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Abstract - Cyber-Physical Systems (CPS) are the foundation of current smart infrastructure, but the growing interoperability 

of heterogeneous CPS elements makes them highly susceptible to cascading cyber-physical attacks. To overcome this issue, 

the paper presents a resilience-first security framework that combines data quality improvement, interoperability-conscious 

dependency modeling, and system-level risk and resilience analysis. The suggested method is tested using the SWaT 

industrial water treatment dataset, a collection of multivariate time-series data sampled at 1 Hz. CPS subsystems are 

decomposed and represented in the form of dependency graphs, and anomaly detection is performed through multivariate 

feature engineering. A CPS-aware data repair mechanism is used to cope with severe data incompleteness. Experimental 

findings indicate that the proposed repair method reduces approximately 7 × 10⁶ missing values to nearly zero, achieving 

almost 100% data completeness. Dependency-based risk analysis demonstrates that during an attack, system risk increases 

to the range of 0.85–0.95 for more than 30,000 samples. Chemical Dosing (≈0.75) and Distribution (≈0.65) are major 

contributors to risk propagation in subsystem analysis. Resilience evaluation shows rapid detection (1–2 samples), recovery 

within approximately 25 samples, and a composite resilience index of 0.03, validating the effectiveness of the proposed 

framework in enhancing CPS robustness and recovery. 

 

Keywords - Cyber-Physical Systems (CPS), Resilience-First Security, Interoperability and Cascading Dependencies, 

Anomaly Detection and Risk Propagation, Smart Infrastructure Security. 

 

1. Introduction 
The quick merging of sensing, computing, 

communication, and control technologies has brought about 

the rise of CPS as a basic support of current smart 

infrastructure. CPS are tightly coupled through feedback 

loops to allow real-time monitoring, intelligent processing, 

and autonomous control of physical processes with their 

cyber components [1].  

 

Such systems are already widely deployed in 

the operation of critical infrastructures: smart power 

grids, intelligent transportation systems, healthcare 

systems, and industrial automation. Their societal and 

economic importance has been further increased by the 

move toward interoperable CPS ecosystems where 

heterogeneous device platforms and services 

interact seamlessly across organizational and technological 

boundaries [2, 3]. 
 

Interoperability is a necessary condition for scalable 

and efficient smart infrastructure. It enables diverse CPS 

components—often developed by different vendors under 

different standards—to exchange data, coordinate actions, 

and adapt dynamically to changing operational conditions 

[4]. However, while increasing interoperability improves 

system performance, it also enlarges its attack surface by 

exposing smart infrastructure to sophisticated cyber-

physical threats. Adversaries can exploit vulnerabilities at 

the interface between the cyber and physical layers, 

leverage protocol inconsistencies, or propagate 

attacks through interconnected subsystems [5].  

 

High-profile incidents against critical infrastructure 

have demonstrated that intrusion can result in very serious 

physical consequences, such as service disruption, 

equipment damage, safety hazards, and economic losses. 

These challenges highlight an imperative need for robust 

security strategies that are tailored for interoperable CPS 

environments [6]. 

 

CPS security functions by implementing two security 

methods, which include creating defenses and responding to 

security threats. The traditional security methods depend on 

four essential components, which include encryption, 

authentication, access controls, and perimeter defense. The 

existing security measures remain necessary because they 

protect against threats, yet their effectiveness decreases 

when advanced persistent threats, zero-day exploits, insider 

attacks, and cascading failures in tightly coupled systems 

occur [7]. Smart infrastructure systems must operate under 

strict real-time safety requirements, which makes system 

maintenance through patching or shutdowns unfeasible.  

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Interoperable CPS in smart infrastructure 

 

The assumption that all attacks can be prevented 

through prevention methods leads to an unrealistic security 

belief system, according to [8]. Modern CPS security should 

shift from the assumption that all attacks can be prevented 

toward an approach that accepts the inevitability of breaches 

and focuses on designing systems capable of surviving, 

adapting to, and recovering from such events [9]. 

 

It is against this backdrop that resilience has gained 

significance as an important paradigm to achieve CPS. 

Resilience is an extension of traditional security goals 

targeted at understanding a system in terms of its capacity 

to foresee, absorb, react, and restore following interruptions 

that may be in the form of cyberattacks, a physical 

malfunction, or environmental circadian upheaval [10, 11]. 

