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ABSTRACT: 

 

The recent digital transmission systems impose the application of channel equalizers with short training 

time. Equalization techniques compensate for the time dispersion introduced by communication channels. Adaptive 

equalization is the technique used to reliably transmit data through a communication channel. Ideally, if the channel 

is ideal, we can demodulate the signal perfectly at the output without causing any error. However, in practice, all 

the channels are non-ideal and noisy in nature. So, to recover the original signal after demodulation, equalization 

filter is used, which will minimize the error between original transmitted signal and demodulated signal passed 

through equalization filter. Given a channel of unknown impulse response, the purpose of an adaptive equalizer is to 

operate on the channel output such that the cascade connection of the channel and the equalizer provides an 

approximation to an ideal transmission medium. A replica of transmitted sequence is made available at the receiver 

in proper synchronism with the transmitter, thereby making it possible for adjustments to be made to the equalizer 

coefficients in accordance with the LMS algorithm employed in the equalizer design. In this paper, an overview of 

the current state of the art in adaptive equalization technique has been presented for the different binary encoded 

sequences like Unipolar, polar and bipolar  with and without return to zero encoding.  
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1.0  INTRODUCTION  

 

          An adaptive equalizer is an equalization filter that automatically adapts to time-varying properties of the 

communication channel [1]. It can be implemented to perform tap-weight adjustments periodically or continually. 

Periodic adjustments are accomplished by periodically transmitting a preamble or short training sequence of digital 

data known by the receiver. Continual adjustment are accomplished by replacing the known training sequence with a 

sequence of data symbols estimated from the equalizer output and treated as known data. When performed 

continually and automatically in this way, the adaptive procedure is referred to as decision directed. If the 

probability of error exceeds one percent, the decision directed equalizer might not converge. A common solution to 

this problem is to initialize the equalizer with an alternate process, such AR and MA Processes to provide good 

channel-error performance. 

 

The need for equalizers [2] arises from the fact that the channel has amplitude and phase dispersion which 

results in the interference of the transmitted signals with one another. The design of the transmitters and receivers 

depends on the assumption of the channel transfer function. But, in most of the digital communications applications, 

the channel transfer function is not known at enough level to incorporate filters to remove the channel effect at the 

transmitters and receivers. 

Adaptive equalization is the technique used to reliably transmit data through a communication channel. Ideally, if 

the channel is ideal, we can demodulate the signal perfectly at the output without causing any error. However, in 

practice, all the channels are non-ideal and noisy in nature. So, to recover the original signal after demodulation, our 

aim is to find an equalization filter which will minimize the error between original transmitted signal and 

demodulated signal passed through equalization filter. Least Mean Square (LMS), has been proposed to perform this 

operation of equalization. Here our intention is to adjust the tap weights and calculate the error performance for the 

different binary encoded signals like Unipolar and polar and bipolar encoded sequences with and without return to 

zero. 

The rest of this paper is organized as follows. In section 2,explains the modeling of the communication 

channel. The 3rd section narrates the basic concept Channel equalization. Section 4 explains the detailed analysis of 

LMS Algorithm. The 5th section gives the results and discussion. Section 6 concludes the papers along with future 

research directions are discussed. 
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2.0 Modeling the communication channel   

 

We assume the impulse response of the channel in the form 
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Here both the MA Process and AR Processes are used to perform  the equalization process 

The number of transverse equalization filter coefficients are being considered are 11, the weights (parameter) of the 

filter are symmetric with respect to the middle tap (n=5) and the channel input is delayed by 7 units to provide the 

desired response to the equalizer. 

3.0  CHANNEL EQUALIZATION 

 

          An equalization filter typically allows the user to adjust one or more parameters that determine the overall 

shape of the filter's transfer function as explained in the earlier section. Equalizers are used to overcome the negative 

effects of the channel. Different kinds of Equalizer are available in the literature like Adaptive Equalizer, 

Fractionally Spaced Equalizer, Blind Equalization, Decision-Feedback Equalization, Linear Phase Equalizer, T-

Shaped Equalizer [3], Dual Mode Equalizer[4] and Symbol Spaced Equalizer. Our concentration is only the adaptive 

equalizer consists of a tapped delay line [5] and adaptive algorithm (LMS Algorithm). The equalizer outputs a 

weighted sum of the values in the delay line and updates the weights to prepare for the next symbol period. The 

general channel and equalizer pair and the structure of adaptive equalizers are depicted in Figs.1&2 respectively. 

