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Abstract  
This paper propounds the adaptive 

polynomial filtering deploying the multifarious 

variable step-size least mean square (VSS-LMS) 

algorithms for the nonlinear Volterra multichannel 

system identification, and all are compared with a 

fixed step-size Volterra least mean square (VLMS) 

algorithm, under the various noise constraints 

comprising an individual signal-to-noise ratio (SNR). 

The VSS-LMS algorithm corroborates steady 

behaviour during convergence, and the step-size of 

the adaptive filter is altered in compliance with a 

gradient descent algorithm delineated to abate the 

squared estimation error in the course of each 

iteration, and it also revamps tracking rendition in 

the smoothly time-varying environments to the choice 

of the parameters and the boundaries of adaptive 

filter. In multitudinous practical implementations, the 

autocorrelation matrix of the input signal has the 

immense eigenvalue spread in the manifestation of 

nonlinear Volterra filter than in respect of the linear 

impulse response filter. In such circumstances, an 

adaptive step-size is a pertinent option to mitigate the 

unpropitious effects of eigenvalue spread on the 

convergence of VLMS adaptive algorithm. The 

simulation results are exhibited to reinforce the 

analysis, which compare the VSS-LMS algorithms 

with fixed step-size of the second-order Volterra 

filter, and also substantiate that the VSS-LMS 

algorithms are more robust than the fixed step-size 

algorithm when the input noise is logistic chaotic 

type. 

Index Terms - least mean square (LMS), minimum 

mean square error (MMSE), system identification, 

variable step-size least mean square (VSS-LMS), 

Volterra filter. 

I. INTRODUCTION 
In the field of signal processing, the linear 

filters have played a key role because of its inherent 

simplicity. However, there are numerous practical 

situations, where nonlinear processing models are 

needed as the behavior of linear filters is 

unacceptable and also gives misleading results [1]. 

These systems don‟t follow superposition theorem 

and thus exhibit certain degree of nonlinearity. Thus 

to deal with nonlinearity problems, nonlinear filters, 

equalizers, or controllers are used. The most familiar 

used techniques are polynomial filters, order statistics 

filters, homomorphic filters, and morphological filters 

[3, 4] and out of these most widely used polynomial 

filters are the Volterra filters [1, 5]. Adaptive Volterra 

filters have turn out to be a compelling option for 

various nonlinear adaptive applications, such as 

acoustic echo cancelling [2], active control of 

nonlinear noise processes [6,10-14], and diminution 

of distortions on loudspeaker systems, among others 

[7]. Recently, the literature [6, 11-14] suggests 

several techniques for the development of active 

noise control (ANC) of nonlinear processes for a 

single channel case. The Volterra system model 

shows similar behavior to the Taylor series, but it has 

an ability to capture „memory‟ effects [8]. In [1], the 

LMS second order adaptive Volterra filter has been 

introduced using truncated Volterra series 

expansions. Li Tan et al. [6] and Das et al. [9] 

proposed a Volterra filtered-x LMS and filtered-s 

LMS algorithms hinged on a multichannel structures, 

which were illustrated for feedforward ANC of 

nonlinear processes, but for a fixed step-size. 

Although, these methods execute well under certain 

conditions, in which noise can deteriorate their 

performance. However, this paper focuses on the 

variable step-size algorithms for multichannel system 

identification using adaptive nonlinear Volterra 

filtering system [7, 8, 16, 25]. 

 

The LMS algorithm has been profusely used 

in many applications because of its simplicity, 

intelligibility and robustness [15]. Step-size is the key 

parameter in LMS algorithm. As, if the step-size is 

large, the convergence rate will be expeditious, but 

the steady state MSE will increase and vice-versa. 

Thus, the step-size provides an accord between the 

steady state MSE and convergence rate of the LMS 

algorithm. An instinctive way to enhance the 

performance of the LMS algorithm is to make the 

step-size variable in lieu of fixed, i.e., select large 

step-size values during the inceptive period of the 

convergence and use small step-size when the system 

is in close proximity to its steady state. Thus, results 

in VSS-LMS algorithms [16]. 

Many VSS-LMS algorithms have been 

propounded during recent years [17-22]. In [17] and 

[18], Karni et al. and Kwong et al. respectively have 

proposed a new convergence factor, which enables 

the adaptive filter to exhibit very minute 

misadjustment and an exorbitant convergence rate for 

the non-stationary inputs. Mathews and Xie [19] have 

presented an adaptive step-size gradient filter, whose 

step-size is changed with respect to a gradient descent 

algorithm to minimize the squared estimation error in 

each iteration, which performed better than [17] and 
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[18]. Aboulnasr andMayyas have proposed a VSS-

LMS adaptive algorithm in [20], in which the step-

size of this algorithm is acclimatized according to the 

square of estimated time averaged of the auto-

correlation of present and past estimation error, i.e., 

𝑒  𝑛 and 𝑒 𝑛 − 1 respectively. In [21], Pazaitis et 

al. have proposed a new variable step-size LMS 

algorithm, which differs from previous techniques in 

terms of the time varying step-size series, which 

utilizes the kurtosis of the estimation error signal to 

adjust its convergence factor, but it exhibits a small 

increase in complexity. WeePeng and Farhang-

Boroujeny have proposed a new class of VSS-LMS 

algorithms, which is a simplified version of the 

algorithms discussed above, and thus reduces 

complexity without observable loss in performance 

[22]. All the aforestated VSS-LMS algorithms are 

achieved using the linear filtering perspective. 