The resilience-first approach emphasizes prioritizing 

continuity of the core functions even in degraded or 

compromised conditions, as resilience is primarily 

concerned with ensuring such fundamental functions remain 

operational. This is highly applicable to smart infrastructure 

since prolonged outages or even dangerous conditions can 

have far-reaching societal consequences [12]. Nevertheless, 

despite the growing popularity of resilient CPS design, the 

current literature tends to regard resilience as a feature that 

is only applied after an incident has occurred but not as one 

of the fundamental concepts of security that must be 

integrated in the entire lifecycle of a system [13, 14]. 

 

The issue is aggravated by the types and number of 

interconnected CPS. There are numerous communication 

protocols, data models, control strategies, and trust domains 

of smart infrastructure systems, and it is difficult to 

implement security in a coherent manner. Interoperability 

across domains requires common meanings, standard 

interfaces, and common governance, but the same 

characteristics can be used to enable the rapid diffusion of 

failures and attacks [15]. Additionally, the CPS components 

tend to operate within resource constraints and real-time 

constraints, hence require lightweight and dynamic security 

tools. This proves that an all-inclusive security plan is 

required that integrates ideas on resilience with the 

requirements on interoperability so that CPS can effectively 

operate in a hostile and contested environment [16]. 

 

Measurements of resilience, CPS-adaptable defence 

mechanisms, control that can resist intrusions, and fault-

tolerant architectures have been investigated. These 

programs provide beneficial information but tend to address 

dissimilar aspects of resiliency or only specific application 

domains. No unified resilience-based framework explicitly 

takes into account interoperability across cyber-physical 

layers and sectors of infrastructure. Such a framework ought 

to assist system designers in locating significant assets, 

model dependencies, introducing adaptive safeguards, and 

developing integrated reaction and recuperation procedures. 

It must also bridge the gap between the cybersecurity 

control theory and infrastructure engineering by providing 

the practical design principles that work in smart systems in 

the real world. 

 

This study considers the problem of interoperable 

cyber-physical systems that implement cyber-physical 

systems in smart infrastructure operations and emphasizes 

their resilience as an essential security requirement. The 

subject of concern considered in this study is the 

advancement of security cyber-physical systems to create 

heterogeneous environments with both cyber and physical 

data interacting with numerous domains and operational 

layers. The most outstanding contribution of this study is the 

advancement of security components that focus greatly on 

resilience as an essential requirement in cyber-physical 

systems security. 
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Fig. 2 Resilience-first security framework for CPS 

 

Additionally, this paper offers an outline of the 

conceptual discussion regarding the connection between 

interoperability and adaptive security strategies in 

developing cyber-physical systems in smart infrastructure 

environments. This paper opens with an evaluation of the 

most related research studies regarding security cyber 

physical systems, then portrays an elaborate outline of the 

presented study, and finally ends with insights and prospects 

regarding this study, followed by the conclusions drawn 

from this research. The research objective of this study is as 

follows: 

I. To develop the model of interoperable CPS of smart 

infrastructure through decomposition of CPS into 

interacting subsystems and dependency representations 

of the subsystems through graph-based system 

formulations and dynamic system formulations. 

II. To design and test a multivariate feature engineering 

and anomaly detector mechanism on the basis of the 

SWaT dataset that reflects well-founded cyber-physical 

interactions, attack propagation, and abnormal system 

behavior. 

III. To establish a resilience-based security framework that 

allows the adaptive response, isolation, and recovery of 

CPS operations in case of cyber-physical attacks and 

the continuity of key services. 

IV. To measure CPS resilience and CPS recovery 

performance in terms of recovery time, service 

degradation, and composite resilience indices in the 

presence of various attack conditions. 

 

2. Literature Review 
Fereidunian et al. (2026) [17] defined ESE as a CASoS, 

where electricity is the unifying ontological layer for 

traditionally siloed Smart-X domains, which include smart 

electricity networks, smart cities, smart homes, smart 

transportation, and wearables. Pundir et al. 2022 [18] and 

Chowdhury et al. 2025 [19] have already discussed smart 

city frameworks, with a main focus on CPS; these authors 

highlighted the role of IoT, AI, and real-time data analysis 

in urban infrastructure and transportation systems; the 

systemic point of view presented herein supplements these 

works. Further discussion of the topic is presented by 

Kuyoro et al. 2025 [20], who compare the development of 

smart cities through CPS-enabled smart cities between 

European and West African settings. According to them, 

enabling factors such as governance, transportation, and 

socio-economic inequality drive the adoption of 

technologies. It means that this set of research proves that 

energy-centric integration and CPS are the bedrock of 

sustainable, scalable, and all-encompassing smart 

environments. 

