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 ABSTRACT : The proportionate normalized least-

mean-squares (PNLMS) algorithm is a new scheme for 

echo canceller adaptation. On typical echo paths, the 

proportionate normalized least-mean-squares (PNLMS) 

adaptation algorithm converges significantly faster than 

the normalized least-mean-squares (NLMS) algorithm.  

Two proportionate affine projection sign algorithms 

(APSAs) are also proposed for network echo 

cancellation application where the impulse response is 

often real-valued with sparse coefficients and long filter 

length. The proportionate- type algorithms can achieve 

fast convergence rate in sparse impulse responses and 

low steady-state misalignment. The new algorithms are 

more robust to impulsive interferences and colored input 

signals than the proportionate least mean squares 

algorithm, normalized sign algorithm and the robust 

proportionate affine projection algorithm. The 

computational complexity of the new algorithms is lower 

than the affine projection algorithm (APA) family due to 

the elimination of the matrix inversion. The 

computational complexity of the proportionate APSAs 

are compared with that of conventional algorithms in 

terms of the total number of additions, multiplications, 

divisions, comparisons, and square-roots. 
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I. Introduction  

For decades people have been using the telephone 

as a means of distant voice communication. As the 

coverage area and number of subscribers increased, 

the telephone system has become more and more 

sophisticated. Long distance connections and the 

sophisticated systems introduced a lot of 

challenging problems. One of the major challenges 

in the telephone system is the “Echo Effect”. Echo 

is an undesired phenomenon experienced by a user 

over a phone call when he/she hears his/her own 

voice back after a delay. Echo generation can be 

characterized as Network/Line Echo and Acoustic 

Echo. An echo canceller is a simple adaptive filter 

with self adjusting coefficients to cancel out the 

echo. This adaptive filter uses different algorithms 

such as LMS , NLMS, PNLMS and affine 

projection algorithms. As the required adaptive 

filter lengths grow, the conventional normalized 

least mean squares (NLMS) algorithm exhibits a 

slower convergence rate. This slow convergence 

rate becomes noticeable in that echo is often heard, 

especially in the first few seconds of a connection. 

The proportionate NLMS (PNLMS) has been 

designed to ameliorate this situation by exploiting 

the sparse nature of the NIR. By selecting a 

proportionate matrix at each iteration, PNLMS 

updates each coefficient in the weight vector 

proportionate to its magnitude. This results in very 

fast initial convergence for sparse NIRs relatively 

independent of their length. However, the 

drawback of PNLMS is that, though it has fast 

initial convergence for sparse NIRs, it has slower 

convergence than NLMS for non-sparse NIRs. This 

problem has been addressed by several 

modifications to PNLMS. The first is PNLMS 

which has two versions, one where the adaptation 

algorithm alternates between both PNLMS and 

NLMS in successive sample periods and another 

where both updates are combined in each sample 

period. The resulting convergence is generally the 

better of the two algorithms. That is, PNLMS ’s 

convergence is like PNLMS’s for sparse NIRs and 

like NLMS’s for dispersive NIRs. Another 

modification to PNLMS is the improved PNLMS 

(IPNLMS) which has the feature of being optimal 

for a given NIR sparseness. This feature has later 

been exploited in a class of sparseness-controlled 

(SC) algorithms which measure the sparseness of 

the developing coefficients on-the-fly. Another 

approach is to use adaptive combination of 

proportionate filters which adaptively mix the 

outputs of two independent adaptive filters together 

based on IPNLMS. In addition, the -law PNLMS 

(MPNLMS) is an optimal step-size algorithm 

modified from PNLMS. A number of proportionate 

algorithms are also developed for the affine 

projection algorithm (APA) which is well known 

for its better convergence than NLMS for colored 

input. These proportionate algorithms include 

proportionate APA (PAPA), improved 

proportionate APA (IPAPA) and “memory”-

IPAPA (MIPAPA). The IPAPA extends the 

proportionate matrix of IPNLMS directly to APA; 

while the MIPAPA designs an efficient matrix to 

reduce computational complexity. Both algorithms 

improve convergence rate over that of PNLMS in 
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practical NEC applications where the inputs are 

speech and the NIRs are sparse. However, they 

have higher complexity than PNLMS algorithms 

because they generally require a matrix inversion 

where the size of the matrix is the order of the 

projection. In practice, the projection orders are 

typically around ten and direct matrix inversion of 

this size may be too expensive. 

