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Abstract 

Nowadays Global Positioning System (GPS) 

is the widely used system for navigational aids and 

tracking of vehicles. However, GPS will not offer 

uninterrupted and consistent position values i.e. 

Latitude, Longitude and Altitude all the times as it 

likely to be  blocked by buildings, mountains, etc. 

Inertial Navigation Systems (INS) provides continues 

information of position, velocity and attitude all the 

time. However, the performance of INS deteriorates 

with time due to the perfromance degradation of 

inertial sensors. GPS/INS integration provides 

reliable navigation solution. Existing GPS/INS 

integration using Kalman Filter (KF) can give 

correct results only when the system dynamic models 

are completely known. To estimate the state of 

vehicle, Extended Kalman Filter (EKF) is used. Since 

EKF provides the inaccurate navigation during the 

non linear motion of the vehicle, an Unscented 

Kalman Filter (UKF) has been employed. Interacting 

Multiple Model (IMM) filter is more efficient than the 

conventional single model filter in determining the 

adequate values of process noise co-variance. In this 

paper, the application of Interacting Multiple Model 

Unscented Kalman Filter Two Filter Smoothing 

(IMM-UKFTFS) approach to GPS/INS integration 

for the maneuvering vehicle is proposed.  The 

resulting IMM-UKFTFS strategy effectively deals 

with the non-linear motion and noise covariance 

problem of navigation. The performance of the 

proposed IMM-UKFTFS method is examined for a 

non-linear trajectory which consist of Constant 

Acceleration (CA) and Coordinated Turn (CT) 

models.  The simulation results show that the 

proposed IMM-UKFTFS gives better estimate than 

the existing conventional estimators such as UKF and 

IMM-UKF.  
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I. INTRODUCTION 

Navigation is the estimation of the state of 

the moving vehicle. An estimator is an algorithm that 

uses available measurements to refine the state 

variables.  The GPS measurements are obtained by 

placing the GPS sensors on the moving vehicle [8].  

Estimation techniques, especially the Kalman 

filtering have found extensive application in 

navigation systems because they can significantly 

improve their accuracy.  But the KF is a linear 

estimator [1], [3], [5], it does not give better 

estimation in non linear motion of the vehicle.  So the 

EKF is introduced to give accurate results for non 

linear motion model.  The EKF linearizes the 

dynamic state model using Taylor series [8].  An 

Interacting Multiple Model (IMM) algorithm uses the 

collection of filters, and each filter is assigned with 

particular motion model of the moving vehicle [7].  

The estimation accuracy of IMM is better than the 

single model filter like EKF. There are some flaws in 

EKF, we can use EKF in non linear case; however, it 

requires linearization of the state model and the 

measurement model. This leads to poor performance 

of EKF.   In order to overcome the problems in EKF 

we are going for transformation based statistical 

approach of Unscented Kalman Filter (UKF). The 

UKF can be used in IMM algorithm. The estimate of 

IMM-UKF is better than that of the single model 

UKF [12] and IMM-EKF. 

 

Smoothing is the post processing technique 

which resolves the estimation problem. Smoothing is 

better than filtering by using the additional 

measurements made after the time of the estimated 

state vector [14].  Smoothing can be incorporated to 

the IMM algorithm to achieve better navigation 

accuracy. There are three types of smoothing, namely 

Fixed Point Smoothing, Fixed Lag Smoothing and 

Fixed Interval Smoothing. Due to less complexity, 

the Fixed Interval Smoothing is popular. The Fixed 

Interval Smoothing has two types. They are Rauch 

Tung Striebel Smoother (RTSS) and Two Filter 

Smoother (TFS) [10]. RTSS is confirmed to work 

well only for the linear system. TFS gives better 

results than RTSS during highly non linear behavior 

of vehicle motion and also the computational time of 

both the methods are proved to be the same. Hence 

TFS is chosen which will give reliable result in non 

linear system and incorporating the TFS into the 

IMM algorithm for GPS/INS navigation. The paper is 

organized as follows. Section 2 deals with different 

model based approach, section 3 deals with the 

proposed IMM-UKFTFS method, section 4 gives the 

idea of modeling parameters of GPS/INS navigation, 

section 5 deals with the concept of GPS/INS 
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integration, section 6 deals with the analysis of 

various estimation methods. 

