal and
economic importance has been further increased by the
move toward interoperable CPS ecosystems where
heterogeneous  device  platforms and  services
interact seamlessly across organizational and technological
boundaries [2, 3].

Interoperability is a necessary condition for scalable
and efficient smart infrastructure. It enables diverse CPS
components—often developed by different vendors under
different standards—to exchange data, coordinate actions,
and adapt dynamically to changing operational conditions
[4]. However, while increasing interoperability improves
system performance, it also enlarges its attack surface by

exposing smart infrastructure to sophisticated cyber-
physical threats. Adversaries can exploit vulnerabilities at
the interface between the cyber and physical layers,
leverage  protocol inconsistencies, or  propagate
attacks through interconnected subsystems [5].

High-profile incidents against critical infrastructure
have demonstrated that intrusion can result in very serious
physical consequences, such as service disruption,
equipment damage, safety hazards, and economic losses.
These challenges highlight an imperative need for robust
security strategies that are tailored for interoperable CPS
environments [6].

CPS security functions by implementing two security
methods, which include creating defenses and responding to
security threats. The traditional security methods depend on
four essential components, which include encryption,
authentication, access controls, and perimeter defense. The
existing security measures remain necessary because they
protect against threats, yet their effectiveness decreases
when advanced persistent threats, zero-day exploits, insider
attacks, and cascading failures in tightly coupled systems
occur [7]. Smart infrastructure systems must operate under
strict real-time safety requirements, which makes system
maintenance through patching or shutdowns unfeasible.
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Fig. 1 Interoperable CPS in smart infrastructure

The assumption that all attacks can be prevented
through prevention methods leads to an unrealistic security
belief system, according to [8]. Modern CPS security should
shift from the assumption that all attacks can be prevented
toward an approach that accepts the inevitability of breaches
and focuses on designing systems capable of surviving,
adapting to, and recovering from such events [9].

It is against this backdrop that resilience has gained
significance as an important paradigm to achieve CPS.
Resilience is an extension of traditional security goals
targeted at understanding a system in terms of its capacity
to foresee, absorb, react, and restore following interruptions
that may be in the form of cyberattacks, a physical
malfunction, or environmental circadian upheaval [10, 11].
The resilience-first approach emphasizes prioritizing
continuity of the core functions even in degraded or
compromised conditions, as resilience is primarily
concerned with ensuring such fundamental functions remain
operational. This is highly applicable to smart infrastructure
since prolonged outages or even dangerous conditions can
have far-reaching societal consequences [12]. Nevertheless,
despite the growing popularity of resilient CPS design, the
current literature tends to regard resilience as a feature that
is only applied after an incident has occurred but not as one
of the fundamental concepts of security that must be
integrated in the entire lifecycle of a system [13, 14].

The issue is aggravated by the types and number of
interconnected CPS. There are numerous communication
protocols, data models, control strategies, and trust domains
of smart infrastructure systems, and it is difficult to
implement security in a coherent manner. Interoperability
across domains requires common meanings, standard
interfaces, and common governance, but the same
characteristics can be used to enable the rapid diffusion of
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failures and attacks [15]. Additionally, the CPS components
tend to operate within resource constraints and real-time
constraints, hence require lightweight and dynamic security
tools. This proves that an all-inclusive security plan is
required that integrates ideas on resilience with the
requirements on interoperability so that CPS can effectively
operate in a hostile and contested environment [16].

Measurements of resilience, CPS-adaptable defence
mechanisms, control that can resist intrusions, and fault-
tolerant architectures have been investigated. These
programs provide beneficial information but tend to address
dissimilar aspects of resiliency or only specific application
domains. No unified resilience-based framework explicitly
takes into account interoperability across cyber-physical
layers and sectors of infrastructure. Such a framework ought
to assist system designers in locating significant assets,
model dependencies, introducing adaptive safeguards, and
developing integrated reaction and recuperation procedures.
It must also bridge the gap between the cybersecurity
control theory and infrastructure engineering by providing
the practical design principles that work in smart systems in
the real world.

This study considers the problem of interoperable
cyber-physical systems that implement cyber-physical
systems in smart infrastructure operations and emphasizes
their resilience as an essential security requirement. The
subject of concern considered in this study is the
advancement of security cyber-physical systems to create
heterogeneous environments with both cyber and physical
data interacting with numerous domains and operational
layers. The most outstanding contribution of this study is the
advancement of security components that focus greatly on
resilience as an essential requirement in cyber-physical
systems security.
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Fig. 2 Resilience-first security framework for CPS

Additionally, this paper offers an outline of the
conceptual discussion regarding the connection between
interoperability and adaptive security strategies in
developing cyber-physical systems in smart infrastructure
environments. This paper opens with an evaluation of the
most related research studies regarding security cyber
physical systems, then portrays an elaborate outline of the
presented study, and finally ends with insights and prospects
regarding this study, followed by the conclusions drawn
from this research. The research objective of this study is as
follows:

To develop the model of interoperable CPS of smart
infrastructure through decomposition of CPS into
interacting subsystems and dependency representations
of the subsystems through graph-based system
formulations and dynamic system formulations.

To design and test a multivariate feature engineering
and anomaly detector mechanism on the basis of the
SWaT dataset that reflects well-founded cyber-physical
interactions, attack propagation, and abnormal system
behavior.

To establish a resilience-based security framework that
allows the adaptive response, isolation, and recovery of
CPS operations in case of cyber-physical attacks and
the continuity of key services.

To measure CPS resilience and CPS recovery
performance in terms of recovery time, service
degradation, and composite resilience indices in the
presence of various attack conditions.