1.1 Echo Canceller 

 

Telephone companies use a device called an echo 

canceller (EC) to overcome the echo problem. An 

echo canceller as in Fig 1.1 is a simple adaptive 

filter with self adjusting coefficients to cancel out 

the echo. Every echo has an echo path and it is 

characterized by an impulse response. The echo 

canceller adapts its filter coefficients to the network 

echo path such that it cancels out the echo. This 

process can be visualized with an echo canceller 

unit as in Fig 1.1. 

 

II. Adaptive Filters for Echo Cancellation 

 
In this section we discuss two types of adaptive 

filters. The first is a stochastic gradient algorithm 

called least mean squares (LMS) and the second is 

a derivative of LMS, normalized least mean 

squares (NLMS). 

 

2.1 The LMS Algorithm 
 

LMS is the most widely used adaptive filtering 

algorithm in the world. It is used in various 

applications like system identification problems 

(e.g. echo cancellation), speech coding and channel 

equalization problems. Although, its speed of 

convergence is often slower than desired, it is 

popular because of its robust performance, low cost 

of implementation and simplicity. LMS is a 

stochastic gradient algorithm. The derivation of the 

algorithm is similar to the steepest descent method. 

However, the steepest descent uses a deterministic 

gradient to reach the Wiener solution, whereas 

LMS uses a stochastic gradient for recursive 

updates which tends to achieve the Wiener 

solution[15]. LMS’s application to echo 

cancellation can be visualized from figure 1. Let us 

make the following definitions, 

input is the excitation signal, often called the far-

end signal given by equation (1) is the excitation 

vector. and equation(2) is the desired signal, it is 

the summation of the echo  and  near-end 

background noise/signal.  The impulse response of 

the system is given by equation (3). The a priori 

error or residual echo is given by equation (4). The 

performance index (cost function) of LMS is the 

mean squared error and is given by equation(5). 

The computational complexity of LMS algorithm 

for one sample period is summarized in the below 

Table1. The total memory required for LMS 

implementation is about 2L where, L is the length 

of the adaptive filter. 

 

2.2 The NLMS Algorithm 

 

The step size of LMS is restricted by its region of 

stability which is determined by the energy in the 

excitation signal. For signals that have time-

varying short-time energy, like speech, a constant 

step size means the speed of convergence will vary 

with the short-time energy. NLMS overcomes this 

problem by normalizing the step size every update 

with the squared Euclidian norm of the excitation 

vector. NLMS can be derived by considering a 

sample-by-sample cost function  given by equation 

(6) that minimizes the size of the coefficient update 

under the constraint that the a posteriori error (the 

error after the coefficient update) for that sample 

period is zero. In equation (6) , rT(n) is the 

coefficient update vector at sample period n , e(n) 

is the a posteriori error, and δ is a weighting factor 

between the size of the update and the a posteriori 

error. The a posteriori error can be expressed  using  

equation (8). Thus, the cost function can be given 

by equation (6). NLMS algorithm can be written in 

the two steps of its usual implementation using 

equation (7) and (9). In equation (9) step-size 

parameter, µNLMS has been added as a relaxation 

factor and the stability range of µNLMS for 

NLMS is 0 < µNLMS< 1. The parameter δ in the 

NLMS coefficient update is also known as the 

regularization parameter[8]. It is seen that when δ 

is non-zero (it is always non-negative) the 

coefficient update is prevented from becoming 

unstable. The coefficient update is given by 

equation (10). The computational complexity of  N 

LMS algorithm for one sample period is 

summarized in the Table2. 

 

2.3 Proportionate NLMS Algorithm 

 

The PNLMS algorithm tries to accelerate the 

convergence of the filter by adapting faster the 

weights corresponding to the active region of the 

sparse echo path. The advantage of PNLMS over 

ES-NLMS is that it does not assume any other a 

priori knowledge about the echo channel but its 

sparsity. PNLMS algorithm exploits the sparseness 

of impulse responses to achieve significantly faster 

adaptation than the conventional normalized least-

mean-squares (NLMS) algorithm. The 

proportionate NLMS algorithm (PNLMS) makes 

the adaptation step for each tap proportional to the 

current absolute value of the estimated weight[1]. 

The advantage of PNLMS is that it does not 

assume any other a priori knowledge about the 

echo channel but its sparsity. The PNLMS 

algorithm differs from the NLMS algorithm in that 
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the available adaptation “energy” is distributed 

unevenly over the N taps. The weight update is 

given by equation (11).  PNLMS under this kind of 

complexity analysis is 50% more complex than 

either NLMS or LMS[17]. The computational 

complexity of  PNLMS algorithm for one sample 

period is summarized in the Table3. 