II. MODEL BASED APPROACH 

A. Estimation Methods 

A vital problem for GPS/INS navigation is 

selecting a suitable estimation method.  Several 

approaches have been recognized.  They are, 

Extended Kalman Filter (EKF), Unscented Kalman 

Filter (UKF), IMM based EKF, and IMM based 

UKF.  However, they suffer from divergence problem 

i.e., estimation does not converge to the real 

trajectory.  

B. Unscented Kalman Filter (UKF) 

 In the EKF, the state distribution is 

propagated analytically through the first-order 

linearization of the nonlinear system due to which, the 

posterior mean and covariance could be corrupted. 

The UKF, which is a derivative-free alternative to the 

EKF, overcomes this problem by using a deterministic 

sampling approach. The state distribution is 

represented using a minimal set of carefully chosen 

sample points, called sigma points. Like EKF, UKF 

consists of the same two steps: model forecast and 

data assimilation, except they are preceded now by 

another step for the selection of sigma points. The 

UKF is founded on the intuition that it is easier to 

approximate a probability distribution than it is to 

approximate an arbitrary nonlinear function or 

transformation. The sigma points are chosen so that 

their mean and covariance to be exactly x(k-1) and 

P(k-1) respectively. Each sigma point is then 

propagated through the nonlinear functions yielding a 

cloud of transformed points at the end. The new 

estimated mean and covariance are then computed 

based on their statistics. This process is called 

unscented transformation [2]. 

 

 

The n-dimensional random variable with mean x  and covariance Pxx is approximated by 2n+1 weighted point 

by  

x0 = x  

xi = x +   (n + k)pxx i
    , i = 1,… , n 

xi = x −    (n + k)pxx i−n
, i = n + 1,… ,2n 

 
Weights for state  ws

0  =  
k

n+k
  and weights for covariance wc

0  =  
k

n+k
+ (1 − α2 + β) 

ws
i =  wc

i  =  
1

2 n+k 
                                                                                                                                 

          

 (1) 

In equation (1) the term x denotes sigma point, term w denotes weight, term k is a constant, the term α denotes the 

spread of sigma points and β is related to distribution of x. 

The sigma points are passed through the non-linear function to yield the set of transformed sigma points. 

ς
i

= f(xi)       

The mean and covariance are given by the weighted average and the weighted outer product of the transformed 

points 

y 

=   ws
i ς

i
 

2n

i=0

                                                                                                                                                                                          (2)   
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i
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The time prediction and the measurement update is done using this mean and covariance. 

C. IMM-UKF 

Since the motion model of the vehicle has 

been changed frequently, more than one estimator is 

to be considered to meet the changing environment, 

so IMM has been introduced. As the name implies 

here, multiple models can be utilized simultaneously 

[6], [7], [11]. To reduce the noise uncertainty and the 

system non linearity problem concurrently, the IMM-

UKF is introduced [12]. In the IMM-UKF, two UKF 

filters are used [7].  By using the model probability, 

the IMM algorithm weights the output of the 

individual filters.  The final combined estimate of 

IMM-UKF is better than the estimate of UKF which 

uses the single model. The accuracy of the IMM-

UKF is higher than that of the IMM-EKF. 

D. Two Filter Smoother (TFS) 

Two Filter Smoother (TFS) consists of two 

filters. They are the forward filter running forward in 

time and a backward filter running backward in time. 

At each instant of time, the estimate from the forward 

filter is based on all the measurements made up to 

that time and the estimate from the backward filter is 

based on the measurements made after that time.  At 
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each instant of time, the associated estimation 

uncertainty covariance characterizes the estimation 

uncertainty based on all these measurements. When 

the time is reversed, the sign on the dynamic 

coefficient matrix A is changed, which can make 

performance of the backward filter model different 

from that of forward filter model. At each time t, the 

forward filter generates the covariance matrix P[f](t) 

representing the mean-squared uncertainty in the 

estimate x  f  t  using all measurements z(s) for s≤t . 

Similarly the backward filter generates the 

covariance matrix P[b](t) matrix  representing the 

mean-squared uncertainty in the estimate 

x  b  t  using all measurements z(s) for s≥t . The 

optimal smoother combines x  f  t  and x  b  t , using  

P[f](t) and  P[b](t) to minimize the resulting covariance  

matrix P[s](t) as shown in Figure 1. [9], [10], [4].