2. Literature Review

Fereidunian et al. (2026) [17] defined ESE as a CASoS,
where electricity is the unifying ontological layer for
traditionally siloed Smart-X domains, which include smart
electricity networks, smart cities, smart homes, smart
transportation, and wearables. Pundir et al. 2022 [18] and
Chowdhury et al. 2025 [19] have already discussed smart
city frameworks, with a main focus on CPS; these authors
highlighted the role of IoT, Al, and real-time data analysis
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in urban infrastructure and transportation systems; the
systemic point of view presented herein supplements these
works. Further discussion of the topic is presented by
Kuyoro et al. 2025 [20], who compare the development of
smart cities through CPS-enabled smart cities between
European and West African settings. According to them,
enabling factors such as governance, transportation, and
socio-economic inequality drive the adoption of
technologies. It means that this set of research proves that
energy-centric integration and CPS are the bedrock of
sustainable, scalable, and all-encompassing smart
environments.

The expected trust, security, and resiliency of CPS-
based systems have been discussed in numerous research
works. Ali et al. (2025) [21] recommend a blockchain-based
CPS architecture supported by Hyperledger Fabric to
improve the security of data, authorization, and durability in

smart city applications. The architectural design
demonstrates that it delivers superior measurable
advantages when compared to centralized systems.

Chowdhury et al. (2025) [22] and Anny et al. (2025) [23]
both argue that hybrid security systems must develop
multiple security methods that connect blockchain
technology with cryptography and Internet of Things
devices and artificial intelligence. Amomo et al. (2023) [24]
and Qudus et al. (2025) [25] demonstrate that organizations
must implement three security measures, which include
coordinated incident response, anomaly detection, and zero-
trust architecture, to defend critical infrastructure and
Internet of Things ecosystems against rising security threats.
For example, in the energy sector, works by Shittu et al.
(2024) [26] and Aghazadeh et al. (2024) [27] show that data-
driven resilience indicators, digital twins, and IoT-enabled
adaptive protection improve recoverability and robustness,
but problems remain regarding latency, scalability, and
regulatory alignment.

There have also been more and more studies lately that
have centered their research around the complexity of



Abdinasir Ismael Hashi / IJCSE, 13(1), 16-29, 2026

modern CPS, which is emergent and socio-technical in
nature. For example, Afolabi et al.’s bibliometric synthesis
(2025) [28] proves that there has been an evident shift away
from sensor-based CPS and towards digital twin-based CPS
dependent on artificial intelligence, green, and resilient
CPS. They apply simulation and digital twin-based
techniques to explore cyber-physical interaction in
electricity grids and identify important gaps and learning
needs. Furthermore, by making use of human-in-the-loop
and agent-based techniques of artificial intelligence, Sobb et
al. (2025) [29] also introduce E3R as a brand-new CPS
modeling paradigm that extends the opportunity of
responsible resilience to account for cyber-based dangers
that develop in cyber-physical-social systems. Their study is
complemented by that of Taherianfard and their peers
(2024) [30], in which it is proved that making use of
“genetic programming and variational autoencoder” is
possibly critical to “smart city energy efficiency and
decision MAKING.” Such studies indicate that making use
of CPS that is capable of being adapted to and that is ethical
and compatible would help to handle brand-new dangers
and sustain “intelligent”, “resilient” and “green” CPS.
3. Research Gap

Current literature covers CPS-enabled smart
environments, blockchain-based security, digital twins, and
Al-driven resilience metrics in each field of smart in great
detail. Nevertheless, they are broadly domain-specific,
technology-focused, and reactive and do not have a single
system of security that would holistically maintain
interoperability and resilience among heterogeneous cyber-
physical layers. Specifically, the concept of resilience is
commonly considered an incident mitigation tool instead of
an internal security concept present across the design of
CPS. This therefore creates an urgent need to come up with
a resilience-centric, interoperable security framework that
integrates adaptive defense, coordinated response, and
recovery mechanisms of smart infrastructure systems
systematically.

4. Research Methodology

Experimental analysis of the work is done using the
dataset on the work of the Singapore University of
Technology and Design, called Secure Water Treatment
(SWaT). The SWaT testbed is a small but full-scale
industrial water treatment facility that is quite similar to the
real-life CPS environments. The facility has various
treatment processes that are interdependent and include the
following stages: raw water, chemical dosing, filtration,
dechlorination, storage, and water distribution. It is
equipped with a great number of sensors and actuators
managed with Programmable Logic Controllers (PLCs) and
connected via an industrial control network.

The data are multivariate time-series data, with a 1 Hz
sampling rate, which records the variables of the physical
process and control signals. It contains the results of data
gathered and various cyber-physical attack cases involving
sensor spoofing, actuator manipulation, and control logic
modifications. It uses three CSV files, including normal.csv,

which is used in the training, attack.csv, which is used in the
evaluation, and merged.csv, which is used in the end-to-end
experiment. This data allows for a realistic assessment of the
means of anomaly detection and resilience-based CPS
security.

Dataset File Description
Normal operational data with no
normal.csv
attacks
attack csv Cyber-physical attack scenarios with
labels
merged.csv | Combined normal and attack data
Sampling 1 Hz time-series data
Rate
System Type | Industrial water treatment CPS

4.1. CPS Decomposition and Interoperability Modeling

To avoid modeling the CPS as a monolithic entity, the
system is decomposed into interoperable CPS subsystems
corresponding to individual functional stages. Each
subsystem is modeled as an autonomous CPS node with
local sensing, actuation, and control capabilities. Let the
overall CPS be represented as a directed graph.