 

The expected trust, security, and resiliency of CPS-

based systems have been discussed in numerous research 

works. Ali et al. (2025) [21] recommend a blockchain-based 

CPS architecture supported by Hyperledger Fabric to 

improve the security of data, authorization, and durability in 

smart city applications. The architectural design 

demonstrates that it delivers superior measurable 

advantages when compared to centralized systems. 

Chowdhury et al. (2025) [22] and Anny et al. (2025) [23] 

both argue that hybrid security systems must develop 

multiple security methods that connect blockchain 

technology with cryptography and Internet of Things 

devices and artificial intelligence. Amomo et al. (2023) [24] 

and Qudus et al. (2025) [25] demonstrate that organizations 

must implement three security measures, which include 

coordinated incident response, anomaly detection, and zero-

trust architecture, to defend critical infrastructure and 

Internet of Things ecosystems against rising security threats. 

For example, in the energy sector, works by Shittu et al. 

(2024) [26] and Aghazadeh et al. (2024) [27] show that data-

driven resilience indicators, digital twins, and IoT-enabled 

adaptive protection improve recoverability and robustness, 

but problems remain regarding latency, scalability, and 

regulatory alignment. 

 

There have also been more and more studies lately that 

have centered their research around the complexity of 
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modern CPS, which is emergent and socio-technical in 

nature. For example, Afolabi et al.’s bibliometric synthesis 

(2025) [28] proves that there has been an evident shift away 

from sensor-based CPS and towards digital twin-based CPS 

dependent on artificial intelligence, green, and resilient 

CPS. They apply simulation and digital twin-based 

techniques to explore cyber-physical interaction in 

electricity grids and identify important gaps and learning 

needs. Furthermore, by making use of human-in-the-loop 

and agent-based techniques of artificial intelligence, Sobb et 

al. (2025) [29] also introduce E3R as a brand-new CPS 

modeling paradigm that extends the opportunity of 

responsible resilience to account for cyber-based dangers 

that develop in cyber-physical-social systems. Their study is 

complemented by that of Taherianfard and their peers 

(2024) [30], in which it is proved that making use of 

“genetic programming and variational autoencoder” is 

possibly critical to “smart city energy efficiency and 

decision MAKING.” Such studies indicate that making use 

of CPS that is capable of being adapted to and that is ethical 

and compatible would help to handle brand-new dangers 

and sustain “intelligent”, “resilient” and “green” CPS. 

 

3. Research Gap 
Current literature covers CPS-enabled smart 

environments, blockchain-based security, digital twins, and 

AI-driven resilience metrics in each field of smart in great 

detail. Nevertheless, they are broadly domain-specific, 

technology-focused, and reactive and do not have a single 

system of security that would holistically maintain 

interoperability and resilience among heterogeneous cyber-

physical layers. Specifically, the concept of resilience is 

commonly considered an incident mitigation tool instead of 

an internal security concept present across the design of 

CPS. This therefore creates an urgent need to come up with 

a resilience-centric, interoperable security framework that 

integrates adaptive defense, coordinated response, and 

recovery mechanisms of smart infrastructure systems 

systematically. 

 

4. Research Methodology 
Experimental analysis of the work is done using the 

dataset on the work of the Singapore University of 

Technology and Design, called Secure Water Treatment 

(SWaT). The SWaT testbed is a small but full-scale 

industrial water treatment facility that is quite similar to the 

real-life CPS environments. The facility has various 

treatment processes that are interdependent and include the 

following stages: raw water, chemical dosing, filtration, 

dechlorination, storage, and water distribution. It is 

equipped with a great number of sensors and actuators 

managed with Programmable Logic Controllers (PLCs) and 

connected via an industrial control network. 

 

The data are multivariate time-series data, with a 1 Hz 

sampling rate, which records the variables of the physical 

process and control signals. It contains the results of data 

gathered and various cyber-physical attack cases involving 

sensor spoofing, actuator manipulation, and control logic 

modifications. It uses three CSV files, including normal.csv, 

which is used in the training, attack.csv, which is used in the 

evaluation, and merged.csv, which is used in the end-to-end 

experiment. This data allows for a realistic assessment of the 

means of anomaly detection and resilience-based CPS 

security. 