 

 

Figure 1. TFS based filter estimates 

III. PROPOSED METHOD (IMM-UKFTFS) 

To improve the positioning accuracy, IMM based fixed interval Two Filter Smoothing is introduced in 

this paper. The proposed method incorporates smoothing algorithm into the Interacting Multiple Model 

approach as shown in Figure 2.  Two IMM filters are running parallel and they are assigned with particular 

model. For two filter smoothing [14], two estimates at time t, one based on forward filtering and other based on 

backward filtering are considered. The idea is to obtain a smoothed improved estimate by fusion of these two 

estimates x  f  t  and x  b  t , and its associated co-variances P[f](t) and  P[b](t) [9]. The IMM-UKFTFS uses the 

estimation and model probabilities of the forward Unscented Kalman Filter and the backward Unscented 

Kalman Filter. The filters use its own time update and measurement update equations for filtering as given 

below.  
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Figure 2. Block Diagram of IMM-UKFTFS  

 

The IMM smoothed estimate i
sk,x̂ of 

i
kx is estimated 

as a linear combination of two IMM filters i
k,fx̂ and

i
bk,x̂ .  Let i

sk,x~  be the IMM smoothed estimate error 

given by  
i
k

i
sk,

i
sk, xx̂x~                                (4) 

The IMM smoothed estimate is given by 
i

bk,2
i
k,f1

i
sk, x̂.kx̂kx̂                     (5) 

From the equation (4) we can write 

)x~(xk)x~(xkx~x i
bk,

i
k2

i
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i
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i
sk,

i
k         (6) 

where
i

bk,

i

fk, x~,x~  are the estimated errors of the IMM 

forward and backward filters. 
i

bk,2

i

fk,1

i

k21

i
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To make our estimate unbiased, 0)x~( i
sk, E  

0Ikk 21               (8) 

12 kIk       (9) 

Substituting k2 in the equation (5), we obtain the 

smoothed estimate. 
i

bk,1
i
k,f1

i
sk, x̂)k(Ix̂.kx̂                 (10) 

Also it can be written as 

)x̂x̂(kx̂x̂ i
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i
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i
bk,

i
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The error covariance matrix of the smoother estimate 

is obtained by 
i
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i
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i
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By minimizing the equation (13) for gain K1 
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Substituting the equations (15) and (17) in the 

equation (13), we will get 
1i

bk,

1i

fk,

1i

sk, PPP


   (18) 

The equation for smoothed covariance of forward and 

backward IMM filter can be written as 
11i

bk,

1i

fk,

i

sk, ]P[PP 
    (19) 

The equation (19) proves that the smoothed 

uncertainty covariance is less than the uncertainty 

covariance of both forward and backward IMM-

UKF. The equation for the IMM smoothed estimate 

is obtained by substituting (15) and (17) in equation 

(10) 
i
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The IMM smoothed estimate is obtained by using the 

forward and backward uncertainty covariance which 

is given by, 

]x̂.)(Px̂.)[(PPx̂ i

bk,

1i
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i

fk,

1i

fk,

i
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i
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           (22) 

The model conditioned smoothed estimate 
j

skx , and 

its uncertainty covariance 
js

kP ,
  is given by the 

equation 






n
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The mixed smoothed probability is calculated by, 
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j
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r

1
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The term  jr  is computed by, 

ji

k

n

1

jij Λpr      (26) 

The likelihood 
ji

kΛ is given by, 

)D,N(ΔΛ ji

k

ji

k

ji

k     (27)          

Where N( ) is the probability function of 

measurement in innovation distribution, 
if,

k

ib,

k

ji

k xx̂Δ  is equivalent to measurement 

innovation. 
if,

k

ib,

k

ji

k PP̂D   is combined covariance of forward 

and backward filter, 

Where 
ib,

kx̂ , 
ib,

kP̂  are model conditioned backward- 

time one-step predicted mean and co-variances, 

             
if,

kx , 
if,

kP  are model-conditioned forward-

time filtered means and co-variances, 

The overall optimal smoothed estimate and its 

uncertainty covariance is given by, 
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The smoothed model probabilities are computed as  

j

kj

js,

k μr
r

1
μ      (30) 

where 
j

kμ is the  forward time filtered model 

probability and r  is the normalization constant given 

by,  

j
k

n

1j

jμrr 


    (31) 

IV. MODELING PARAMETERS FOR GPS/INS 

NAVIGATION 

To estimate the position of the moving 

vehicle using IMM-UKFTFS, two motion models are 

considered. They are Coordinated Turn or Circular 

Turn (CT) model and Constant Acceleration (CA) 

model [13]. The system used in this work includes 

four sensors and one moving vehicle.  Here 2 

dimensional Cartesian coordinate system is 

considered in which the positive „x‟ and positive „y‟ 

axes correspond to East and North of navigation axis 

respectively. 