G=W.96),

Where V = {v;,v,. . .,v,} denotes the set of CPS
subsystems and Erepresents inter-subsystem dependencies
enabled through communication interfaces. The dynamics
of each subsystem v;are expressed as

2,(6) = F, (20, 0, (), 2,(8)), v €N,

Where x;(t) and wu,; represent the local states and
control inputs, andJV; represent the neighboring
subsystems. Interoperability between the different
subsystems in the integrated architecture is supported
through a unified schema of messages that facilitate the
movement of information from one subsystem to another.

4.2. Threat Model

The system is deemed to operate in the presence of a
strong adversary, which has partial visibility in the
communication and control systems. The strong adversary
has full authority to compromise entities in both cyber and
physical spaces, owing to sensor spoofing, actuation, and
control logic. The CPS model has its normal dynamics of

i) = #(x(0), u(®),d®)), y) =4£(x(®)),

Where x(%) represents physical states, 1 (¢)denotes
control inputs, and ¢ (£)is the sensor output. Under attack,
the observed and applied signals become

4() = y»() + a, (), 4(t) = u(t) + a, (%),

With a,(#) and a, denoting sensor and actuator
attacks, respectively. Attacks may propagate across
interoperable subsystems, leading to cascading failures.
This propagation is modeled as
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n(#) = Wn(t) + Ba(t) ,

Where n(#) captures subsystem degradation. The
threat model emphasizes impact propagation and systemic
disruption rather than individual attack signatures.

4.3. Feature Engineering

Feature engineering is essential for modeling cyber—
physical interactions in CPS. Let raw sensor and actuator
data at time £ be (£) = [x, (%), , %, (t)] . Temporal
behavior is captured using first-order differences.

x/b(t) = x/b(t) - x/b(t - 1)!

which highlight abrupt changes. Interdependencies
among components are modeled using the correlation
feature as
CO’V(JC,L, x,)
K 0y, 0%
To assess control integrity, a control-physical
mismatch is defined as

e(t) = |xexpected (t) — Xobserved (t)|

The feature vector created merges raw, temporal,
relational, and consistency features. The system
demonstrates strong capabilities to identify abnormal
behavior in CPS through its detection system while
maintaining adaptable system performance under different
operational conditions.

4.4. Anomaly Detection
The anomaly detection layer models normal CPS
behavior using attack-free data. Let the feature vector be
f(t). An Isolation Forest assigns an anomaly score as
_E(h(D)
s(fy=2 <~

where shorter path lengths indicate anomalies. In
parallel, an LSTM autoencoder captures temporal patterns
by minimizing reconstruction error as

L=|f®-7fo|

If s(f) or L exceeds a threshold, anomalous behavior is
detected and forwarded to the resilience layer.

4.5. Resilience-First Security Framework

The resilience-first security framework prioritizes
sustaining CPS functionality during attacks or failures.
System behavior is modeled as a finite state machine S =
{sn,S4, Si, Sy} for normal, degraded, isolated, and recovered
states, with transitions defined by anomaly severity o (t):

s(t+1) = f(s(t),a(t))

Q)

System resilience is measured as R(t) = %
0
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where Q (t) denotes current service quality. When R(t)
drops below a threshold, adaptive responses such as
isolation or reconfiguration are triggered. Recovery follows

dR(t)
ensuring controlled recovery and continuity of critical CPS
operations.

4.6. Recovery and Resilience Evaluation

Recovery and resilience evaluation assesses how
effectively the CPS restores functionality after disruptions.
Let system performance be Q(t), with nominal value Q.
The recovery time T, is defined as

Tr = min{t|Q(t) =nQo},

where 77 is an acceptable recovery threshold. Service
degradation is measured as

min Q(t
D1 min Q( ).
t Qo
A composite resilience index is computed as
tr
1 t
Rl = — 40 dt,
Tr QO
to

This captures both the performance loss and the speed
of recovery. Higher values of RI mean greater resilience,
which allows for a quantitative comparison of the various
recovery strategies against different attack scenarios.

S. Results and Discussion

In this section, the experimental results obtained using
the proposed CPS-aware framework are presented and
analyzed. The results evaluate data quality improvement,
interoperability-driven dependency modeling, cascading
failure behavior, system-level risk evolution, and resilience
performance under cyber-physical attack scenarios.
Quantitative and visual analyses are used to demonstrate the
effectiveness of the proposed approach in enhancing data
integrity, risk awareness, and overall CPS resilience.

5.1. Data Quality Analysis and CPS-Aware Repair

Figure 3 shows the time-related attributes and coverage
of the SWaT data in normal and attack states. Figure 3(a)
shows that the gaps in time are timed in the normal operation
of CPS, where sampling is very constant, with about 97-
98% of time stamps occurring after the nominal time
interval of 1 s, with only occasional gaps, which are usually
few, up to 210 seconds. Conversely, Figure 3(b) indicates
that attack patterns are more frequent and compact in time,
with nearly 25-30 percent of samples having irregular
sampling and longer pauses over 50s, which means that
there is a serious interference in CPS communication.
Figure 3(c) illustrates the temporal coverage of the dataset,
as the normal data is clearly separated into operation phases,
one of which is the attack data, also in 4 days, which allows
a valid training and evaluation.
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Temporal Gaps in Normal CPS Operation
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Fig. 4 Total missing values in normal data before and after CPS-aware repair

Figure 4 demonstrates the efficiency of the proposed
CPS-aware data repair mechanism, which is indicated by the
comparison of the overall number of values in normal
operational data prior to and after repair. Before repair, the
dataset includes a number of 7106 missing samples in a
variety of sensors and actuators, which is a severe data
incompleteness common to the real-world context of CPS.

