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Abstract 

The paper describes determination of GPS 

receiver position using Bancroft algorithm. The 

position is determined by obtaining pseudo ranges 

from seven different GPS satellites. The measured 

ranges do not represent the true ranges as the signal 

coming from a GPS satellite will be affected by 

various errors like Ephemeris error; Propagation 

error in the form of Ionospheric and Tropospheric 

delays; Satellite and Receiver clock biases with 

respect to GPS Time (GPST); Multipath error etc. 

Most of these errors can be estimated accurately and 

can be accounted for. In this paper some standard 

mitigation techniques have been applied for the 

estimation of GPS errors and user position is then 

determined using Bancroft algorithm technique after 

making appropriate corrections. GPS data of 

Chitrakut station available in RINEX (Receiver 

Independent Exchange) format have been used for 

this purpose  
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I. INTRODUCTION 

A GPS user estimates an apparent or pseudo 

range to each SV (Satellite Vehicle) by measuring the 

transit time of the signal.  Using the pseudo ranges, 

user position in 3-D (latitude, longitude and height) 

and the time offset between the transmitter and 

receiver clock can be estimated after making 

appropriate corrections for the observed 

pseudoranges. If the unknown coordinates of the user 

position are represented by   xu, yu  and zu   and the 

known positions of Satellite Vehicles are with  xj, yj, 

zj, (where  j = 1,2,3,4) in  ECEF coordinate system, 

the user position (in 3-D) and time offset „tu„ are 

obtained by simultaneously solving the nonlinear 

equations given below.  

 

      uujujujj ctzzyyxx 
222

 ; 

j =1, 2, 3, 4                                                      (1)                         

 

Where  

 

„c‟ is the free space velocity of electromagnetic 

signals in m/s. 

The ranges measured from satellites are 

called pseudo ranges since biases in the receiver 

clock prevent the precise measurement of actual 

ranges (true ranges). To determine the receiver  

 

 

 

 

 

 

 

 

 

 

position accurately, all the errors have to be estimated 

and compensated for. In this paper, the ionospheric 

delay is estimated using Klobuchar model [3]. 

Hopfield model has been used for the estimation of 

tropospheric delay. Satellite clock bias and the 

Relativistic effects also have been estimated and 

corrected.  

II. GPS ERRORS 

A. Ephemeris Errors 

 To compute the pseudo range of the user 

with respect to a satellite, the user should know 

theposition of the satellite. This information 

transmitted by the satellite as part of the navigation 

message. The position of the satellite is dynamic one 

and is influenced by gravitational field, solar 

pressures. The estimation of the position by a ground 

master control station is subject to errors due to clock 

drifts and processing delays in the monitoring 

stations. 
The estimated positions of the satellites are 

uploaded periodically to the respective ones. The 
errors in the estimation of the satellites position results 
into the pseudo range errors and are to be corrected at 
`the user level. The rms ranging error attributable to 
ephemeries error is about 2.1m 

 

B. Multipath Effects 
 Multipath error results from the combination 

of signals from more than one propagation path, 
distorting the signal characteristics. Sometimes the 
reflected signal is as strong as the direct signal. The 
magnitude of multipath error depends on the strength 
of the reflected signal and the ability of user‟s antenna 
to resist the reflected signal. The strength of the 
reflected signal is dependent on a reflection co-
efficient of the reflecting surface that varies not only 
with a difference in the ground coarseness, but also 
with a difference in ground plant quills. A reduction of 
multipath effect may also be achieved by digital 
filtering, wideband antennas, and radio frequency 
absorbent antenna ground planes. Multipath error 
ranges from 1.2m to 2.7m.  
 
 
C. Satellite Clock Error 

 Although all the satellites carry atomic 
clocks that are very accurate, these can deviate from 
GPS system time (GPST), which results in pseudo 
range error. GPS Time (GPST) is a composite time 
scale derived from the times kept by clocks at GPS 
monitor stations and aboard the satellites and is used 
as the reference time. Ranging errors induced by clock 
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errors are of the order of 3.0m. The Master Control 
Station determines the clock error of each satellite and 
transmits clock correction parameters to the satellites 
for rebroadcast of these in the navigation message. 
The receiver using these parameters implements 
correction. 