 

A. Constant Acceleration (CA) Model 

The dynamic model for constant 

acceleration model can be represented as, 

δx k =  Fδx k − 1 +  Gv(k − 1) (32) 

The constant acceleration model has sixth order 

state vector and consists of position error, velocity 

error and acceleration error of the vehicle in x and y 

directions and turn rate parameter. The error state 

vector is given by, 

δx k =

[  δxe k    δyn k    δx e k    δy n k    δx e k    δy n k  ] 
                             

(33) 

In equation (33) δxe k  and δyn k  are the 

position error parameters in east and north direction, 

δx e k  and δy n k  are the velocity error parameters 

in east and north direction, and δx e k  and δy n k  
are the acceleration error parameters in east and north 

direction. The error space representation of the 

constant acceleration model is given by, 
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w(k − 1)              (34) 

The observation matrix H can be represented by, 

H =   
1 0 0 0 0 0
0 1 0 0 0 0

    

      

 (35) 

The model transition probability matrix is set to, 

Pji =   
0.9 0.1
0.1 0.9

     (36) 

The initial model probabilities are set to, 

μ
0

= [0.95   0.05]   (37) 

B. Coordinated Turn (CT) Model 

A common way of modelling a turning 

vehicle is to use the coordinated turn model. In this 

model, a turn rate parameter Ω is included in the state 

vector. The dynamic model for coordinated turn 

model is as follows, 

δx k =  Fδx k − 1 +  Gv(k − 1)   (38) 

The coordinated turn model has fifth order state 

vector and consists of position error and velocity 

error of the vehicle in x and y directions and turn rate 

parameter. The error state vector is given by, 

δx k = [  δxe k    δyn k    δx e k    δy n k   δΩ k  ] 
      

 (39) 

The state space representation of the coordinated turn model is given by, 
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The observation matrix H for CT model can be 

represented by, 

H =   
1 0 0 0 0
0 1 0 0 0

    (41) 

The model transition probability matrix is set to, 

Pji =   
0.9 0.1
0.1 0.9

    (42) 

The initial model probabilities are set to, 

μ0 = [0.95   0.05]  (43) 

V.  GPS/INS INTEGRATION USING IMM-

UKFTFS 

The GPS/INS integration can be done by 

comparing the output of GPS with that of INS as 

shown in Figure 3. The difference (δZk) between the 

output of INS and the output of GPS (Zk) is given to 

the input of the IMM-UKFTFS. The smoothed 

estimate of the vehicle position is feedback to the 

INS to get the corrected INS output.  

 

 

Figure 3. Configuration of Integrated Navigation using 

IMM-UKFTFS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The INS measurements are created with 

respect to the GPS measurements by adding error. 

The GPS measurements are considered as most 

trusted measurements and are created around the 

true trajectory as shown in Figure 4. The difference 

between GPS and INS measurements are taken and 

are considered as an error in measurement. The error 

measurement δZk is given as an input to CA-CT 

error modeled IMM-UKFTFS. The error estimated 

value is subtracted from the INS value and the INS 

value which resembles the GPS value is obtained. 

[7, 8] 

The trajectory of the error between the GPS 

and INS values are simulated for 200 time steps 

with step size T=0.1.The movement of vehicle is 

given in Table 2. The vehicle starts from origin with 

acceleration  yx  , = (1, 0), and at 21s, vehicle starts 

to turn left with rate   = 1, and at 80s, vehicle stops 

turning and moves for 60 seconds with a constant 

total acceleration of one, and at 121s, vehicle starts 

to turn left with rate   = 1 and at 180s, vehicle 

stops turning and moves for 20 seconds with the 

same acceleration. The error between the GPS 

position (true trajectory) and the INS measurement 

is shown in Figure 5. The corrected INS using 

IMM-UKFTFS is depicted in Figure 6. Figures 7 

and 8 show the vehicle error position in north and 

east direction. Figures 9 and 10 show the model 

probability of CA and CT models in IMM-

UKFTFS. 
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Figure 4. GPS (True trajectory) and INS Measurement of 