 

Dataset File Description 

normal.csv 
Normal operational data with no 

attacks 

attack.csv 
Cyber-physical attack scenarios with 

labels 

merged.csv Combined normal and attack data 

Sampling 

Rate 
1 Hz time-series data 

System Type Industrial water treatment CPS 

 

4.1. CPS Decomposition and Interoperability Modeling  

To avoid modeling the CPS as a monolithic entity, the 

system is decomposed into interoperable CPS subsystems 

corresponding to individual functional stages. Each 

subsystem is modeled as an autonomous CPS node with 

local sensing, actuation, and control capabilities. Let the 

overall CPS be represented as a directed graph. 

𝒢 = (𝒱, ℰ), 

Where 𝒱 = {𝑣1, 𝑣2.  .  .  , 𝑣𝑛} denotes the set of CPS 

subsystems and ℰrepresents inter-subsystem dependencies 

enabled through communication interfaces. The dynamics 

of each subsystem 𝓋𝒾are expressed as 

𝓍𝒾(𝑡) = 𝔣𝒾 (𝓍𝒾(𝑡), 𝓊𝒾(𝓉), 𝓍𝒿(𝓉)),      𝓋𝒿 ∈ 𝒩𝒾 , 
 

Where 𝓍𝒾(𝓉) and 𝓊𝒾 represent the local states and 

control inputs, and 𝒩𝒾 represent the neighboring 

subsystems. Interoperability between the different 

subsystems in the integrated architecture is supported 

through a unified schema of messages that facilitate the 

movement of information from one subsystem to another. 

 

4.2. Threat Model  

The system is deemed to operate in the presence of a 

strong adversary, which has partial visibility in the 

communication and control systems. The strong adversary 

has full authority to compromise entities in both cyber and 

physical spaces, owing to sensor spoofing, actuation, and 

control logic. The CPS model has its normal dynamics of 

 

𝓍̇(𝑡) =  𝒻(𝓍(𝓉), 𝓊(𝓉), 𝒹(𝓉)),    𝓎(𝑡) = 𝓀(𝓍(𝓉)), 

 

Where 𝓍(𝓉) represents physical states, 𝓊(𝓉)denotes 

control inputs, and 𝓎(𝓉)is the sensor output. Under attack, 

the observed and applied signals become 

 

𝓎̌(𝓉) = 𝓎(𝓉) + 𝒶𝓈(𝓉), 𝓊̌(𝓉) = 𝓊(𝓉) + 𝒶𝓊(𝓉), 

 

With 𝒶𝓈(𝓉) and 𝒶𝓊 denoting sensor and actuator 

attacks, respectively. Attacks may propagate across  

interoperable subsystems, leading to cascading failures. 

This propagation is modeled as 
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𝜂̇(𝓉) = 𝒲𝜂(𝓉) + ℬ𝒶(𝓉) , 

 

Where 𝜂(𝓉) captures subsystem degradation. The 

threat model emphasizes impact propagation and systemic 

disruption rather than individual attack signatures. 

 

4.3. Feature Engineering 

Feature engineering is essential for modeling cyber–

physical interactions in CPS. Let raw sensor and actuator 

data at time 𝓉 be (𝓉) = [𝓍1(𝓉), . . . . . , 𝓍𝓃(𝓉)] . Temporal 

behavior is captured using first-order differences. 

 

𝓍𝒾(𝓉) = 𝓍𝒾(𝓉) − 𝓍𝒾(𝓉 − 1),̇  
 

which highlight abrupt changes. Interdependencies 

among components are modeled using the correlation 

feature as 

𝜌𝒾𝒿 =
𝒸ℴ𝑣(𝓍𝒾, 𝓍𝒿)

𝜎𝑥𝑖
𝜎𝑥𝑗

. 

 

To assess control integrity, a control–physical 

mismatch is defined as 

𝑒(𝑡) = |𝑥𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑡) − 𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)|.  

 

The feature vector created merges raw, temporal, 

relational, and consistency features. The system 

demonstrates strong capabilities to identify abnormal 

behavior in CPS through its detection system while 

maintaining adaptable system performance under different 

operational conditions. 