The SV clock correction for the C/A code 
pseudo range observation is given by the expression: 

ts=af0 + af1 * (t - toc) + af2 * (t - toc)
2 + tr 

       (2)                                                               
af0 = clock bias (sec) 
af1 = clock drift (sec/sec) 
af2 = frequency drift (sec/sec2) 
toc = clock data reference time (sec) 
t = current time epoch (sec) 

tr = correction due to relativistic effects (sec) 
 

D. Relativistic Effects 
 Both general and special theories of relativity 

affect the satellite clock. Need for general relativistic 
corrections arise when the signal source (satellite) and 
signal receiver (GPS receiver) are located at different 
gravitational potentials. Special relativity relativistic 
corrections arise any time the signal source or the 
signal receiver is moving with respect to the chosen 
isotropic frame, which in the GPS system is the ECI 
frame. In order to compensate for both of these 
effects, the satellite clock frequency is adjusted to 
10.22999999545 MHz prior to launch. The frequency 
observed by the user at sea level would be 10.23 
MHz, hence the user does not have to correct for this 
effect. 

 But the user has to make a correction for 
another relativistic effect that arises because of the 
slight eccentricity of the satellite orbit. When the 
satellite is at perigee, the satellite velocity is higher 
and the gravitational potential is lower because of 
which the satellite clocks run slower. When the 
satellite is at apogee, the satellite velocity is lower and 
the gravitational potential is higher and the satellite 
clocks run faster. This effect can be compensated as 
follows 

tr= Fe a SinEk                      (3)  
F= -4.4442807633 x 10 –10 sec/m     
e = satellite orbital eccentricity 
a = semi major axis of the satellite orbit 

Ek = eccentric anomaly of the satellite orbit       
Due to rotation of the Earth during the time of signal 
transmission, a relativistic error is introduced which is 
called the sagnac effect. During the propagation time 
of the SV signal transmission, a clock on the surface 
of the earth will experience a finite rotation with 
respect to the resting reference frame at the geocenter. 
If the user experiences a net rotation away from SV, 
the propagation time will increase and vice versa. 

 

E. Atmospheric Errors 
 The satellite signals propagate through 

atmospheric layers as they travel from the satellite to 
the receiver. Two layers are generally considered 
when dealing with GPS: the Ionosphere, which 
extends from a height of 70 to 1000 km above the 
Earth, and the Troposphere which stretches to about 

16 kms. Above the equator and 9 kms. Above the 
poles from the surface of the earth. 
 As the signal propagates through the 

ionosphere, the carrier experiences a phase advance 

and the codes experience a group delay. In other 

words, the GPS code information is delayed resulting 

in the pseudo ranges being measured too long as 

compared to the geometric distance to the satellite. 

(Hofmann-Wellenhof, 1992). The extent to which the 

measurements are delayed depends on the Total 

Electron Content (TEC) along the signal path, which 

is a measure of the electron density. Further this is 

dependent on three factors: the geomagnetic latitude 

of the receiver, the time of day and the elevation of 

the satellite. Significantly larger delays occur for 

signals emitted from low elevation satellites (since 

they travel through a greater section of the 

ionosphere), peaking during the daytime and 

subsiding during the night (due to solar radiation). In 

regions near the geomagnetic equator or near the 

poles, the delays are also larger (Parkinson, 1996). 

 The ionospheric delay is frequency 

dependent and can therefore be eliminated using dual 

frequency GPS observations; hence the two carrier 

frequencies in the GPS design. Single frequency 

users, however, can partially model the effect of the 

ionosphere using the Klobuchar model (Hofmann-

Wellenhof, 1992). Eight parameters of this model are 

transmitted along with other navigation data from the 

satellites. These parameters depend on the time of 

day and the geomagnetic latitude of the receiver. The 

model results in an estimate of the vertical 

ionospheric delay, which is then combined with an 

obliquity factor, dependent on satellite elevation, 

producing a delay for the receiver-satellite line of 

sight. The final value provides an estimate within 

50% of the true delay and produces delays ranging 

from 5m (night) to 30m (day) for low elevation 

satellites and 3-5m for high elevation satellites at mid 

latitudes. 

The troposphere causes a delay in both the 

code and carrier observations. Since it is not 

frequency dependent (within the GPS L band range) 

it cannot be canceled out by using dual frequency 

measurements but it can, however, be successfully 

modeled. The troposphere is split into two parts: the 

dry component, which constitutes about 90% of the 

total refraction, and the wet part, which constitutes 

the remaining 10%. Values for temperature, pressure 

and relative humidity are required to model the 

vertical delay due to the wet and dry part, along with 

the satellite elevation angle, which is used with an 

obliquity/mapping function. Models put forward by 

Hopfield, Black and Saastamoninen are all successful 

in predicting the dry part delay to approximately 1-

cm and the wet part to 5 cm. Ionospheric and 

tropospheric delays have been described in detail in 

the subsequent sections. 
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Ionospheric Delay: 

The vertical time delay for the code measurement is 

given by  

  3

4

2

1 2

t Aiono

v A
T A A Cos

 
                     (4) 

Where A1 = 5 nano seconds  
2 3

2 1 2 3 4

m m m

IP IP IPA            

A4 = 14h local time      
2 3

4 1 2 3 4

m m m

IP IP IPA            

The values for A1and A3 are constant, the coefficients 

i ,i , i = 1,2 --- 4 are uploaded to the satellites and 

broadcast to the user. The parameter„t‟ in Eq. (4) is 

the local time of the ionospheric point IP and may be 

derived from  

15

IP
UTt t


                                 (5) 

Where IP is the geomagnetic longitude positive to 

east for the ionospheric point in degrees and tUT is the 

observation epoch in Universal Time. 
m

IP is the 

spherical distance between the geomagnetic pole and 

the ionospheric point.  