 

2.3.1 Improved Proportionate NLMS Algorithm  

The coefficients of an IPNLMS filter are adapted 

according to the equation (12).  µ is the step size of 

the filter and is given by equation (13). The gain 

gm(n) for each weight is calculated using 

Equation (14) where € is a small positive constant, 

and k is a constant between -1 and 1, which 

establishes a tradeoff  between the standard  NLMS 

filter ( k=-1) and basic PNLMS(k=1). From the 

above equations it is evident that the step size 

associated to each coefficient increases with the 

absolute value of that coefficient. Consequently, 

like in the PNLMS, IPNLMS spends more energy 

adapting the active coefficients, thus converging 

faster than NLMS. 

2.4 APA Algorithm: A number of proportionate 

algorithms developed for the affine projection 

algorithm (APA) which is well known for its better 

convergence than NLMS for colored input. These 

proportionate algorithms include proportionate 

APA (PAPA), improved proportionate APA 

(IPAPA) and “memory”-IPAPA (MIPAPA). The 

IPAPA extends the proportionate matrix of 

IPNLMS directly to APA; while the MIPAPA 

designs an efficient matrix to reduce computational 

complexity. Both algorithms improve convergence 

rate over that of PNLMS in practical NEC 

applications where the inputs are speech and the 

NIRs are sparse. However, they have higher 

complexity than PNLMS algorithms because they 

generally require a matrix inversion where the size 

of the matrix is the order of the projection. In 

practice, the projection orders are typically around 

ten and direct matrix inversion of this size may be 

too expensive. The computational complexity of  

PNLMS algorithm for one sample period is 

summarized in the Table4. 

2.5 Computational Complexity 
The APSA achieves faster convergence and lower 

steady-state normalized misalignment than NLMS, 

APA, and NSA under impulsive interference. This 

is achieved without the need for a matrix inversion 

as in APA. The computational complexity of the 

proportionate APSAs are compared with that of 

conventional algorithms in terms of the total 

number of additions, multiplications, divisions, 

comparisons, square-roots, and direct matrix 

inversions. With filter length and projection order , 

the complexities are shown in above tables.. 

Although APA behaves better than NLMS, APA 

has higher complexity because the number of 

multiplications and the size of the DMI increase 

proportionately to M2. In contrast, the APSA does 

not require matrix inversion thus the projection 

order M does not affect the number of 

multiplications, and the number of additions is only 

linearly dependent on M . Note that APSA does not 

require matrix inversion, thus the APSAs are more 

efficient than APA. With a modest increase in the 

proportionate matrix computation, the 

proportionate APSAs behave much better than the 

original APSA, especially for sparse NIRs. This 

APA algorithm takes into account the history of the 

proportionate factors (the last values) for each filter 

coefficient.  This algorithm achieves a lower 

computational complexity due to the recursive 

implementation of the “proportionate history”, 

providing both faster tracking and lower 

misadjustment. However, IPAPA algorithms  have 

higher complexity than PNLMS algorithms 

because they generally require a matrix inversion 

where the size of the matrix is the order of the 

projection. 

 

III.INDENTATIONS AND EQUATIONS 
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Table -1: Complexity of LMS Algorithm 

Equations Multiplicat

ions 

 
L 

 
L 

Total Complexity 2L 

Table -2: Complexity of NLMS Algorithm 

Equations Multiplications 

 
L 

ONLMS 
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L 
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Table -3: Complexity of PNLMS Algorithm 

Equations Multiplicati

ons 

 
L 

e(n) ONLMS 

 
L 

Total Complexity 2L+ ONLMS 

 

Table- 4 : Complexity of APA Algorithm 

Equations Multipli

cations 

Memor

y 

 
NL L 

 
OAPAN2 N2 

h(n)=h(n-1)+ (n)  NL L 

Total Complexity 2NL+ 

OAPAN2 

2L+N2 

 

V.Conclusion 

In PNLMS algorithm stability is assured and 

adaptation quality (misadjustment) is held constant 

at any desired level. With update gains proportional 

to current tap weights, very fast convergence on 

typical echo paths is achieved. Also it can be seen 

from simulations that NLMS has a lower steady-

state error compared to the PNLMS, which can be 

analyzed through a separate work. Two 

proportionate affine projection sign algorithm 

(APSA) have been proposed for the identification 

of real-coefficient, sparse systems. With a modest 

increase in computational complexity over that of 

the original APSA, the proportionate APSAs can 
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achieve faster convergence rate and lower 

complexity in a steady-state misalignment in a 

sparse network echo path, colored input, and 

impulsive interference environment. The 

computational complexity of the two proportionate 

APSAs is lower than the APA family due to 

elimination of the matrix inversion.  
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