In this paper, we propose adaptive nonlinear Volterra 

based VSS-LMS algorithms, which are better than the 

fixed step-size VLMS algorithm under certain noise 

conditions with different SNRs on a multichannel 

structure by using the convergence factor as 

discussed in [17-22]. This paper is organized as 

follows. In Section II, we first elucidate a single and 

multichannel system identification model for Volterra 

filter and give particulars about the mathematical 

formulation. In the next part, a concise overview of 

prevailing VSS-LMS algorithm is provided. In 

Section III, different methods of VSS-LMS 

algorithms are explained for a multichannel system. 

In Section IV, computer simulations are analysed 

validating mathematical analysis. Finally, conclusions 

and future scope are presented in Section V.    

II. NONLINEAR ADAPTIVE 

VOLTERRAFILTERING SYSTEM MODEL 

 

A. Mathematical Formulation for Volterra Filters  

The Volterra system is the most preferred 

paradigm among polynomial system models because 

of its nonlinear relationship between input-output 

signals. However, its output is linear in the context of 

kernels. There are numerous time-varying nonlinear 

wireless communication channels, which need to be 

estimated by the nonlinear polynomial adaptive 

filtering [22]. 

An input-output relationship of a causal Volterra 

filter [1, 6] is given by the following equation: 

𝑦 𝑛 =  ỹu 𝑛 

U

u=1

                           (1) 

where, ỹu(𝑛) is further expressed for an U-th order 

discrete filter and memory length M as: 

ỹu 𝑛 = 𝑕0 +   … 

𝑀−1

𝑚2=𝑚1

𝑀−1

𝑚1=0

 

…  𝑕𝑢 𝑛; 𝑚1, … … , 𝑚𝑢 .

𝑀−1

𝑚𝑘=𝑚𝑢 −1

 

 𝑥𝑖𝑛 (𝑛 − 𝑚𝑡)

𝑢

𝑡=1

                    (2) 

Here, 𝑥𝑖𝑛 (𝑛)  and  𝑦 𝑛  represent the input 

and output of Volterra filter, whereas  𝑕𝑢  are the u-th 

order Volterra kernels, and n indicates the time index. 

Fig.1. shows the schematic diagram of an adaptive 

Volterra filter. For simplicity, let us contemplate a 

second-order (U=2) Volterra series expansion and 

thus input-output relationship is given as: 

ỹu 𝑛 = 𝑕0 +  𝑕1 𝑛; 𝑚1 

𝑀−1

𝑚1=0

𝑥𝑖𝑛  𝑛 − 𝑚1  

+   𝑕2 𝑛; 𝑚1, 𝑚2 

𝑀−1

𝑚2=𝑚1

𝑀−1

𝑚1=0

 

𝑥𝑖𝑛  𝑛 − 𝑚1 𝑥𝑖𝑛  𝑛 − 𝑚2               (3) 

 

 

Fig. 1. A Block Diagram of an Adaptive Volterra Filter. 

In this case, the adaptive filter would try to 

estimate the desired signal 𝑑 𝑛  using above second-

order truncated Volterra series expansion. Here, 

𝑕1 𝑛; 𝑚1  and 𝑕2 𝑛; 𝑚1, 𝑚2  are the first-order and 

second-order adaptive Volterra kernels, respectively 

that are iteratively updated. These are updated at each 

time, so as to decrease some convex function of the 

error signal designated as: 

 

𝑒 𝑛 = 𝑑 𝑛 − ỹ𝑢 𝑛 .                       (4) 

Further, desired signal 𝑑 𝑛  is denoted as: 

𝑑 𝑛 = 𝑋𝑖𝑛
𝑇  𝑛  𝑟 𝑛 + 𝑐(𝑛)             (5) 
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where, 𝑋𝑖𝑛  is the input signal vector, 𝑟 𝑛  signifies 

the impulse response of primary path 𝑅(𝑧) as shown 

in Fig. 1 and 𝑐(𝑛) indicates additive white Gaussian 

noise (AWGN) with 𝑁 0, 𝑉𝑚𝑖𝑛  , in which 𝑉𝑚𝑖𝑛  

denotes variance. 

Therefore, the estimated output signal is indicated by: 

𝑦′ 𝑛 = 𝐻𝑇 𝑛 𝑋𝑖𝑛  𝑛                     (6) 

where, the adaptively approximated Volterra filter 

coefficient vector, H, may be represented by: 

 

𝐻 𝑛 = [𝑕1 𝑛; 0 , 𝑕1 𝑛; 1 , … 

𝑕1 𝑀 − 1; 𝑛 , 𝑕2 𝑛; 0,0 , 𝑕2 𝑛; 0,1 , … 

. . . , 𝑕2 𝑛; 0, 𝑀 − 1 ,  𝑕2 𝑛; 1,1 , … 
… , 𝑕2 𝑛; 𝑀 − 1, 𝑀 − 1 ] 𝑇       (7) 

 

Here, (. )𝑇denotes matrix transpose operator. 