With the CPS-aware repair strategy, the missing values
are minimized to almost no values, which is equivalent to
100 percent data improvement.

This significant decrease guarantees that the time
remains continuous, maintains physical consistency, and
offers a sound database to be used later on in detecting
anomalies, cascading failures, and resiliency testing.
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Figure 5 shows the impact of data repair based on CPS-
awareness on typical sensor and actuator signals. Figure 5(a)
contrasts the original and the Himwire AIT201 sensor
signal, in which the original data have incomplete gaps and
sample losses. A signal is then restored after repairs into a
continuous time series of irregular values with constant
values centered on 262 units, removing missing points in
about 5,000 samples. The MV 101 actuator condition before
and after repair is depicted in Figure 5(b). The raw actuator
values display discontinuities because of the missing values,
and the signal with the repair maintains the discrete
operational state at state = 2 throughout the time. These
findings indicate that the suggested repair mechanism
recovers both the temporal continuity and preserves the
physical consistency as well as functionality limitations of
both continuous sensors and discrete actuators.
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AIT201 Signal: Raw vs Repaired
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Fig. 5 (a) AIT201 sensor signal before and after CPS-aware data repair, (b) MV101 actuator state before and after CPS-aware data repair

5.2. Interoperability and Cascading Dependency Modeling
of CPS Subsystems

Figure 6 shows the logical structure of interoperability
and cascading dependency of CPS subsystems in the SWaT
water treatment process. In Figure 6(a), the directed
interoperability graph is provided, where the execution of
functions and communication dependencies between
treatment processes are presented in a sequence, i.e., Raw
Water Intake (CPS-1) to Chemical Dosing (CPS-2),
Filtration (CPS-3), Storage (CPS-4), and Distribution (CPS-

Logical Interoperability Graph of CPS

5). Figure 6(b) is an extension of this model with added
weighted inter-CPS cascading dependencies, which are
edge weights used to quantify the strength of propagation of
attacks or failures. It is significant that the dependencies are
witnessed to be greater between CPS-1 and CPS-2 (0.57),
CPS-2 and CPS-3 (0.57), and CPS-3 and CPS-4 (0.46), and
lower (0.37) between CPS-4 and CPS-5. Such weighted
relationships indicate important propagation paths and
sensitivities of subsystems to be used in resilience-aware
security analysis.

Weighted Inter-CPS Cascading Dependency Graph

Fig. 6 (a) Logical interoperability graph of CPS subsystems in the SWaT process, (b) Weighted inter-CPS cascading dependency graph
illustrating propagation strengths

Figure 7 shows how CPS-aware data repair technology
affects interconnected CPS systems and their failure
propagation through multiple systems. The first part of
Figure 7(a) shows the complete missing value count from
normal operational data before all repairs and after all
repairs. The system shows 7 million missing samples before
repair, but the CPS-aware repair system successfully brings
missing values down to zero, resulting in 100 percent
recovery success. Figure 7(b) shows how failure
propagation delays between CPS subsystems lead to more
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than 49 seconds of delay from Chemical Dosing to
Filtration, which compares to 1 to 2 seconds of delay that
occurs during other subsystem transitions. Figure 7(c)
shows all cascading failure occurrences during attack
scenarios, which show that the Filtration to Storage
connection suffers from 23 events, showing its most critical
weak point. The research results show better data protection
and the discovery of important paths that help safeguard
CPS systems through resilience-aware security measures.
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Inter-CPS Cascading Correlation Strength
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The SWaT plant system uses its interoperable CPS
system to show its system breakdown through its sensor and
actuator distribution across different operational parts, as
shown in Figure 8. The Raw Water Intake (CPS-1) system
uses 2 sensors and 3 actuators to establish essential control
points, which allow for basic operational control. The
Chemical Dosing (CPS-2) system uses 4 sensors and 7
actuators to establish a complex operational control system.
The Filtration (CPS-3) system uses 3 sensors and 6

actuators, while the Storage (CPS-4) system uses 4 sensors
and 5 actuators to create an operational balance between
monitoring and actuation needs. The Distribution stage
(CPS-5) shows its operational importance through its 12
sensors and 5 actuators, which create the highest
measurement capacity of the system. The subsystem-level
decomposition enables model development for system
interoperability testing together with studies that assess
system strength through resilience testing.

Interoperable CPS Decomposition of SWaT Plant

m Sensors M Actuators

18

16

14

Number of Signals

12

10

CPS_1 Raw_Water Intake CPS 2 Chemical Dosing

CPS_3_Filtration

CPS_4 Storage CPS_5 Distribution

Fig. 8 CPS subsystem-wise distribution of sensors and actuators in the SWaT plant

5.3. Dependency-Aware System Risk Analysis

Figure 9 shows the dependency-aware system risk
development of a cyber-physical attack. The system is under
a low-to-moderate risk regime at the start of the observation
period, and the risk scores are in the range of around 0.1 to
0.5. The system risk increases rapidly and levels off in a
high-risk state after the start of the attack (around time index
15,000) and spends over 30,000 samples in the 0.85-0.95

range, suggesting that the CPS dependencies continue to
propagate the impact. There is partial mitigation and
recovery at the end of the sequence (at time index 48,000)
with the risk level returning to around 0.4-0.6. This time-
dependent behavior underscores how the inter-CPS
dependencies are able to increase and maintain risk at the
system level when attacked.
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Fig. 9 Dependency-aware system risk evolution during a cyber-physical attack
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Figure 10 shows how often they saw different values
for the risk scores of a dependency-aware system during
attack scenarios. The histogram reveals a bimodal pattern,
with many samples falling in the high-risk area between
0.85 and 0.95—this accounts for roughly 55 to 60 percent
of all observations. Another spread can be seen in low-to-

moderate risk levels from 0.1 to 0.6, which relates to pre-
attack and transitional phases. A strong skew toward higher
risk  valuesis  noted, indicating that inter-CPS
dependencies continue to amplify risks over extended attack
durations.
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Fig. 10 Distribution of dependency-aware system risk scores during attack scenarios