 

 

 

 

 

 

Fig.1: The general channel and equalizer pair 

 
Fig.2: The block diagram of adaptive equalization equipment  

 

To transmit a digital message, which can be a sequence of bits corresponding to voltage levels in 

modulation technique, through a noisy communication channel with impulse response given by h(n). We can 

simplify the channel complexity by assuming that the channel noise is AWGN (Additive White Gaussian Noise) in 

nature and is independent of transmitted signal. So, the received signal u(n) at the demodulator can be given 

equation 1, 
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where d(n) is the transmitted digital message, L is the length of  FIR approximation of channel distortion 

filter[6]. Our aim is now to determine )(nd


 such that Mean square error J, the difference between d(n) and )(nd


 
is 

minimized. 


 )()()( ndndne  

))(( 2neEJ         2 

We determine )(nd


 
using the adaptive equalizer based on LMS algorithm shown in Fig.2. 

4.0 LMS Algorithm 

  To make exact measurements of the gradient )(nJ  vector at each iteration n, and if the step-size 

parameter is suitably chosen, then the tap-weight vector computed by using the steepest descent algorithm would 

converge to the optimum wiener solution [7]. The exact measurements of the gradient vector are not possible and 

since that would require prior knowledge of both the autocorrelation matrix R of the tap inputs and the cross 

correlation vector  between the tap inputs w(n)  and the desired response d(n), the optimum wiener solution could 

not be reached [8].   

 

Consequently, the gradient vector must be estimated from the available data when system is operated in an 

unknown environment.The least mean squares (LMS) algorithms adjust the filter coefficients to minimize the cost 

function. Assuming that all the signals involved are real-valued signals the LMS the elements for LMS algorithm are 

(Haykin, 1996; Hayes, 1996)  
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 Equations (5) and (6) define the estimation error )(ne , the computation of which is based on the 

current estimate of the tap weight vector )(nw . Note that the second term, on the right hand side of equation (6) 

represents the adjustments that are applied to the current estimate of the tap weight vector )(nw . The iterative 

procedure is started with an initial guess )0(w .The algorithm described by equations (5) and (6) is the complex 

form of the adaptive least mean square (LMS) algorithm. At each iteration or time update, this algorithm requires 

knowledge of the most recent values )(nu , ).()( nwnd
 
The LMS algorithm is a member of the family of 

stochastic gradient algorithms. In particular, when the LMS algorithm operates on stochastic inputs, the allowed set 

of directions along which we “step” from one  iteration to the next is quite random and therefore cannot be thought 

of as consisting of true gradient directions.  

     5.0 Results and Discussion  

 

    The LMS algorithm is one of the powerful adaptive algorithm for equalization of  the communication channel. 

This has been done by considering the binary encoded signals namely Unipolar with and without return to zero, 

Polar with and without return to zero and bipolar with and without return to zero encoding schemes. For all these 

schemes the AR and MA processes are employed to equalize the communication channel and also analyzed the   

learning curves for the various values of  learning rates. The simulation of adaptive equalization and corresponding 

learning curve also depicted in the Figs. Fig. 4 -15. From the Fig. 4,6,8,10,12 and 14 is observed that the noise has 

been reduced much but some part of the signal is missing when Autoregressive Process(AR) is used in the adaptive 

equalization using LMS Algorithm. Even though the nose reduction with Moving Average process (MA) is less 

compared to the AR Process, It is inferred from the Figs.5,7,9,11, 13 and 15 that the equalized channel output 

appears  almost same as the transmitted one.. The learning curves corresponding to all binary encoding schemes are 

also depicted though the Figs. 4-15. From the learning curves, it is observed that  the algorithm converges  fast  as 

http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_algorithms/#categorize
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_algorithms/#categorize
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_algorithms/#categorize
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the step size µ increases. However, we can’t increase the step size to any value as condition for convergence 

requires that step size should be less than the inverse of energy of the correlation matrix of received signal. One of 

the most important observations from these learning curves is that the algorithm converges faster for channel 

corresponding Channel parameters 

              
                                                       (a)                                                                   (b) 

Fig.4. (a) Adaptive equalization of  LMS Algorithm using AR Process of Unipolar WRZ 

          ( b) Corresponding performance Curve 

 
Fig.5. (a) Adaptive equalization of  LMS Algorithm using MA Process of Unipolar WRZ 