 

4.4. Anomaly Detection 

The anomaly detection layer models normal CPS 

behavior using attack-free data. Let the feature vector be 

𝑓(𝑡). An Isolation Forest assigns an anomaly score as 

𝑠(𝑓) = 2
−

𝐸(ℎ(𝑓))

𝑐(𝑁)
,
 

 

where shorter path lengths indicate anomalies. In 

parallel, an LSTM autoencoder captures temporal patterns 

by minimizing reconstruction error as  
 

𝐿 = ‖𝑓(𝑡) − 𝑓(𝑡)‖ 

 

If 𝑠(𝑓) or 𝐿 exceeds a threshold, anomalous behavior is 

detected and forwarded to the resilience layer. 

 

4.5. Resilience-First Security Framework 

The resilience-first security framework prioritizes 

sustaining CPS functionality during attacks or failures. 

System behavior is modeled as a finite state machine 𝑆 =
{𝑠𝑛 ,𝑠𝑑 , 𝑠𝑖 , 𝑠𝑟} for normal, degraded, isolated, and recovered 

states, with transitions defined by anomaly severity ∝ (𝑡): 
 

𝑠(𝑡 + 1) = 𝑓(𝑠(𝑡), 𝛼(𝑡)) 
 

System resilience is measured as 𝑅(𝑡) =
𝑄(𝑡)

𝑄0
, 

where 𝑄(𝑡) denotes current service quality. When 𝑅(𝑡) 

drops below a threshold, adaptive responses such as 

isolation or reconfiguration are triggered. Recovery follows 
 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛽(1 − 𝑅(𝑡)), 

ensuring controlled recovery and continuity of critical CPS 

operations. 

 

4.6. Recovery and Resilience Evaluation 

Recovery and resilience evaluation assesses how 

effectively the CPS restores functionality after disruptions. 

Let system performance be 𝑄(𝑡), with nominal value 𝑄0. 

The recovery time 𝑇𝑟 is defined as 
 

𝑇𝑅 = 𝑚𝑖𝑛{𝑡|𝑄(𝑡) ≥ 𝜂𝑄0}, 
 

  where 𝜂 is an acceptable recovery threshold. Service 

degradation is measured as 

𝐷 = 1 −
𝑚𝑖𝑛

𝑡

𝑄(𝑡)

𝑄0

. 

A composite resilience index is computed as 

𝑅𝐼 =
1

𝑇𝑟

∫
𝑄(𝑡)

𝑄0

𝑡𝑟

𝑡0

𝑑𝑡, 

This captures both the performance loss and the speed 

of recovery. Higher values of RI mean greater resilience, 

which allows for a quantitative comparison of the various 

recovery strategies against different attack scenarios. 

 

5. Results and Discussion 
In this section, the experimental results obtained using 

the proposed CPS-aware framework are presented and 

analyzed. The results evaluate data quality improvement, 

interoperability-driven dependency modeling, cascading 

failure behavior, system-level risk evolution, and resilience 

performance under cyber-physical attack scenarios. 

Quantitative and visual analyses are used to demonstrate the 

effectiveness of the proposed approach in enhancing data 

integrity, risk awareness, and overall CPS resilience. 

 

5.1. Data Quality Analysis and CPS-Aware Repair 

Figure 3 shows the time-related attributes and coverage 

of the SWaT data in normal and attack states. Figure 3(a) 

shows that the gaps in time are timed in the normal operation 

of CPS, where sampling is very constant, with about 97-

98% of time stamps occurring after the nominal time 

interval of 1 s, with only occasional gaps, which are usually 

few, up to 210 seconds. Conversely, Figure 3(b) indicates 

that attack patterns are more frequent and compact in time, 

with nearly 25-30 percent of samples having irregular 

sampling and longer pauses over 50s, which means that 

there is a serious interference in CPS communication. 

Figure 3(c) illustrates the temporal coverage of the dataset, 

as the normal data is clearly separated into operation phases, 

one of which is the attack data, also in 4 days, which allows 

a valid training and evaluation. 
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Fig. 3 (a) Temporal gaps observed during normal CPS operation, (b) Temporal gaps during cyber-physical attack scenarios 

 

 
(c) Temporal coverage of normal and attack data in the SWaT dataset 

 

 
Fig. 4 Total missing values in normal data before and after CPS-aware repair 

 

Figure 4 demonstrates the efficiency of the proposed 

CPS-aware data repair mechanism, which is indicated by the 

comparison of the overall number of values in normal 

operational data prior to and after repair. Before repair, the 

dataset includes a number of 7106 missing samples in a 

variety of sensors and actuators, which is a severe data 

incompleteness common to the real-world context of CPS.  