5.4. Local vs System-Level Risk Propagation

Figure 11 shows the comparison of local anomaly
scores of CPS-3 (Filtration) subsystem to the resulting
dependency-conscious  system-level risk in attack
conditions. The local CPS anomaly varies with the zone,
mostly between 0.1 and 0.6, and spikes to 0.9 when the area
is disturbed. Conversely, the aggregate system risk is

characterized by a continuous trend following the onset of
the attack (around time index 15,000) and level off within
the 0.85 0.95 range over a greater number of samples
(30,000). Although the local anomaly is moderate (=
0.350.45), the risk on the system-level is critically high, and
the system is highly risk-amplifying, with inter-CPS
dependencies and propagation effects.
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Fig. 11 Local versus system-level risk for the CPS-3 (Filtration) subsystem during attack conditions

The high-risk system states, characterized by a
dependency-conscious risk score having a value above the
threshold of 0.8, occur over time as shown in Figure 12.
Only high-risk spikes that are isolated are observed during
the first phase, covering less than 5 percent of the timeline.
Once the escalation of the attack (around time index 15,000)
is experienced, the system enters a sustained high-risk
mode, where the risk measure remains in a high-risk state
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for more than 30,000 consecutive samples, accounting for
approximately 60% of the observation period. Later in the
sequence (when the time index reaches 48,000), the high-
risk condition partially deactivates, which implies partial
mitigation and recovery. This number shows long-term
critical exposure caused by the amplification of inter-CPS
dependency.
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High-Risk System State (Risk > 0.8)
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Fig. 12 High-risk system state (risk > 0.8) during cyber-physical attack

5.5. CPS Contribution and Risk Amplification

Figure 13 presents the complete risk profile, which
shows how different subsystems of CPS systems respond
with their distinct attack patterns. Figure 13(a) shows the
system risk, which results from different CPS components,
where Chemical Dosing (CPS-2) contributes the most with
its 0.75 risk value, and Distribution (CPS-5) and Storage
(CPS-4) follow behind with their 0.65 risk values. Filtration
(CPS-3) contributes moderately to the system because its
value equals 0.35, while Raw Water Intake (CPS-1) shows
the lowest system contribution at approximately 0.21.

Figure 13(b) reports the mean anomaly level across
subsystems, which closely matches this trend because CPS-
2 reaches approximately 0.76 while CPS-4 and CPS-5
exceed 0.65. Figure 13(c) displays how systemwide risk
levels increase because of CPS dependencies, which show
CPS-1 as the most powerful system with its 3.3
amplification factor, while CPS-3 shows moderate risk
increase at 2.0, and both CPS-4 and CPS-5 stay close to one
at 1.0. The results show which subsystems create the highest
risk, which leads to greater risk throughout the system.
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System-Level Risk Amplification Due to CPS Dependencies
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Fig. 13(a) Average CPS contribution to system risk, (b) Mean anomaly level across CPS subsystems, (c¢) System-level risk amplification due to
CPS dependencies

5.6. Resilience Evaluation and Recovery Behavior

Figure 14 shows the resilience curve of the CPS, which
demonstrates the system behavior in the detection,
escalation, and recovery stages. The risk in the system
before the attack is between 0.1 and 0.6, sometimes reaching
the early-warning limit of 0.6. The attack starts at a time
index of about 4,000, and the risk starts climbing at a very

high rate and reaches a critical point of 0.8 at a time index
of 15,000. The system is in critical condition (0.85 -0.95),
with almost 30,000 samples, which is a sign of a protracted
effect. After the mitigation (time index 48,000), the risk
becomes 0.4 -0.6, which proves the regulated recovery and
endurance.
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Fig. 14 Resilience curve showing detection, escalation, and recovery of system risk

Figure 15 displays the important resilience measures of
CPS during the attack on a log scale to compare them with
other magnitudes. The latency of detection is also low, and
it occurs in the range of 1-2 samples, meaning that the
latency is very fast. The time to critical risk is about 1.2x103
samples, which represents the time taken before the first
evidence of the critical threshold (risk > 0.8) is reached. The
duration of effect is the most significant in the resilience
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profile and reaches almost 3 x 10* samples, which indicates
that the system is exposed to high levels of risk. The
recovery period is relatively short, approximately 2.5 x 10!
samples, which illustrates effective mitigation after
recovery efforts have been initiated. The ensuing index of
resilience is around 0.03, which represents the overall
effects of speed of detection, level of impact, and efficiency
of recovery.
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Resilience Metrics (Log-Scaled for Comparability)
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Fig. 15 Log-scaled resilience metrics summarizing detection, escalation, impact, and recovery behavior