 

Tropospheric Delay: 

 The tropospheric path delay is defined as 

 Trop n-1 ds       (6) 

In general, instead of the refractive index n the 

refractivity N is used. 

 Where the refractivity  Trop 6N 10 n-1  

Equation becomes 
Trop -6 Trop10 N ds    (7) 

The tropospheric delay can be estimated using several 

models which are described below: 

Hopfield (1969) shows the possibility of separating 

NTropinto dry and wet components as  
Trop

w

Trop

d

Trop NNN                  (8) 

Where the dry part results from the dry atmosphere 

and the wet part from the water vapor. 

Correspondingly the relations become 

dsN10 Trop

d

-6Trop

d  and dsN10 Trop

w

-6Trop

w   

  (9) 
Trop

w

Trop

d

Trop   

dsN10 Trop

d

-6Trop

d    + dsN10 Trop

w

-6   (10)

 About 90% of the tropospheric refraction 

arise from the dry component and 10% from the wet 

component. There are a number of models which give 

us the dry and wet refractivity at the surface of the 

earth (e.g., Essen and froom 1951).  

Dry component of refractivity is given by 

1-

11

Trop

od, mbK   64.77c    ,
T

p
cN   (11) 

Where p is the atmospheric pressure in millibar (mb) 

and T is the temperature in Kelvin (K).  Wet 

component is given by 

1-25

3

1-

2232

Trop

ow,

mb K 10 * 718.3c  

and mbK   96.12c    ,
T

e
c

T

e
cN





     (12) 

Where e is the partial pressure of water vapor in mb.  

According to Hopfield model the dry refractivity as a 

function of the height h above the surface is given by  
4

d

dTrop

od,

Trop

d
h

hh
Nh)(N 







 
   (13) 

Where hd = 40136 +148.72 (T – 273.16)   m. 

Substituting the above equation results in 

ds
h

hh
N 10

4

d

dTrop

od,

6Trop

d  






 
 

 (14) 

The integral can be solved if the delay is calculated 

along the vertical direction and if the curvature of the 

signal path is neglected. Thus, for an observation site 

on the surface of the earth (i..e., h=0), the above 

equation becomes 

dh
dh








h

0h

4

d4

d

Trop

od,

6Trop

d h)-(h 
h

1
N 10  (15) 

Where the constant denominator has been extracted. 

After integration, 















 |
0

5

4

d

Trop

od,

6Trop

d )(
5

1
-

h

1
N 10

dhh

h
d hh   (16) 

is obtained. The evaluation of the expression between 

the brackets gives 
5

5

dh
 so that 

dhTrop

od,

6
Trop

d N 
5

10

                (17) 

is the dry portion of the tropospheric zenith delay. 

The wet portion is much more difficult to model 

because of the strong variations of the water vapor 

with respect to time and space. Nevertheless, due to 

the lack of an appropriate alternative, the Hopfield 

model assumes the same functional model for both 

the wet and dry components. Thus, 

Trop

w

Trop

w NhN 0,)( 

4








 

w

w

h

hh
  ; Where the mean 

value  mhw 000,11                  (18) 

is used. Sometimes other values such as 

mhw 000,12  have been proposed. Unique values 

for dh  and wh  cannot be given because of their 

dependence on location and temperature.  

The integration of above equation results in  

whTrop

ow,

6
Trop

w N 
5

10

                  (19) 

Therefore, the total tropospheric zenith delay is 
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 wd hh Trop

ow,

Trop

od,

6
Trop NN

5

10




 (20) 

With the dimension in meters. The model in its 

present form does not account for an arbitrary zenith 

angle of the signal. Considering the line of sight, an 

obliquity factor must be applied which, in its simplest 

form, is the projection from the zenith onto the line of 

sight. Frequently, the transition of the zenith delay to 

a delay with arbitrary zenith angle is denoted as the 

application of a mapping function. 