For second-order Volterra filter, the input signal, 𝑋𝑖𝑛 , 

is given by: 

𝑋𝑖𝑛  𝑛 = [𝑥𝑖𝑛  𝑛 , 𝑥𝑖𝑛  𝑛 − 1 , … 

… , 𝑥𝑖𝑛  𝑛 − 𝑀 + 1 , 𝑥𝑖𝑛
2  𝑛 , 

  … , 𝑥𝑖𝑛  𝑛 𝑥𝑖𝑛  𝑛 − 𝑀 + 1 , … 
… , 𝑥𝑖𝑛

2 (𝑛 − 𝑀 + 1)] 𝑇          (8) 

 

In the nonlinear system, the final purpose is to 

determine the time-varying Volterra kernels 

𝑕𝑢 𝑛; 𝑚1, … … , 𝑚𝑢  in (2) and thus, filter coefficients 

are updated at each time using a steepest descent 

algorithm for minimizing 𝑒
2
 𝑛   at every point. 

These updated filter coefficients can be expressed as 

[1, 6, 23]: 

 

𝐻 𝑛 + 1 = 𝐻 𝑛 + 𝜇′𝑋𝑖𝑛  𝑛 𝑒 𝑛              (9) 

 

More specifically, equations for updated filter 

coefficients for second-order Volterra filter can be 

written as: 

𝑕1 𝑛 + 1; 𝑚1 = 𝑕1 𝑛; 𝑚1                              

−
𝜇1

′

2

𝜕𝑒
2
 𝑛 

𝜕𝑕1 𝑛; 𝑚1 
 10  

= 𝑕1 𝑛; 𝑚1 + 𝜇1
′ 𝑒 𝑛 𝑋𝑖𝑛  𝑛 − 𝑚1        (11) 

and 

𝑕2 𝑛 + 1; 𝑚1, 𝑚2 
= 𝑕2 𝑛; 𝑚1, 𝑚2 

−
𝜇2

′

2

𝜕𝑒
2
 𝑛 

𝜕𝑕2 𝑛; 𝑚1, 𝑚2 
              (12) 

= 𝑕2 𝑛; 𝑚1, 𝑚2 + 𝜇2
′ 𝑒 𝑛 𝑋𝑖𝑛  𝑛 − 𝑚1 . 

𝑋𝑖𝑛  𝑛 − 𝑚2              (13) 

where, 𝜇1
′  and 𝜇2

′  are the step-sizes that control the 

steady state and speed of convergence properties of 

the filters, and these convergence constant are chosen 

such that 0 < 𝜇1
′ , 𝜇2

′ < 2 𝜆𝑚 , where, 𝜆𝑚  is the 

maximum eigenvalue of the matrix 𝑅  𝑥𝑖𝑛 𝑥𝑖𝑛
=

𝐸[𝑥 𝑖𝑛 (𝑛)𝑥 𝑖𝑛
𝑇 (𝑛)]. 

Hence, the estimation error at the receiver output 

from Eq. (4) and (6) is computed by: 

ē 𝑛 = 𝑑 𝑛 − 𝐻𝑇 𝑛 𝑋𝑖𝑛 (𝑛)        (14) 

This error signal starts from an initial guess that 

depends on the prior information available to the 

system, and then this is fed back to the self-designing 

filter. Thus, it converges finally to the optimal 

solution. 

As described in [6, 24], we write the following 

expression from Eq. (2) by placing variables𝑚𝑡 =
𝑚 + 𝑠𝑡−1, for 𝑡 = 1, … , 𝑢 with 𝑡0 = 0, that is 

ỹu =    …

𝑀−1−𝑚

𝑠2=𝑡1

𝑀−1−𝑚

𝑠1=0

𝑀−1

𝑚=0

 

…  𝑕𝑢 𝑚, 𝑚 + 𝑠1, … , 𝑚 + 𝑠𝑢−1 

𝑀−1−𝑚

𝑠𝑢−1=𝑠𝑢−2

. 

𝑥𝑖𝑛  𝑛 − 𝑚  𝑥𝑖𝑛 (𝑛 − 𝑚 − 𝑠𝑡)

𝑢−1

𝑡=1

.    (15) 

Interchanging the order of summation in (15), as 

shown in [6, 24], we get: 

ỹu =   …

𝑀−1

𝑠2=𝑠1

𝑀−1

𝑠1=0

 …  

𝑀−1

𝑠𝑢−1=𝑠𝑢−2

 

  𝑕𝑢 𝑚, 𝑚 + 𝑠1, … , 𝑚 + 𝑠𝑢−1 .