 

With the CPS-aware repair strategy, the missing values 

are minimized to almost no values, which is equivalent to 

100 percent data improvement.  

 

This significant decrease guarantees that the time 

remains continuous, maintains physical consistency, and 

offers a sound database to be used later on in detecting 

anomalies, cascading failures, and resiliency testing. 

Figure 5 shows the impact of data repair based on CPS-

awareness on typical sensor and actuator signals. Figure 5(a) 

contrasts the original and the Himwire AIT201 sensor 

signal, in which the original data have incomplete gaps and 

sample losses. A signal is then restored after repairs into a 

continuous time series of irregular values with constant 

values centered on 262 units, removing missing points in 

about 5,000 samples. The MV101 actuator condition before 

and after repair is depicted in Figure 5(b). The raw actuator 

values display discontinuities because of the missing values, 

and the signal with the repair maintains the discrete 

operational state at state = 2 throughout the time. These 

findings indicate that the suggested repair mechanism 

recovers both the temporal continuity and preserves the 

physical consistency as well as functionality limitations of 

both continuous sensors and discrete actuators. 
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Fig. 5 (a) AIT201 sensor signal before and after CPS-aware data repair, (b) MV101 actuator state before and after CPS-aware data repair 

 

5.2. Interoperability and Cascading Dependency Modeling 

of CPS Subsystems 

Figure 6 shows the logical structure of interoperability 

and cascading dependency of CPS subsystems in the SWaT 

water treatment process. In Figure 6(a), the directed 

interoperability graph is provided, where the execution of 

functions and communication dependencies between 

treatment processes are presented in a sequence, i.e., Raw 

Water Intake (CPS-1) to Chemical Dosing (CPS-2), 

Filtration (CPS-3), Storage (CPS-4), and Distribution (CPS-

5). Figure 6(b) is an extension of this model with added 

weighted inter-CPS cascading dependencies, which are 

edge weights used to quantify the strength of propagation of 

attacks or failures. It is significant that the dependencies are 

witnessed to be greater between CPS-1 and CPS-2 (0.57), 

CPS-2 and CPS-3 (0.57), and CPS-3 and CPS-4 (0.46), and 

lower (0.37) between CPS-4 and CPS-5. Such weighted 

relationships indicate important propagation paths and 

sensitivities of subsystems to be used in resilience-aware 

security analysis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 (a) Logical interoperability graph of CPS subsystems in the SWaT process, (b) Weighted inter-CPS cascading dependency graph 

illustrating propagation strengths 

 

Figure 7 shows how CPS-aware data repair technology 

affects interconnected CPS systems and their failure 

propagation through multiple systems. The first part of 

Figure 7(a) shows the complete missing value count from 

normal operational data before all repairs and after all 

repairs. The system shows 7 million missing samples before 

repair, but the CPS-aware repair system successfully brings 

missing values down to zero, resulting in 100 percent 

recovery success. Figure 7(b) shows how failure 

propagation delays between CPS subsystems lead to more 

than 49 seconds of delay from Chemical Dosing to 

Filtration, which compares to 1 to 2 seconds of delay that 

occurs during other subsystem transitions. Figure 7(c) 

shows all cascading failure occurrences during attack 

scenarios, which show that the Filtration to Storage 

connection suffers from 23 events, showing its most critical 

weak point. The research results show better data protection 

and the discovery of important paths that help safeguard 

CPS systems through resilience-aware security measures. 
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(a) 

 
(b) 

 
(c) 

Fig. 7(a) Total missing values in normal data before and after CPS-aware repair, (b) Cascading failure propagation delays across CPS 

subsystems,  (c) Observed cascading failure events during attack scenarios
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The SWaT plant system uses its interoperable CPS 

system to show its system breakdown through its sensor and 

actuator distribution across different operational parts, as 

shown in Figure 8. The Raw Water Intake (CPS-1) system 

uses 2 sensors and 3 actuators to establish essential control 

points, which allow for basic operational control. The 

Chemical Dosing (CPS-2) system uses 4 sensors and 7 

actuators to establish a complex operational control system. 