6. Conclusion and Future Scope

This paper suggested a resilience-based security
architecture for interoperable CPS in smart infrastructure
settings. The framework mitigates the shortcomings of
prevention-oriented CPS security methods by combining
data quality improvement, interoperability-sensitive
dependency modeling, and resilience-informed risk
analysis. Experimental validation on SWaT industrial water
treatment data found grievous incompleteness of data in the
dataset, where there were about 7 x 10 6 absent samples in
normal operation data. The suggested CPS-respecting repair
mechanism was successful in minimizing missing values to
close to zero and has almost 100% improvement in data
completeness without affecting physical and operational
constraints. Dependency modeling revealed pathways of
critical propagation among CPS subsystems with
dependency weights greater between CPS-1-CPS-2 and
CPS-2-CPS-3 (0.57), whereby cascading effects during
attacks can take place. Dependency-based risk analysis at

References

the system level revealed that the dependency-sensitive risk
escalation is high and stays within the 0.85-0.95 interval in
a large sample (30,000), and over 60 percent of the timeline
was in a high-risk state (risk greater than 0.8). Chemical
Dosing  (approximately  0.75) and  Distribution
(approximately 0.65) were found to be a major source of
risk. The assessment of resilience revealed speedy detection
in 1-2 samples, restoration in 25 samples, as well as a
composite index of resilience of 0.03, which proved that the
framework is effective in maintaining CPS functionality and
in controlled recovery in the event of a cyber-physical
attack.

Future work will extend the proposed framework to
real-time deployment and cross-domain CPS environments
by incorporating adaptive learning, online dependency
modeling, and large-scale validation across heterogeneous
smart infrastructure systems.

(1]

(2]

Juliza Jamaludin, and Jemmy Mohd Rohani, “Cyber-Physical System (CPS): State of the Art,” International Conference on
Computing, Electronic and Electrical Engineering (ICE Cube), pp. 1-5, 2018. [CrossRef] [Google Scholar] [Publisher Link]

Ch. Krishna Keerthi, M.A. Jabbar, and B. Seetharamulu, “Cyber Physical Systems (CPS): Security Issues, Challenges and Solutions,”
IEEE International Conference on Computational Intelligence and Computing Research, pp. 1-4,2017. [CrossRef] [Google Scholar]
[Publisher Link]

Kaiyu Wan, K.L. Man, and D. Hughes, “Specification, Analyzing Challenges and Approaches for Cyber-Physical Systems
(CPS),” Engineering Letters, vol. 18, no. 3, 2010. [Google Scholar]

Sarthak Acharya, Arif Ali Khan, and Tero Péivirinta, “Interoperability Levels and Challenges of Digital Twins in Cyber—Physical
Systems,” Journal of Industrial Information Integration, vol. 42, pp. 1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]
Didem Giirdiir et al., “Making Interoperability Visible: Data Visualization of Cyber-Physical Systems Development Tool
Chains,” Journal of Industrial Information Integration, vol. 4, pp. 26-34, 2016. [CrossRef] [Google Scholar] [Publisher Link]
Hooman Razavi, “Artificial-Intelligence-Driven Cost Estimation for Disruptions in Cyber-Physical Systems,” /EEE, pp. 14-18,2024.
[Google Scholar]

Jairo Giraldo et al., “Security and Privacy in Cyber-Physical Systems: A Survey of Surveys,” IEEE Design & Test, vol. 34, no. 4, pp.
7-17,2017. [CrossRef] [Google Scholar] [Publisher Link]

M.B. Kiran, “Significance of Intruder Detection Techniques in the Context of Industry 4.0,” Proceedings of the International
Conference on Industrial Engineering and Operations Management, pp. 2977-2987, 2021. [Google Scholar] [Publisher Link]

28


https://doi.org/10.1109/ICECUBE.2018.8610996
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cyber-physical+system+%28cps%29%3A+State+of+the+art&btnG=
https://ieeexplore.ieee.org/abstract/document/8610996
https://doi.org/10.1109/ICCIC.2017.8524312
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cyber+physical+systems+%28CPS%29%3A+Security+issues%2C+challenges+and+solutions&btnG=
https://ieeexplore.ieee.org/abstract/document/8524312
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Specification%2C+Analyzing+Challenges+and+Approaches+for+Cyber-Physical+Systems+%28CPS%29&btnG=
https://doi.org/10.1016/j.jii.2024.100714
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Interoperability+levels+and+challenges+of+digital+twins+in+cyber%E2%80%93physical+systems&btnG=
https://www.sciencedirect.com/science/article/pii/S2452414X24001572
https://doi.org/10.1016/j.jii.2016.09.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Making+Interoperability+Visible%3A+Data+Visualization+of+Cyber-Physical+Systems+Development+Tool+Chains&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2452414X16300656
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial-Intelligence-Driven+Cost+Estimation+for+Disruptions+in+Cyber-Physical+Systems&btnG=
https://doi.org/10.1109/MDAT.2017.2709310
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+and+privacy+in+cyber-physical+systems%3A+A+survey+of+surveys&btnG=
https://ieeexplore.ieee.org/abstract/document/7935369
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Significance+of+intruder+detection+techniques+in+the+context+of+industry+4.0&btnG=
https://www.ieomsociety.org/brazil2020/papers/835.pdf

Abdinasir Ismael Hashi / IJCSE, 13(1), 16-29, 2026

[9] Shameer Mohammed et al., “A New Lightweight Data Security System for Data Security in the Cloud Computing,” Measurement:
Sensors, vol. 29, pp. 1-7, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[10] Mariana Segovia-Ferreira et al., “A Survey on Cyber-Resilience Approaches for Cyber-Physical Systems,” ACM Computing Surveys,
vol. 56, no. 8, pp. 1-37, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[11] Sangjun Kim, Kyung-Joon Park, and Chenyang Lu, “A Survey on Network Security for Cyber—Physical Systems: From Threats to
Resilient Design,” IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1534-1573, 2022. [CrossRef] [Google Scholar]
[Publisher Link]