          ( b) Corresponding performance Curve 

  
Fig.6. (a) Adaptive equalization of  LMS Algorithm using AR Process of  Polar WRZ  

          ( b) Corresponding performance Curve 
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Fig.7. (a) Adaptive equalization of  LMS Algorithm using MA Process of Polar WRZ  

          ( b) Corresponding performance Curve 

 
Fig.8. (a) Adaptive equalization of  LMS Algorithm using AR Process of Bipolar WRZ  

          ( b) Corresponding performance Curve 

  
Fig.9. (a) Adaptive equalization of  LMS Algorithm using MA Process of  Bipolar WRZ  

          ( b) Corresponding performance Curve 

 

 
Fig.10. (a) Adaptive equalization of  LMS Algorithm using AR Process of  Unipolar RZ  

          ( b) Corresponding performance Curve 

  
Fig.11. (a) Adaptive equalization of  LMS Algorithm using MA Process of  Unipolar RZ  
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          ( b) Corresponding performance Curve 

 

 
Fig.12. (a) Adaptive equalization of  LMS Algorithm using AR Process of  polar RZ  

          ( b) Corresponding performance Curve 

  
 

Fig.13. (a) Adaptive equalization of  LMS Algorithm using MA Process of  polar RZ  

          ( b) Corresponding performance Curve 

  
Fig.14. (a) Adaptive equalization of LMS Algorithm using AR Process of Bipolar RZ  

          ( b) Corresponding performance Curve 

  
Fig.15. (a) Adaptive equalization of  LMS Algorithm using MA Process of  Bipolar RZ  
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          (b) Corresponding performance Curve 

 

6.0 CONCLUSION 

In this paper, the LMS algorithm is giving a very good convergence results for chosen value of step size 

However, the no. of iterations required for convergence of algorithm is in the order of thousands. By comparing the 

schemes of AR and MA Processes of adaptive equalization it is concluded that even though the amount of noise 

reduction using MA Process equalization is less compared to AR process ,MA Process give better equalization and 

good convergence  of the algorithm.  

7.0 REFERENCES 
[1] Symon Haykin, Communication system  John wiley & sons 3rd edition,1996. 

[2] Garima Malik, Amandeep Singh Sappal, Adaptive Equalization Algorithms:An Overview, International Journal of Advanced Computer 

Science and Applications, Vol. 2, No.3, March 2011 

[3] B.P.Lathi, Modern Digital and analog Communications system. 

[4] Zhou Jiang, Zhi Liu, Rong-Hua Jin and Xiao-Yang Zen (2006) Design of Dual-mode Equalizer for QAM Demodulator in FPGA,8th 

International Conference on Solid-State and Integrated Circuit Technology  

[5]  Ms.Manpreet kaur, Ms. Cherry, Design of an Adaptive Equalizer Using LMS Algorithm, Journal of Electronics and Communication 

Engineering, Volume 9, Issue 1, Ver. I (Jan. 2014), PP 25-29 

[6] B. Widrow and S.D. Sterns, Adaptive Signal Processing, Prentice Hall, New 

York, 1985 

[7] Jashvir Chhikara, agbir Singh,  Noise cancellation using adaptive algorithms, International Journal of Modern Engineering Research 

,Vol.2, Issue.3, May-June 2012 pp-792-795 

[8] B. Widow, "Adaptive noise canceling: principles and applications", Proceedings of the IEEE, vol. 63, pp. 1692-1716, 1975.  

 

 

 

K.Nagi Reddy  born in 1974 in a remote village in Andhra Pradesh, INDIA and completed AMIETE in the year 

1996,obtained M.Tech from JNT University in the year 2001 and he received Ph.D from SV University, Tirupati in 

June 2013  .He worked as associate lecture in Vasavi polytechnic Banaganapalli, Kurnool(DT) during 1997-1999. In 

the year 2001 he joined as Assistant Professor in CBIT, Ganipet, Hyderabad. In June 2002  he  joined as Assistant 

Professor at NBKR Institute of Science & Technology, Vidyanagar, Nellore(Dt), promoted as Associate Professor in 

may 2006.Presently working as Professor in the department of ECE at the same organization. He has published more 

than 14 National and International journal/conferences. He is life Member of ISTE, IETE. His area of interest 

includes Signal Processing and Communication. 

 


