
SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Volume 2 Issue 7–July 2015

ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 16

Implementation of SAD Algorithm with

Folded Tree Architecture using VHDL
Resma S#1, Ragimol#2

#1PG student , Department of Electronics and Communication Engineering, Sree Buddha College of

Engineering, Kerala University, India
#2Assitant Professor, Department of Electronics and Communication Engineering, Sree Buddha College of

Engineering, Kerala University, India

Abstract — The trend of smaller, portable and more

capable electronic devices give rise to a number of design

and implementation problem, mainly due to the energy

consumption. The highest energy consumption in radio

communication, so in order to reduce the energy and power,

Folded tree architecture is beneficial. The existing

architecture known as Binary tree architecture, is a tree

data structure in which each node has at most two children,

but this architecture requires large number of processing

elements. Thus the Folded tree architecture is used, which

has two phases, trunk and twig, this help in reducing the

number of processing elements. Wireless Sensor Network

(WSN) has wide range of application in medical monitoring,

environmental sensing, industrial inspection and military

surveillance. The data-driven nature of Wireless Sensor

Nodes applications requires a specific data processing

approach. Motion estimation is the most critical component

of video coding system. Sum of Absolute Difference (SAD)

algorithm is the most common matching criteria choosen for

motion estimation because of its low complexity and good

performance and it is a tree structure. Due to the structural

similarity of Sum of Absolute Difference (SAD) algorithm,

motion estimation can implement using binary tree and

folded tree architectures. The area, power and delay are

reduced in the proposed architecture. This paper describes

the design and implementation of the newly proposed

folded-tree architecture with Sum of Absolute Difference

(SAD) algorithm for motion estimation.

Keywords — Wireless Sensor Network (WSN), parallel

prefix operation, binary tree, folded tree, Sum of Absolute

Difference (SAD) algorithm, motion estimation.

I. INTRODUCTION

The development of Wireless Sensor Networks

was motivated by military applications such as

battlefield surveillance, such networks are used in

many industrial and consumer applications, such as

industrial process monitoring and control, machine

health monitoring, and so on. Wireless Sensor

Network node has three parts. They are sensors, radio,

and micro controller. These three parts are combined

with a limited power supply. Since radio transmissions

are very expensive in terms of energy. The ratio of

communication to computation energy cost can range

from 100 to 3000 [1]. So data communication must be

traded for on-the-node processing which in turn can

convert the many sensor readings into a few useful

data values. The data-driven nature of WSN

applications needs a specific data processing approach.

The Wireless Sensor Network consist of

different types of architectures. In this paper Binary

tree architecture [2] and Folded tree architecture [3]

are designed and implemented. Highest energy

consumption in radio communication. So in order to

reduce the energy and power, Folded tree architecture

is better. The existing architecture known as Binary

tree architecture, is a tree data structure in which

consist of nodes, but this architecture needes large

number of Processing Elements (PEs). Thus the

Folded tree architecture is used, help in reducing the

number of processing elements by reusing the

Processing Elements (PEs). The Folded tree

architecture is a low power Digital Signal Processor

(DSP)architecture, which reduce the area, power and

delay than Binary tree architecture. Hence using

Folded tree architecture with Sum of Absolute

Difference (SAD) algorithm [4] for implementing

motion estimation.

Sum of Absolute Difference algorithm is a tree

structure, which consist of sum elements and

difference elements. The structural similarity of SAD

with this two architecture , which can implemented

using Binary tree and Folded tree, hence estimating

the motion vector. Motion estimation is the most

critical component of video coding system, determines

motion vectors that describe the transformation from

one 2D image to another. The Sum of Absolute

Difference (SAD) algorithm is an extremely fast

metric due to its simplicity. Different motion

estimation algorithms are existing, but which is in the

field of Image processing. In field of Very Large Scale

Integration (VLSI), Sum of Absolute Difference

algorithm is prefered, because it consist of addition

and subtraction unit. In this work motion estimation

done with existing architecture known as Binary tree

and proposed architecture known as Folded tree

architecture, which reduce area, power and delay in a

netwok.

II. RELATED REQUIREMENT

FOR PROCESSING

Two key requirements are used to improve

existing processing and control architectures can be

identified.

A. Minimize Memory Acess

 Modern micro controllers are working on the

principle of divide and conquer strategy of ultra fast

processors [5]. The lack of task specific operations

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Volume 2 Issue 7–July 2015

ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 17

leads to insufficient execution, that results in longer

algorithms and significant memory book keeping.

B. Combine Data and Control Flow Principles

Two approaches are exist to manage the data

stream and instruction stream in core functional unit.