[12] Felix O. Olowononi, Danda B Rawat, and Chunmei Liu, “Resilient Machine Learning for Networked Cyber Physical Systems: A
Survey for Machine Learning Security to Securing Machine Learning for CPS,” IEEE Communications Surveys & Tutorials, vol. 23,
no. 1, pp. 524-552, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[13] Valentina Casola et al., “Designing Secure and Resilient Cyber-Physical Systems: A Model-Based Moving Target Defense
Approach,” [EEE Transactions on Emerging Topics in Computing, vol. 12, no. 2, pp. 631-642, 2024. [CrossRef] [Google Scholar]
[Publisher Link]

[14] Sanda Florentina Mihalache, Emil Pricop, and Jaouhar Fattahi, “Resilience Enhancement of Cyber-Physical Systems: A
Review,” Power Systems Resilience: Modeling, Analysis and Practice, pp. 269-287, 2018. [CrossRef] [Google Scholar] [Publisher
Link]

[15] Kamal Prasat et al., “Analysis of Cross-Domain Security and Privacy Aspects of Cyber-Physical Systems,” International Journal of
Wireless Information Networks, vol. 29, no. 4, pp. 454-479, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[16] Zhenhua Wang et al., “A Survey on Recent Advanced Research of CPS Security,” Applied Sciences, vol. 11, no. 9, pp. 1-42, 2021.
[CrossRef] [Google Scholar] [Publisher Link]

[17] Alireza Fereidunian et al., “Energy Smart Environments: Emergence and Interoperability beyond the Constituent Smart Systems
Unified as Complex Adaptive Systems of Systems,” Authorea Preprints, pp. 1-13, 2026. [CrossRef] [Google Scholar] [Publisher
Link]

[18] Amit Pundir et al., “Cyber-Physical Systems Enabled Transport Networks in Smart Cities: Challenges and Enabling Technologies of
the New Mobility Era,” IEEE Access, vol. 10, pp. 16350-16364, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Rakibul Hasan Chowdhury, and Bornil Mostafa, “Cyber-Physical Systems for Critical Infrastructure Protection: Developing
Advanced Systems to Secure Energy Grids, Transportation Networks, and Water Systems from Cyber Threats,” Journal of Computer
Science and Electrical Engineering, vol. 7, no. 1, pp. 16-26, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[20] A. Kuyoro et al., “Smart Cities and Cyber-Physical Systems Integration: A Comparative Study between Western and West African
Urbanization,” Cureus Journals, vol. 2, no. 1, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[21] Wesam Ali, and H. Ashour, “A Blockchain-Based Secure Architecture for Cyber-Physical Systems in Smart City
Infrastructure,” Electronics, Communications, and Computing Summit, vol. 3, no. 3, pp. 1-11, 2025. [CrossRef] [Google Scholar]
[Publisher Link]

[22] Adedeji Afolabi, Olugbenro Ogunrinde, and Abolghassem Zabihollah, “Digital Twin and Al Models for Infrastructure Resilience: A
Systematic Knowledge Mapping,” Applied Sciences, vol. 15, no. 24, pp. 1-16, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[23] Dave Anny, “Towards Resilient Digital Infrastructure: Bridging Al, Cryptography, and [oT for Cross-Sectoral Security in the Age of
Cyber-Physical Convergence,” 2025. [Google Scholar]

[24] Clifford Godwin Amomo, “Countering IoT-Based Cyber-Physical Manipulation: A Framework for National Resilience against
Systemic Disruption,” Zenodo, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[25] Lawal Qudus, “Resilient Systems: Building Secure Cyber-Physical Infrastructure for Critical Industries against Emerging
Threats,” International Journal of Research Publication and Reviews, vol. 6, no. 1, pp. 3330-3346, 2025. [CrossRef] [Google
Scholar] [Publisher Link]

[26] Habeeb A. Shittu, Mujeeb A. Shittu, and Funminiyi Olagunju, “Cyber Physical Resilience in Digital Substations: [oT Enabled
Adaptive Protection for Secure DER Integration,” International Journal of Science Architecture Technology and Environment, vol.
1, no. 3, pp. 81-99, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[27] Ali Aghazadeh Ardebili et al., “Smart Critical Infrastructures Security Management and Governance: Implementation of Cyber
Resilience KPIs for Decentralized Energy Asset,” CEUR Workshop Proceedings-Italian Conference on Cyber Security 2024:
Proceedings of the 8" Italian Conference on Cyber Security, 2024. [Google Scholar] [Publisher Link]

[28] Ioannis Zografopoulos et al., “Cyber-Physical Interdependence for Power System Operation and Control,” /[EEE Transactions on
Smart Grid, vol. 16, no. 3, pp. 2554-2573, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[29] Theresa Sobb, Nour Moustafa, and Benjamin Turnbull, “Responsible Resilience in Cyber—Physical-Social Systems: A New Paradigm
for Emergent Cyber Risk Modeling,” Future Internet, vol. 17, no. 7, pp. 1-24, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[30] Elahe Taherianfard et al., “Future Smart Cities as Cyber-Physical Systems: Economic Challenges and Opportunities,” 2024. [Google
Scholar] [Publisher Link]