Introducing the mapping function the above equation 

becomes 

 )(N)(N
5

10 Trop

ow,

Trop

od,

6
Trop EmhEmh wwdd 



      (21) 

Where )(Emd  and )(Emw  are the mapping 

functions for the dry and the wet part and E 

(expressed in degrees) indicates the elevation at the 

observing site (where the line of sight is simplified as 

straight line). Explicitly, 

)(Emd =

25.6sin

1

2 E
  (22) 

)(Emw =

25.2sin

1

2 E
  (23) 

Are the mapping functions for the Hopfield model. 

The above equation can be represented as 
Trop (E)= 

Trop

d  (E) + 
Trop

w (E)    (24) 

   

)(Trop

d E  

=
5

10 6

)11000]([
25.2sin

)10(718.396.12
22

5

T

e

E 


                        

                    (25) 

Measuring p,T,e at the observation location and 

calculating the elevation angle E, the total 

tropospheric path delay is obtained in meters by the 

equations. 

III.  BANCROFT ALGORITHM  

The set of nonlinear equations which 

represent the relationship between the unknown user 

position u = [xu, yu, zu] and the known satellite 

positions   sj = [xj, yj, zj] can be written as 

 

       2222

ujujujj zzyyxxb     (26)       

  

Where b is substituted for ctu 

Expanding the above equation leads to  

     2 2 2 2 2 2 2 22 0j j j j j u j u j u j u u ux y z x x y y z z b x y z b            

                                                 (27) 

Defining the Lorentz inner product as  

1 1 2 2 3 3 4 4,u v u v u v u v u v   
 

; 

Equation (27) can be written as 

, 2 , , 0j j js s s u u u  
     

                  (28) 

Equation (28) can be represented as 

0a Bu e  
  

and 

eauB


                       (29) 
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1
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2

u u 
 

 

If more than 4 satellites are observed, matrix B will 

not be a square matrix. The solution can be obtained 

using the least square method as given below 

(Bancroft, 1985).  

) ( eaBu


 
                       (30) 

Where 
TT BBBB 1)(    

IV. RESULTS AND CONCLUSIONS 

  RINEX data from Chitrakut station (Near 

IIT Kanpur) is used for this purpose. The observation 

data of 21st January 2006 at (0hrs.  0 min. 0 sec.) 

Have been used. Eight satellites    (SV PRN. Nos. 3     

8    11    13    19    23    27    28)are observed at the 

epoch time. Algorithms have been implemented to 

sort out the ephemeris data into matrix format and for 

the determination of satellites‟ position at the epoch 

time. By using clock correction parameters which are 

available as part of the Navigation message, the 

satellite clock bias and error due to relativistic effect 

have been obtained. The Ionospheric delay has been 

estimated using Kloubuchar model. All the eight 

coefficients for the implementation of 

Kloubucharmodel are available as part of Navigation 

message. The Tropospheric delay has been estimated 

using Hopfield method. The estimated errors and the 

corrected ranges have been represented in Table 1.  

All the calculations have been carried out by writing 

programs in MATLAB. The resultsare summarized 

below for Eight observed satellites with PRN nos. of   

3     8    11    13    19    23    27    at 0 hours, 0 minutes 

and 0 seconds of 21st January 2006are found to be 
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Table 1 : Estimation of Gps Errors and Correction of Pseudoranges 

Sv. 

No 

Az. 

(deg)  

El. 

(deg) 

Observed 

Pseudoranges 

(m) 

Sv. clock+ 

relativistic 

Error   (m) 

Ionosphe

ric  delay 

(m) 

Tropos

pheric 

Delay 

(m) 

Corrected 

Pseudoranges 

(m) 

3 89.75 46.29 21345372.96948 19048.06 1.9858 3.31 21364414.77196 

13 315 53.02 21123433.31848 9807.00 1.8118 2.996 21133235.19365 

16 45 21.03 23647148.85446 6064.55 3.1902 6.632 23653202.72782 

19 135 39.19 22030908.95548 -7308.55 2.2292 3.785 22023593.43306 

20 180 25.42 23234206.55447 -10893.93 2.9077 5.555 23223303.59981 

23 75.96 83.30 20047262.99349 46843.87 1.5062 2.412 20094101.95639 

27 296.5 23.79 23831204.72647 8954.52 3.0088 5.909 23840149.60803 

 

Using the corrected pseudo ranges user position is 

determined and the results are given below: 

 User Position as per the observation data:  

Xu = 918074.1038m, Yu= 5703773.5389 and Zu 

=2693918.9285m. 

User position by linearization technique:  

Xu= 918050.65m, Yu= 5703751.91m and    Zu = 

2693899.70m. 

User position by Bancroft algorithm:  

Xu =   918075.38m, Yu = 5703776.40m and Zu = 

2693918.73m 
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