𝑀−1−𝑠𝑢−1

𝑚=0

  

  𝑥𝑖𝑛  𝑛 − 𝑚  𝑥𝑖𝑛  𝑛 − 𝑚 − 𝑠𝑡 

𝑢−1

𝑡=1

   16  

Simplifying Eq. (16), 

ỹu =   …

𝑀−1

𝑠2=𝑠1

𝑀−1

𝑠1=0

 

𝑀−1

𝑠𝑢−1=𝑠𝑢−2

 

𝑕𝑢 𝑛, 𝑛 + 𝑠1, … , 𝑛 + 𝑠𝑢−1 ∗  𝑥𝑖𝑛 𝑠1 ,…..,𝑠𝑢−1
(𝑛) 

=  𝐻𝑢
𝑇 𝑛 𝑋𝑖𝑛 𝑢

 𝑛                            (17) 

Fig. 2. Block diagram of a multichannel implementation of 

Volterra filter. 
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where, * denotes linear convolution, and further 

𝑥𝑖𝑛 𝑠1 ,…..,𝑠𝑢−1
(𝑛)is the distinct channel input with the 

𝑢𝑡𝑕 -order given by  

𝑥𝑖𝑛 𝑠1 ,…..,𝑠𝑢−1
 𝑛 = 𝑥𝑖𝑛  𝑛  𝑥𝑖𝑛  𝑛 − 𝑠𝑡 

𝑢−1

𝑡=1

 

(18) 

where,  𝑥𝑖𝑛 𝑖0
 𝑛 = 𝑥𝑖𝑛 (𝑛).  

Taking Z transform on Eq. (17), we write: 

𝑌𝑢 𝑧 =   … 

𝑀−1

𝑠2=𝑠1

𝑀−1

𝑠1=0

 

…  𝐻𝑠1,….𝑠𝑢−1
 𝑧 𝑋𝑖𝑛 𝑠1,…,𝑠𝑢−1

 𝑧 

𝑀−1

𝑠𝑢−1=𝑠𝑢−2

       (19)  

where, 𝐻𝑠1,….𝑠𝑢−1
(𝑧) represents FIR channel transfer 

function having memory size of 𝑀 − 1 − 𝑠𝑢−1, which 

is further given by 

𝐻𝑠1,….𝑠𝑢−1
 𝑧 =  𝑕𝑢(𝑚, 𝑚 + 𝑠1, … …

𝑀−1−𝑠𝑢−1

𝑚=0

 

… , 𝑚 + 𝑠𝑢−1) 𝑧−𝑚                  (20) 

and 𝑋𝑖𝑛 𝑠1,…,𝑠𝑢−1
(𝑧) implies the Z transform of the 

analogous channel input  𝑥𝑖𝑛 𝑠1 ,…..,𝑠𝑢−1
(𝑛), and 𝑌𝑢 𝑧  

is the Z transform of  ỹu(𝑛). Eq. (19) can be 

represented through block diagram as shown in Fig. 

2, and it can be realized by 𝐷(𝑢, 𝑀) parallel FIR 

filters [24], which is calculated as: 

𝐷 𝑢, 𝑀 =  𝐷(𝑢 − 1, 𝑠)

𝑀

𝑠=1

 

with 𝐷 1, 𝑀 = 1, and the closed form is given by: 

𝐷 𝑢, 𝑀 =
 𝑢 + 𝑀 − 2 !

 𝑢 − 1 !  𝑀 − 1 !
  

=  
𝑢 + 𝑀 − 2

𝑢 − 1
                (21) 

B. An Overview of Variable Step-Size LMS 

Algorithm 

For ease of explanation, the LMS algorithm 

is framed firstly within the milieu of a system 

identification model, where real signals are taken into 

consideration. 

The mathematical expression is as follows [16, 23]:  

𝑑 𝑛 = 𝑋𝑖𝑛
𝑇  𝑛  𝑟(𝑛) + 𝑐 𝑛            (22) 

where, 𝑑 𝑛  is the zero mean desired signal and is a 

filtered genre of the input signal vector 𝑋𝑖𝑛  𝑛  

corrupted by the noise 𝑐 𝑛 , and 𝑟 𝑛  is the impulse 

response of primary path 𝑅(𝑧). Also, 𝑛 signifies time 

index, and (. )𝑇 is the transpose operator. 

The error signal is the difference between the desired 

signal and the output signal of the adaptive filter and 

is given by: 

𝑒 𝑛 = 𝑑 𝑛 − 𝑋𝑖𝑛
𝑇  𝑛 𝑤(𝑛)           (23) 

where, 𝑤 𝑛 represents weights of the adaptive filter. 

The LMS algorithm for updating the weights is given: 

𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜇′𝑒 𝑛 𝑋𝑖𝑛  𝑛       (24) 

where, 𝜇′  is the step-size.  

In the VSS-LMS algorithms, Eq. (24) can be written 

as: 

𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜇′ 𝑛 𝑒 𝑛 𝑋𝑖𝑛  𝑛             (25) 

i.e., 𝜇′  is replaced by a variable parameter𝜇′ (𝑛). 

The adaptive step-size algorithm is 

delineated to eliminate the “postulate work” involved 

in stipulation of the step-size parameter, and at the 

same time  gratify the following requirements : a) 

Fast convergence speed; b) the steady state 

misadjustment data should be minute, when operating 

in a stationary scenario; c) under non-stationary 

environment, the algorithm should be proficient to 

sense the pace, at which the peerless coefficients are 

changing, and step-size should be selected in such a 

way that it can result in close estimation in mean-

squared-error sense.  