Under control flow, the data stream is a consequence

of instruction stream and the instruction stream is the

consequence of data stream.A traditional processor

architecture is a control flow machine, that execute

programs sequentially as a stream of instructions. The

data flow program identifies the data dependencies.

III. EXISTING METHOD

 The existing method for implementing motion

estimation with SAD algorithm is binary tree. The

disadvantages of this method is at a time only one

node act as root nodes, other node act as leaves. So at

a time only one data is send. Hence the power as well

as energy is increased. Time requirement is high and

required interconnection is high. The proposed

approach gives the limited power and energy for

motion estimation with SAD. The Folded tree

Fig. 1. A binary tree

architecture is proposed to send the data in the way of

wireless communication technique.
In the Fig. 1, binary tree [2] is constructed using

Processing Elements (PEs). The first stage is

constructed using PE1,PE2,PE3 and PE4. In the

second stage, which constructed using PE5 and PE6

and the third stage is using PE7. The number of

Processing Element (PE) required to construct this

simple network is seven. So inorder to reduce the

number of processing element proposing a new

architecture known as Folded tree architecture, which

reuse the processing element and reducing the area

and power. . SAD is implemented using Binary tree,

which is a tree structure and is made of four partual

SAD [4].

Fig. 2. A SAD Structure

A partual SAD consist of 4 substraction unit and

3 addition unit. The current coding pixels X00,X01,....

and the reference pixel Y00,Y01,..... are read from

memory. The partual SAD value is accumulated in

accumulator (ACC). The structure of SAD is similar

to a tree, so it can implemented using binary tree and

folded tree.

IV. PROPOSED METHOD

Parallel prefix operation is used for on-the-node

data processing in wireless sensor network. Prefix

operation can be calculated in different ways [6], due

to the flow matches the desired on-the-node data

aggregation, the binary tree and folded tree approach

is prefered. On-the-node data aggregation can

visualized in binary tree and folded tree of Processing

Elements (PEs). The tree based data flow will

executed on the data path of programmable PEs which

provide the flexibility together with the parallel prefix

operation.

A.Parallel Prefix Operation

Prefix Operation normally used in the world of

digital design. Carry look-ahead adder [7] is the

suitable example. The carry look-ahead adder consist

of tree stages- Bitwise Propagate Generate (PG) stage,

Group PG stage, Sum stage and A and B are the two

inputs.The output of bitwise PG stage is Pi= Ai xor Bi ;

Gi= Ai and Bi. For A={1001} and B={1010} then

output P={0011} and G={1000}; the sum out finally

obtaining depends upon the Cin, sum={0111}.

Blelloch’s generic approach [2] is used for prefix

calculation, which consist of two phase trunk phase

and twig phase. In trunk phase, the left value L is

saved locally as Lsave and it is added to the right

value R, which is passed towards the root. This

continues until the parallel-prefix element 15 is found

at the root. Here a store-and-calculate operation is

executed. . The twig-phase starts, during which data

moves in the opposite direction, from the root to the

leaves. The incoming value, beginning with the sum

identity

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Volume 2 Issue 7–July 2015

ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 18

Fig.3. Carry look-ahead adder

element 0 at the root, is passed to the left child, while

it is also added to the previously saved Lsave and

passed to the right child. Finally the reduced-prefix

values is found at the leaves.

Fig. 4. Example of a prefix calculation with sum operator using

Blelloch generic approach in a trunk and twig phase.

 B. Folded Tree

Fig. 5. Folded tree

The area and power is reduced by using the

folded tree architecture. The idea here is to fold the

tree back onto the itself to maximally reuse the PEs. In

doing so,if n is the input, cost P becomes proportional

to n/2 and the area is reduced to half. Note that also

the interconnect is reduced. And throughput decreases

by a factor of log(n) but since the sample rate of

different physical phenomena relevant for WSNs does

not exceed 100 kHz [8] , this leaves enough room for

this trade off to be made.

Fig. 6. A binary tree (left, 7 PEs) is functionally equivalent to the

novel folded tree topology (right, 4 PEs) used in this architecture.

 In folded tree which fold the tree back onto

itself to maximally reuse the PEs, so the number of

PEs is reduced . In the Fig. 5, the number of PEs

reduced to four.

V. PROGRAMMING EXISTING AND PROPOSED

APPROACH

The binary tree and folded tree architectures are

programmed on VHDL.VHDL (VHSIC Hardware

Description Language) is a hardware description

language used in electronic design automation to

describe digital and mixed-signal systems such

as field-programmable gate arrays and integrated

circuits. VHDL can also be used as a general

purpose parallel programming language.