29


https://doi.org/10.1016/j.measen.2023.100856
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+lightweight+data+security+system+for+data+security+in+the+cloud+computing&btnG=
https://www.sciencedirect.com/science/article/pii/S2665917423001927
https://doi.org/10.1145/3652953
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Cyber-Resilience+Approaches+for+Cyber-Physical+Systems&btnG=
https://dl.acm.org/doi/full/10.1145/3652953
https://doi.org/10.1109/COMST.2022.3187531
https://scholar.google.com/scholar?q=A+survey+on+network+security+for+cyber%E2%80%93physical+systems:+From+threats+to+resilient+design&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/9810983
https://doi.org/10.1109/COMST.2020.3036778
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resilient+machine+learning+for+networked+cyber+physical+systems%3A+A+survey+for+machine+learning+security+to+securing+machine+learning+for+CPS&btnG=
https://ieeexplore.ieee.org/abstract/document/9252851
https://doi.org/10.1109/TETC.2022.3197464
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+secure+and+resilient+cyber-physical+systems%3A+A+model-based+moving+target+defense+approach&btnG=
https://ieeexplore.ieee.org/abstract/document/9857751
https://doi.org/10.1007/978-3-319-94442-5_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resilience+enhancement+of+cyber-physical+systems%3A+A+review&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-94442-5_11
https://link.springer.com/chapter/10.1007/978-3-319-94442-5_11
https://doi.org/10.1007/s10776-022-00559-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+cross-domain+security+and+privacy+aspects+of+cyber-physical+systems&btnG=
https://link.springer.com/article/10.1007/s10776-022-00559-6
https://doi.org/10.3390/app11093751
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+recent+advanced+research+of+CPS+security&btnG=
https://www.mdpi.com/2076-3417/11/9/3751
https://doi.org/10.36227/techrxiv.176781384.41293589/v1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+Smart+Environments%3A+Emergence+and+Interoperability+beyond+the+Constituent+Smart+Systems+Unified+as+Complex+Adaptive+Systems+of+Systems&btnG=
https://www.techrxiv.org/doi/full/10.36227/techrxiv.176781384.41293589
https://www.techrxiv.org/doi/full/10.36227/techrxiv.176781384.41293589
https://doi.org/10.1109/ACCESS.2022.3147323
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cyber-physical+systems+enabled+transport+networks+in+smart+cities%3A+Challenges+and+enabling+technologies+of+the+new+mobility+era&btnG=
https://ieeexplore.ieee.org/abstract/document/9695482
https://doi.org/10.61784/jcsee3027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cyber-Physical+Systems+for+Critical+Infrastructure+Protection%3A+Developing+Advanced+Systems+to+Secure+Energy+Grids%2C+Transportation+Networks%2C+and+Water+Systems+from+Cyber+Threats&btnG=
http://www.upubscience.com/News11Detail.aspx?id=1080&proid=38
https://doi.org/10.7759/s44389-025-04560-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Smart+Cities+and+Cyber-Physical+Systems+Integration%3A+A+Comparative+Study+Between+Western+and+West+African+Urbanization&btnG=
https://www.cureusjournals.com/articles/4560-smart-cities-and-cyber-physical-systems-integration-a-comparative-study-between-western-and-west-african-urbanization#!/
https://doi.org/10.17051/ECC/03.03.01
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Blockchain-Based+Secure+Architecture+for+Cyber-Physical+Systems+in+Smart+City+Infrastructure&btnG=
https://eccsubmit.com/index.php/congress/article/view/104
https://doi.org/10.3390/app152413135
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Digital+Twin+and+AI+Models+for+Infrastructure+Resilience%3A+A+Systematic+Knowledge+Mapping&btnG=
https://www.mdpi.com/2076-3417/15/24/13135
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+Resilient+Digital+Infrastructure%3A+Bridging+AI%2C+Cryptography%2C+and+IoT+for+Cross-Sectoral+Security+in+the+Age+of+Cyber-Physical+Convergence&btnG=
https://doi.org/10.5281/zenodo.17617715
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Countering+IoT-Based+Cyber-Physical+Manipulation%3A+A+Framework+for+National+Resilience+Against+Systemic+Disruption&btnG=
https://zenodo.org/records/17617716
https://doi.org/10.55248/gengpi.6.0125.0514
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resilient+systems%3A+building+secure+cyber-physical+infrastructure+for+critical+industries+against+emerging+threats&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resilient+systems%3A+building+secure+cyber-physical+infrastructure+for+critical+industries+against+emerging+threats&btnG=
https://ijrpr.com/uploads/V6ISSUE1/IJRPR37965.pdf
https://doi.org/10.63680/ijsate032532.08
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cyber+Physical+Resilience+in+Digital+Substations%3A+IoT+Enabled+Adaptive+Protection+for+Secure+DER+Integration&btnG=
https://ijsate.com/v1i3p8/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Smart+critical+infrastructures+security+management+and+governance%3A+Implementation+of+cyber+resilience+kpis+for+decentralized+energy+asset&btnG=
https://iris.unisalento.it/handle/11587/530328
https://doi.org/10.1109/TSG.2025.3538012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cyber-physical+interdependence+for+power+system+operation+and+control&btnG=
https://ieeexplore.ieee.org/abstract/document/10870120
https://doi.org/10.3390/fi17070282
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Responsible+Resilience+in+Cyber%E2%80%93Physical%E2%80%93Social+Systems%3A+A+New+Paradigm+for+Emergent+Cyber+Risk+Modeling&btnG=
https://www.mdpi.com/1999-5903/17/7/282
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Future+Smart+Cities+As+Cyber-Physical+Systems%3A+Economic+Challenges+and+Opportunities&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Future+Smart+Cities+As+Cyber-Physical+Systems%3A+Economic+Challenges+and+Opportunities&btnG=
https://mpra.ub.uni-muenchen.de/123271/