Several VSS-LMS algorithms have been 

propounded to refine the performance of the LMS 

algorithm by using massive step-sizes at the primary 

stage of the process and minute step-sizes at the later 

stage when system approaches convergence. 
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Distinctive methods for adaptive step- sizes can be 

found in [17-22].  

III. VSS-LMS ALGORITHMS FOR 

MULTICHANNEL VOLTERRA  

FILTER 

As discussed in Section II, a multichannel system 

for the Volterra filter is given by Eq. (17), i.e., 

ỹu =   …

𝑀−1

𝑠2=𝑠1

𝑀−1

𝑠1=0

 𝑕𝑢(𝑛, 𝑛 + 𝑠1, . ..  

𝑀−1

𝑠𝑢−1=𝑠𝑢−2

 

… , 𝑛 + 𝑠𝑢−1) ∗ 𝑥𝑖𝑛 𝑠1 ,…..,𝑠𝑢−1
(𝑛) 

     =  𝐻𝑢
𝑇 𝑛 𝑋𝑖𝑛 𝑢

 𝑛                       (26) 

Let p be the number of inputs and k be the number of 

channel outputs of an adaptive Volterra filter,  and 

thus the updated filter coefficients from Eq. (9) can 

be expressed as: 

𝐻𝑝𝑘  𝑛 + 1 = 𝐻𝑝𝑘  𝑛 

+ 𝜇𝑝𝑘
′  𝑛 𝑋𝑖𝑛 𝑝

 𝑛 𝑒𝑘 𝑛         (27) 

In context to second order Volterra filter, updated 

filter coefficients from Eq. (10-13) can be written as: 

𝑕𝑝𝑘1 𝑛 + 1; 𝑚1 = 𝑕𝑝𝑘1 𝑛; 𝑚1 −
𝜇𝑝𝑘 1

′  𝑛 

2
 

𝜕𝑒𝑘
2
 𝑛 

𝜕𝑕𝑘1 𝑛; 𝑚1 
 28  

= 𝑕𝑝𝑘1 𝑛; 𝑚1 + 𝜇𝑝𝑘1
′  𝑛 𝑒𝑘 𝑛  

𝑋𝑖𝑛𝑝
 𝑛 − 𝑚1               (29) 

and 

𝑕𝑝𝑘2 𝑛 + 1; 𝑚1, 𝑚2 = 𝑕𝑝𝑘2 𝑛; 𝑚1, 𝑚2  

−
𝜇𝑝𝑘 2

′

2

𝜕𝑒𝑘
2
 𝑛 

𝜕𝑕𝑝𝑘2 𝑛; 𝑚1, 𝑚2 
      (30) 

  = 𝑕𝑝𝑘 2 𝑛; 𝑚1, 𝑚2 + 𝜇𝑝𝑘2
′  𝑛 𝑒𝑘

 𝑛  

𝑋𝑖𝑛𝑝
 𝑛 − 𝑚1 𝑋𝑖𝑛𝑝

 𝑛 − 𝑚2     (31) 

In the above equations, variable step-size 𝜇𝑝𝑘
′ (𝑛) is 

used, which refines the performance of VLMS 

algorithms and can obtain a fast convergence speed 

and a small steady state mean square error. In [17-

22], different VSS-LMS algorithms are used and all 

these methods are executed on the basic equations of 

the LMS algorithms, where the input and the noise 

signals are deduced to be statistically stationary. In 

this section, we will discuss all the mathematical 

formulation of the VSS-LMS algorithms for a 

multichannel system identification process. 

 

A. Methods for Variable Step-Size VLMS 

Algorithms for Multichannel System 

 

1) Karni’s Method (KVSS-VLMS) 

In [17], Karni et. al. have proposed a new 

convergence factor, which is time-varying, and are 

applied on adaptive LMS algorithm. In this paper, the 

variable step-size is applied on a multichannel system 

identification of the Volterra filter and is given by: 

𝜇𝑝𝑘
′  𝑛 = 𝜇′

𝑚𝑎𝑥 𝑝𝑘
. 

 1 − 𝑒
𝑘

−𝛼  𝑒𝑘 𝑛 𝑋𝑖𝑛 𝑝
 𝑛   2

           (32) 

where,  𝜇′
𝑚𝑎𝑥 𝑝𝑘

=
1

(𝐿+1)𝜎𝑋𝑖𝑛 𝑝

2  ,  𝜎𝑋𝑖𝑛 𝑝

2  is the variance 

of the input signal vector 𝑋𝑖𝑛𝑝
 for p inputs, L is the 

length of the filter vector, α is the damping parameter 

and should be greater than zero, 𝑒𝑘(𝑛) is the error 

signal for k outputs. ||.||2 indicates the operation of 

squared Euclidean norm of the abrupt gradient 

vector 𝑒𝑘(𝑛)𝑋𝑖𝑛𝑝
(𝑛), which controls the step-size. 

When ||𝑒𝑘(𝑛)𝑋𝑖𝑛𝑝
(𝑛)|| is large, 𝜇𝑝𝑘

′  𝑛 =

𝜇′
𝑚𝑎𝑥 𝑝𝑘

 , i.e., the process is in its fast convergence 

state and vice-versa. For non-stationary input, the 

abrupt change of the input induces ||𝑒𝑘(𝑛)𝑋𝑖𝑛𝑝
(𝑛)||  

to become large and thus, brings the process back to 

the rapid convergence state automatically. 