Simulated Vehicle 

Figure 5.  Error Between GPS and INS Measurement 

 
Figure 6. Corrected INS using IMMUKFTFS 

  
Figure 7. Vehicle Position Error Estimate in North Direction 

using IMM-UKFTFS 

Figure 8. Vehicle Position Error Estimate in East Direction using 

IMM-UKFTFS 
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Figure 9. Constant Acceleration Model Probability in IMM-

UKFTFS 

Figure 10. Constant Acceleration Model Probability in IMM-

UKFTFS 

 

VI. PERFORMANCE ANALYSIS 

The estimates of erroneous INS and 

corrected INS using UKF, IMM-UKF, and IMM-

UKFTFS are depicted in Figures 11 and 12. From 

these figures it can be revealed that the estimated 

trajectory is estimated and smoothed as close as to 

the true trajectory using IMM-UKFTFS.  The Figures 

13 and 14 give the constant acceleration and 

coordinated turn model probabilities for IMM-UKF 

and IMM-UKFTFS. The model probabilities depicted 

by IMM-UKFTFS is more likely to the true model 

than that depicted by IMM-UKF.  The Figures 13 and 

14 give the idea about the changes in model 

probability between constant acceleration model and 

coordinated turn model with respect to the actual 

vehicle dynamics. The Figures 15 and 16 show the 

vehicle position error estimate of proposed schemes 

in north and east components. From Figures 15 and 

16 it can be proved that the error  in north and east 

direction is very less in IMM-UKFTFS when 

compared to UKF and IMM-UKF. 

 

 

 
 

Figure 11. Estimates of Error Produced by UKF, 

IMMUKF, IMMUKF-TFS 

 

Figure 12. Estimates of Corrected INS Produced by UKF, 

IMMUKF, IMMUKF-TFS 

  
Figure 13. Constant Acceleration Model Probability Figure 14. Coordinated Turn Model Probability 
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Figure 14. Vehicle Position Estimate Error in North  Figure 15. Vehicle Position Estimate Error in East 

 

 
Table 1. Description of the Vehicle Motion 

Segment Number Time Interval (sec) Motion 

 0-20 Constant Acceleration straight line 

 21-80 Counter clockwise turn with turn rate Ω=1 

 81-120 Constant Acceleration straight line 

 121-180 Counter clockwise turn with turn rate Ω=1 

 181-200 Constant Acceleration straight line 

 
Table 2. Comparison of Mean Square Error of Different Estimation Methods Integrated CA-CT Error Models 

Methods 
Integrated CA-CT  Error Model 

North East 

UKF 0.0372 0.0417 

IMM-UKF 0.0137 0.0167 

IMM-UKFTFS 0.005 0.0051 

 

 
Figure 16. Comparison of Mean Square Error of Different Estimation methods for CA-CT Error Models 

 

VII. CONCLUSION 

In this paper, GPS navigation with error 

modeling using IMM-UKFTFS method is presented. 

Since TFS provides better results than RTS during 

high nonlinear characteristics of navigation 

applications and also the computational times for 

both TFS and RTS methods were almost the 

same[10], the IMM based TFS algorithm is 
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considered in this work. The proposed methods have 

been tested by using two combinations of model 

trajectories.  The navigation accuracy based on the 

proposed methods has been compared to the single 

model filter, UKF and multiple model filter, IMM-

UKF.  While comparing UKF and IMM-UKF, the 

output of IMM-UKF is better than UKF.  Because 

IMM-UKF uses both CA and CT models for vehicle 

motion whereas UKF uses single model either CA or 

CT for vehicle motion.  But a smoothed estimate 

obtained from IMM-UKFTFS is superior to IMM-

UKF because they use additional smoothing 

measurements. Further, the mean square error of 

IMM-UKFTFS is lesser than other estimators.  The 

comparison of Mean square error estimates of UKF, 

IMM-UKF and IMM-UKFTFS using CA and CT 

models are given in Table2. In both the cases it is 

found that IMM-UKFTFS method gives less mean 

square error compared to UKF and IMM-UKF 

methods. Even though the computational complexity 

is higher for IMM-UKFTFS than other estimation 

techniques, it has been confirmed that there is 

significant improvement in both navigation accuracy 

and tracking capability.  From the simulation results, 

we can conclude that IMM-UKFTFS is better than 

IMM-UKF and gives accurate positioning. 
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