The Filtration (CPS-3) system uses 3 sensors and 6 

actuators, while the Storage (CPS-4) system uses 4 sensors 

and 5 actuators to create an operational balance between 

monitoring and actuation needs. The Distribution stage 

(CPS-5) shows its operational importance through its 12 

sensors and 5 actuators, which create the highest 

measurement capacity of the system. The subsystem-level 

decomposition enables model development for system 

interoperability testing together with studies that assess 

system strength through resilience testing. 

 

 
Fig. 8 CPS subsystem-wise distribution of sensors and actuators in the SWaT plant 

 

5.3. Dependency-Aware System Risk Analysis 

Figure 9 shows the dependency-aware system risk 

development of a cyber-physical attack. The system is under 

a low-to-moderate risk regime at the start of the observation 

period, and the risk scores are in the range of around 0.1 to 

0.5. The system risk increases rapidly and levels off in a 

high-risk state after the start of the attack (around time index 

15,000) and spends over 30,000 samples in the 0.85-0.95 

range, suggesting that the CPS dependencies continue to 

propagate the impact. There is partial mitigation and 

recovery at the end of the sequence (at time index 48,000) 

with the risk level returning to around 0.4-0.6. This time-

dependent behavior underscores how the inter-CPS 

dependencies are able to increase and maintain risk at the 

system level when attacked. 

 
Fig. 9 Dependency-aware system risk evolution during a cyber-physical attack 

0

2

4

6

8

10

12

14

16

18

CPS_1 Raw_Water_Intake CPS_2_Chemical_Dosing CPS_3_Filtration CPS_4_Storage CPS_5_Distribution

N
u

m
b

er
 o

f 
S

ig
n

al
s

Interoperable CPS Decomposition of SWaT Plant

Sensors Actuators



Abdinasir Ismael Hashi / IJCSE, 13(1), 16-29, 2026 

 

25 

Figure 10 shows how often they saw different values 

for the risk scores of a dependency-aware system during 

attack scenarios. The histogram reveals a bimodal pattern, 

with many samples falling in the high-risk area between 

0.85 and 0.95—this accounts for roughly 55 to 60 percent 

of all observations. Another spread can be seen in low-to-

moderate risk levels from 0.1 to 0.6, which relates to pre-

attack and transitional phases. A strong skew toward higher 

risk values is noted, indicating that inter-CPS 

dependencies continue to amplify risks over extended attack 

durations. 

 
Fig. 10 Distribution of dependency-aware system risk scores during attack scenarios 

 

5.4. Local vs System-Level Risk Propagation 

Figure 11 shows the comparison of local anomaly 

scores of CPS-3 (Filtration) subsystem to the resulting 

dependency-conscious system-level risk in attack 

conditions. The local CPS anomaly varies with the zone, 

mostly between 0.1 and 0.6, and spikes to 0.9 when the area 

is disturbed. Conversely, the aggregate system risk is 

characterized by a continuous trend following the onset of 

the attack (around time index 15,000) and level off within 

the 0.85 0.95 range over a greater number of samples 

(30,000). Although the local anomaly is moderate (= 

0.350.45), the risk on the system-level is critically high, and 

the system is highly risk-amplifying, with inter-CPS 

dependencies and propagation effects. 

 

 
Fig. 11 Local versus system-level risk for the CPS-3 (Filtration) subsystem during attack conditions 

 

The high-risk system states, characterized by a 

dependency-conscious risk score having a value above the 

threshold of 0.8, occur over time as shown in Figure 12. 

Only high-risk spikes that are isolated are observed during 

the first phase, covering less than 5 percent of the timeline. 

Once the escalation of the attack (around time index 15,000) 

is experienced, the system enters a sustained high-risk 

mode, where the risk measure remains in a high-risk state 

for more than 30,000 consecutive samples, accounting for 

approximately 60% of the observation period. Later in the 

sequence (when the time index reaches 48,000), the high-

risk condition partially deactivates, which implies partial 

mitigation and recovery. This number shows long-term 

critical exposure caused by the amplification of inter-CPS 

dependency. 
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Fig. 12 High-risk system state (risk > 0.8) during cyber-physical attack 

 

5.5. CPS Contribution and Risk Amplification 

Figure 13 presents the complete risk profile, which 

shows how different subsystems of CPS systems respond 

with their distinct attack patterns. Figure 13(a) shows the 

system risk, which results from different CPS components, 

where Chemical Dosing (CPS-2) contributes the most with 

its 0.75 risk value, and Distribution (CPS-5) and Storage 

(CPS-4) follow behind with their 0.65 risk values. Filtration 

(CPS-3) contributes moderately to the system because its 

value equals 0.35, while Raw Water Intake (CPS-1) shows 

the lowest system contribution at approximately 0.21. 