2) Kwong’s Method (KwVSS-VLMS) 

In [18], Kwong and Johnston have proposed 

a VSS-LMS algorithm for the trailing of time-varying 

order-I Markovian channels. Now, for a multichannel 

Volterra system variable step- size algorithm is given 

by: 

𝜇𝑝𝑘
′  𝑛 + 1 = 𝛽𝜇𝑝𝑘  𝑛 + 𝛾𝑒𝑘

2
 𝑛           (33) 

with 0 < 𝛽 < 1,     𝛾 > 0 

and   

𝜇𝑝𝑘  𝑛 + 1 

=  

𝜇𝑚𝑎𝑥 𝑝𝑘
              𝑖𝑓  𝜇𝑝𝑘

′  𝑛 + 1 > 𝜇𝑚𝑎𝑥 𝑝𝑘

𝜇𝑚𝑖𝑛 𝑝𝑘
              𝑖𝑓  𝜇𝑝𝑘

′  𝑛 + 1 < 𝜇𝑚𝑖𝑛 𝑝𝑘

𝜇𝑝𝑘
′  𝑛 + 1    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒                         

    (34) 

 

where, 0 < 𝜇𝑚𝑖𝑛 𝑝𝑘
< 𝜇𝑚𝑎𝑥 𝑝𝑘

, and for the guaranteed 

bounded mean square error: 

𝜇𝑚𝑎𝑥 𝑝𝑘
 ≤  

2

3 𝑡𝑟  𝐸  𝑋𝑖𝑛𝑝
𝑋𝑖𝑛 𝑝

𝑇  
            (35) 

The input 𝑋𝑖𝑛𝑝
is presumed to be a zero mean 

independent sequence. Initially 𝜇0 = 𝜇𝑚𝑎𝑥 , 
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although the algorithm is not fragile to the choice. 

The step-size is controlled by the parameters β, γ and 

the square of the prediction error, 𝑒𝑘
2(𝑛). If the 

prediction error is large, it increases the step-size, and 

hence provides faster tracking. Similarly, smaller 

prediction error will decrease the step-size and reduce 

the misadjustment. 

3) Mathews’ Method (MVSS-VLMS) 

Mathews and Xie in [19], have presented an 

adaptive step-size LMS algorithm for adaptive filter, 

which is changed with respect to a gradient descent 

algorithm. For multichannel Volterra filter adaptive 

step-size is given as: 

𝜇𝑝𝑘
′  𝑛 = 𝜇𝑝𝑘

′  𝑛 − 1 + 𝜌𝑒𝑘 𝑛 𝑒𝑘 𝑛 − 1  

𝑋𝑖𝑛𝑝

𝑇  𝑛 𝑋𝑖𝑛𝑝
(𝑛 − 1)                 (36) 

where, 𝜌 is a positive constant usually small that 

controls the behaviour of the adaptive step- size 

𝜇𝑝𝑘
′  𝑛  . To reduce the squared estimation error, a 

gradient descent algorithm is used at each time, 

which is swayed by the inner product between 

adjacent gradient vectors. 

4) Aboulnasr’s Method (AVSS-VLMS) 

In [20], Aboulnasr and Mayyaas have 

proposed a VSS-LMS adaptive algorithm, in which 

step- size is controlled by the square of time-averaged 

autocorrelation of errors at instantaneous and past 

times. For a multichannel Volterra system, VSS-LMS 

algorithm is given as: 

𝜇𝑝𝑘
′  𝑛 = 𝛼𝜇𝑝𝑘

′  𝑛 − 1 + 𝛾 𝜗𝑝𝑘
2  𝑛        (37) 

where,0 < α < 1 , 𝛾 > 0,and the approximation is a 

time average of 𝑒𝑘 𝑛 𝑒𝑘(𝑛 − 1), which is described 

as: 

𝜗𝑝𝑘  𝑛 = 𝛽 𝜗𝑝𝑘  𝑛 − 1 +  1 − 𝛽 𝑒𝑘 𝑛 . 

𝑒𝑘 𝑛 − 1                                  (38) 

where,  𝛽 is a positive constant, which lies between 0 

and 1 and it is an exponential weighting specification 

that governs the quality of the time estimation. 

𝜗𝑝𝑘  𝑛  is used in the update of 𝜇𝑝𝑘
′  𝑛 , which serves 

two main purposes. First, the error autocorrelation is 

commonly a proficient measure of the contiguity to 

the optimum. Second, it spurned the effect of the 

uncorrelated noise signal on the step-size update. 