Figure 13(b) reports the mean anomaly level across 

subsystems, which closely matches this trend because CPS-

2 reaches approximately 0.76 while CPS-4 and CPS-5 

exceed 0.65. Figure 13(c) displays how systemwide risk 

levels increase because of CPS dependencies, which show 

CPS-1 as the most powerful system with its 3.3 

amplification factor, while CPS-3 shows moderate risk 

increase at 2.0, and both CPS-4 and CPS-5 stay close to one 

at 1.0. The results show which subsystems create the highest 

risk, which leads to greater risk throughout the system. 
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Fig. 13(a) Average CPS contribution to system risk, (b) Mean anomaly level across CPS subsystems, (c) System-level risk amplification due to 

CPS dependencies 

 

5.6. Resilience Evaluation and Recovery Behavior 

Figure 14 shows the resilience curve of the CPS, which 

demonstrates the system behavior in the detection, 

escalation, and recovery stages. The risk in the system 

before the attack is between 0.1 and 0.6, sometimes reaching 

the early-warning limit of 0.6. The attack starts at a time 

index of about 4,000, and the risk starts climbing at a very 

high rate and reaches a critical point of 0.8 at a time index 

of 15,000. The system is in critical condition (0.85 -0.95), 

with almost 30,000 samples, which is a sign of a protracted 

effect. After the mitigation (time index 48,000), the risk 

becomes 0.4 -0.6, which proves the regulated recovery and 

endurance. 

 

 
Fig. 14 Resilience curve showing detection, escalation, and recovery of system risk 

 

Figure 15 displays the important resilience measures of 

CPS during the attack on a log scale to compare them with 

other magnitudes. The latency of detection is also low, and 

it occurs in the range of 1-2 samples, meaning that the 

latency is very fast. The time to critical risk is about 1.2×10³ 

samples, which represents the time taken before the first 

evidence of the critical threshold (risk > 0.8) is reached. The 

duration of effect is the most significant in the resilience 

profile and reaches almost 3 × 104 samples, which indicates 

that the system is exposed to high levels of risk. The 

recovery period is relatively short, approximately 2.5 × 10¹ 

samples, which illustrates effective mitigation after 

recovery efforts have been initiated. The ensuing index of 

resilience is around 0.03, which represents the overall 

effects of speed of detection, level of impact, and efficiency 

of recovery. 
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Fig. 15 Log-scaled resilience metrics summarizing detection, escalation, impact, and recovery behavior 

 

6. Conclusion and Future Scope 
This paper suggested a resilience-based security 

architecture for interoperable CPS in smart infrastructure 

settings. The framework mitigates the shortcomings of 

prevention-oriented CPS security methods by combining 

data quality improvement, interoperability-sensitive 

dependency modeling, and resilience-informed risk 

analysis. Experimental validation on SWaT industrial water 

treatment data found grievous incompleteness of data in the 

dataset, where there were about 7 × 10 6 absent samples in 

normal operation data. The suggested CPS-respecting repair 

mechanism was successful in minimizing missing values to 

close to zero and has almost 100% improvement in data 

completeness without affecting physical and operational 

constraints. Dependency modeling revealed pathways of 

critical propagation among CPS subsystems with 

dependency weights greater between CPS-1-CPS-2 and 

CPS-2-CPS-3 (0.57), whereby cascading effects during 

attacks can take place. Dependency-based risk analysis at 

the system level revealed that the dependency-sensitive risk 

escalation is high and stays within the 0.85-0.95 interval in 

a large sample (30,000), and over 60 percent of the timeline 

was in a high-risk state (risk greater than 0.8). Chemical 

Dosing (approximately 0.75) and Distribution 

(approximately 0.65) were found to be a major source of 

risk. The assessment of resilience revealed speedy detection 

in 1-2 samples, restoration in 25 samples, as well as a 

composite index of resilience of 0.03, which proved that the 

framework is effective in maintaining CPS functionality and 

in controlled recovery in the event of a cyber-physical 

attack. 

 

Future work will extend the proposed framework to 

real-time deployment and cross-domain CPS environments 

by incorporating adaptive learning, online dependency 

modeling, and large-scale validation across heterogeneous 

smart infrastructure systems. 
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