5) Pazaitis’ Method (PVSS-VLMS) 
The step-size in [21] is adjusted by the 

specimen fourth order cumulant of the𝑒𝑘(𝑛), i.e., 

instantaneous error, and if the adaptive step-size is 

extended to multichannel Volterra system, it can be 

described as: 

𝜇𝑝𝑘
′  𝑛 = 𝜇′

𝑚𝑎𝑥 𝑝𝑘
 1 − 𝑒𝑘

−𝛼 Ϲ𝑝𝑘  𝑛 
       (39) 

where, 

Ϲ𝑝𝑘  𝑛 = ϛ𝑝𝑘  𝑛 − 3𝜗𝑝𝑘
2  𝑛                    (40) 

is the kurtosis of the error, 𝜇′
𝑚𝑎𝑥 𝑝𝑘

 in Eq. (39) can be 

selected as the maximum value of  𝜇𝑝𝑘
′  that supports 

good convergence, 𝛼 is a positive constant and the 

estimation of the second- and the fourth- order error 

moments are given as: 

𝜗𝑝𝑘  𝑛 = 𝛽 𝜗𝑝𝑘  𝑛 − 1 

+  1 − 𝛽 𝑒𝑘
2 𝑛                    (41) 

ϛ𝑝𝑘  𝑛 = 𝛽ϛ𝑝𝑘  𝑛 − 1 

+  1 − 𝛽 𝑒𝑘
4 𝑛                     (42) 

where, 𝛽 is the forgetting factor that controls the 

system memory and should be selected accordingly. 

6) Wee-Peng’s Method (WPVSS-VLMS) 
In [22], Wee-Peng et.al. have proposed a 

new class of variable step-size algorithms, which 

outperforms other algorithms with reduced 

complexity. The adaptive step-size for a multichannel 

Volterra system by following the approach of [22] 

can be given as: 

𝜇𝑝𝑘
′  𝑛 

= 𝜇𝑝𝑘
′  𝑛 − 1 + 𝛾 𝑒𝑘 𝑛 𝑋𝑖𝑛𝑝

𝑇  𝑛 ģ𝑝𝑘  𝑛            (43) 

where,  𝛾  is a constant, which is used to update the 

step-size, and further 

ģ𝑝𝑘  𝑛 = 𝛽 ģ𝑝𝑘  𝑛 − 1 + 𝑒𝑘 𝑛 − 1  

𝑋𝑖𝑛𝑝
(𝑛 − 1)  (44) 

where, 𝛽 is very small positive constant proximity to 

one. When 𝛽 is set equal to zero, Mathews‟ algorithm 

is obtained as seen in Eq. (36), and thus Mathews‟ 

algorithm is improved by the Wee-Peng‟s algorithm 

by utilizing smooth operation on one gradient vector 

to diminish the measured noise, and can be observed 

in Fig. 3. 

IV. SIMULATION RESULTS 

In this section, three cases are effectuated on 

noise processes in a multichannel nonlinear system 

identification system to analyse the performance of 

second-order VLMS based algorithm by using the 

different variable step-size algorithms under 

different conditions of SNR and thus comparing it 

with fixed step-size VLMS algorithm. In these 

entire cases, the memory size M is selected to be 10, 

for which length of the adaptive filter is 65. 

According to the Monte-Carlo simulations, the 

behaviour of adaptive algorithms is differentiated on 

the basis of calculated performance appraisal factor 

as: 
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𝐺  𝑛 =  
𝑒𝑘

2
(𝑛)

𝐺

𝐺

𝑔=1

                      (45) 

where, G is the ensemble average of square 

error,𝑒𝑘
2

(𝑛), for k channels of 700 independent 

experiments, which are plotted in semi-logarithmic 

scale w.r.t iterations to evaluate the performance. In 

this experiment, number of iterations are taken to be 

2500. Let the number of input noise signal, p=1 and 

the number of channels, k =4. 

In this experiment, logistic chaotic noise signal is 

considered and is given by the recursive equation [6, 

9, 13, 14]: 

𝑥𝑖𝑛  𝑛 + 1 = 𝜆 𝑥𝑖𝑛  𝑛   1 − 𝑥𝑖𝑛  𝑛             (46) 
 

where, 𝜆=4 and initialize 𝑥𝑖𝑛  with 0.9. This nonlinear 

method is then normalized to possess unity signal 

power. 

Four linear primary paths are used in this experiment, 

and there transfer functions are: 

𝑅1,1 𝑧 = 𝑧−5 − 0.3𝑧−6 + 0.2𝑧−7 

𝑅1,2 𝑧 = 𝑧−5 − 0.2𝑧−6 + 0.1𝑧−7 

𝑅1,3 𝑧 = 𝑧−5 − 0.3𝑧−6 + 0.1𝑧−7 

𝑅1,4 𝑧 = 𝑧−5 − 0.2𝑧−6 + 0.2𝑧−7. 

Three different cases are taken into 

consideration for comparison between the fixed step-

size VLMS algorithm and variable step-size VLMS 

algorithms under different SNR conditions. 

Case 1: 

In this case, three algorithms (fixed VLMS, 

MVSS-VLMS, and WPVSS-VLMS) are taken into 

consideration, and are compared under low noise 

condition of SNR, which is equal to 10dB.The step-

sizes and positive constants used are a) Fixed step 

VLMS:𝜇1 = 0.0002, 𝜇2 = 0.00005; b) MVSS-

VLMS: 𝜇1𝑘 0 = 0.02,  𝜇2 = 0.00005, 𝜌 = 10−5;c) 

WPVSS-VLMS:𝛾 = 4x10−2, 𝛽 = 0.9995,𝜇1𝑘 0 =
0.02, 𝜇2 = 0.00005. The variable step-size sways the 

issue of eigenvalue spread, and inevitably leads to the 

intensified convergence rate in the presence of 

chaotic input noise signal. It is evident from Fig. 3 

that the performance of WPVSS-VLMS algorithm 

and MVSS-VLMS algorithm outperform the fixed 

step VLMS algorithm under the SNR of 10 dB. 

 

Case 2: 

In this simulation, convergence 

characteristics of three algorithms, i.e., fixed step 

VLMS algorithm, AVSS-VLMS, and PVSS-VLMS 

algorithms are analogized under the medium noise 

condition of SNR equivalent to 15 dB as shown in 

Fig. 4. Akin to the methodology opted in [20, 21], the 

constant parameter values of the above adaptive 

algorithms are stipulated to process a comparable 

level of misadjustment. The values of these 

parameters are: a) Fixed step VLMS:𝜇1 =
0.0002, 𝜇2 = 0.00005; b) AVSS-VLMS:𝛼 =
0.97, 𝛾 = 10−3, 𝜇1𝑘 0 = 0.02,  𝜇2 = 0.00005, 𝛽 =
0.9999; c) PVSS-VLMS: 𝜇2 = 0.00005, 𝛼 =
0.997, 𝛽 = 0.999,and 𝜇′

𝑚𝑎𝑥 𝑝𝑘
= 0.048 which is the 

maximum value of 𝜇𝑝𝑘
′  that supports good 

convergence. The initial adaptive step-size for PVSS-

VLMS is set to zero. It is very much apparent from 

Fig.4 that PVSS-VLMS algorithm has good 

convergence, and outperforms the fixed step VLMS 

algorithm. Also, AVSS-VLMS algorithm has better 

convergence than the fixed step VLMS algorithm 

under medium noise condition. 

 
Fig.3. Comparison of convergence attributes with a 

logistic chaotic input noise signal between fixed step, 

MVSS-VLMS, and WPVSS-VLMS for second order 

Volterra filter. 

 
Fig.4. Comparison of convergence attributes with a 

logistic chaotic input noise signal between fixed step, 

AVSS-VLMS and PVSS-VLMS for second order 

Volterra filter. 
 

Case 3: 

Now, in this case comparison is drawn 

between fixed step VLMS, KVSS-VLMS, and 

KwVSS-VLMS algorithms under the high noise 

condition of SNR 20 dB. The step-sizes and positive 
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constants used are: a) Fixed step VLMS: 𝜇1 =
0.0002, 𝜇2 = 0.00005; b) KVSS-VLMS:𝜇2 =
0.00005, 𝛼 = 5; c) KwVSS-VLMS: 𝛽 = 0.9997, 

𝛾 = 5.8x10−4𝜇1𝑘(0) = 0.0054, 𝜇2 = 0.00005. In 

KVSS-VLMS [17], a proper damping parameter α 

should be selected for a fast convergence rate and 

very small misadjustment. From Fig. 5, it can be 

observed that KwVSS-VLMS, and KVSS-VLMS 

outperform the fixed step VLMS and thus they yield 

a fast convergence rate. 

It should be noted that value of step-size 𝜇2 is fixed 

in all the above cases as it will lead to misadjustment 

error if it is updated at each time. Thus, adaptive step-

size is applied only on the linear portion of the 

adaptive filter. 

 
Fig. 5. Comparison of convergence attributes with a 

logistic chaotic input noise signal between fixed step, 

KVSS-VLMS, and KwVSS-VLMS for second order 

Volterra filter. 

 

V. CONCLUSIONS 

This paper confers on an adaptive step-size 

LMS algorithms for the second-order Volterra filter 

based on a multichannel structure and compared with 

a fixed step-size VLMS algorithm. Expounded 

mathematical formulation of a multichannel system 

identification, and adaptive step-size algorithms are 

also depicted. It is discerned from simulation results 

that variable step-size algorithms outplay and have 

superior rendition to the fixed step size VLMS 

algorithm in controlling all sorts of nonlinear noise 

processes in high, medium, and low SNR 

environments as the variable step-size diminishes the 

susceptivity of the misadjustment to the degree of 

non-stationarity and also lessen the accordbetween 

misadjustment and trailing ability of the fixed step-

size LMS algorithm. 

 

The simulation results exhibit that the 

preliminary convergence rate of the adaptive Volterra 

filters is very rapid and after an initial span when the 

step-size proliferates, the step-size starts dwindling 

slowly and smoothly and yields to a small 

misadjustment errors. But, in case of nonstatic 

environments, the algorithms seek to calibrate the 

step-sizes in such a manner, so as to obtain proximate 

to the foremost possible performance. Variable step-

size algorithm also controls the unpropitious effects 

of spreading of an eigenvalue of the autocorrelation 

matrix of the input signal. 

There is passably substantial amount of 

research activity progressing in this domain at 

present. The fine properties and the computational 

intelligibility related with the algorithm makes us 

anticipate to see massive number of advance 

techniques being evolved, and will be a potential 

quantum leap with significant impact on practical 

applications like nonlinearly magnified analog as well 

as digital communication signal processing [25], 

biomedical engineering [26], equalization of 

nonlinear communication medium [27]. 
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