A.Binary Tree

The binary tree in Fig. 6 consist of seven PEs,

each stage consist of different PEs. The right and left

input values are added , passed to the next stage and

left input value is saved in PEs. For example in Fig. 4,

trunk phase input applied to the PE1 is 3 and 1. The

left value 3 is stored in the PE1, left input 3 and right

input 1 is added and passed to the next stage. This

process will continues until output value is obtained

from PE7. Using this criteria and stuctural similarity

with SAD motion estimation is implemented using

binary tree. The programming of binary tree with two

inputs, binary and decimal. But binary input is

prefered because the number of bit in the input and

output is reduced, so complexity of design is reduced.

Fig. 7. Trunk Phase Implementation

https://en.wikipedia.org/wiki/VHSIC
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Parallel_programming_language

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Volume 2 Issue 7–July 2015

ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 19

B. Folded Tree

The Blelloch generic trunk phase is considered.

The letters L and R indicates left and right value of

inputs A and B. According to Blelloch approach, L is

saved as Lsave and the sum L+R is passed.

The folded tree functionally becomes a binary

tree, all nodes of the binary tree are assigned numbers

that correspond to the PE, which will act like that node

at that stage. As can be seen, PE1 and PE2 are only

used once, PE3 is used twice and PE4 is used three

times. This implies to a decreasing number of active

PEs while progressing from stage to stage. In the first

stage, all four PEs are active. The second stage has

two active PEs: PE3 and PE4. The third and last stage

has only one PE is active: PE4.

Fig. 8. Implications of using Folded tree

More importantly, it can seen that PE3 and PE4

have to store multiple Lsave values. PE4 must keep

three: Lsave0 through Lsave2, while PE3 keeps two:

Lsave0 and Lsave1. PE1 and PE2 each have only keep

one: Lsave0. The trunk phase PE program has three

instructions, which are identical, apart from the

different RF addresses are used. Due to the fact that

multiple Lsave’s have to be stored, each stage will

have its own RF address to store and retrieve them.

That is why PE4 , PE3 and PE1 and PE2 needs three,

two , one instruction respectively.

Fig. 9. Annotated twig phase graph of 4 PE folded tree

In twig phase the tree operates in the opposite

direction. According to Blelloch’s approach, S is

passed to the left and the sum S+Lsave is passed to the

right, none of these annotations are global. The way

the PEs are activated during the twig phase again

influences how the programming of the folded tree

happen.

In Fig. 10, SAD converted to folded tree, here

always the Blelloch’s trunk phase is applied and

programmed. Normal SAD algorithm is a type of

binary tree, so programming and implementation is

simple, but number of processing element is high. In

the case of SAD with folded tree, the number of

processing elements is reduced and motion is

estimated.

Fig. 10. SAD Algorithm with Folded Tree Architecture

VI. EXPERIMENTAL RESULTS

Fig. 11. Output of Binary tree architecture with decimal input

Fig. 11, shows binary tree of eight decimal input

is applied and a single out is obtained. Fig .12 shows

binary tree of eight binary input with four bit and a

single output with seven bit. Fig. 13, shows the motion

vector for binary tree architecture with SAD algorithm.

Fig. 14 shows folded tree of eight decimal input is

applied and a single out is obtained. Fig. 15 shows

folded tree of eight binary input with four bit and a

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Volume 2 Issue 7–July 2015

ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 20

single output with seven bit. Fig.16 shows the motion

vector for folded tree architecture with SAD algorithm.

At 250ns the data was transmitted in folded tree with

SAD. Hence the time requirement is low.

Fig. 12. Output of Binary tree architecture with binary input

Fig. 13. Output of Binary tree architecture with SAD

Fig. 14. Output of Folded tree architecture with decimal input

Fig. 15. Output of Folded tree architecture with binary input

Fig. 16. Output of Folded tree architecture with SAD

TABLE I

DEVICE UTILIZATION SUMMARY OF BINARYTREE

WITH SAD FOR MOTION ESTIMATION

Logic

Utlization

Used

Available

Utlization

Number of Slices

956

2448

39%

Number of Slice Flip

Flop

1056

4896

20%

Number of 4 Input

LUTs

1324

4896

27%

Number of IOBs

896

108

829%

Number of GCLKs

1

24

4%

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Volume 2 Issue 7–July 2015

ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 21

TABLE II

DEVICE UTILIZATION SUMMARY OF FOLDEDTREE

WITH SAD FOR MOTION ESTIMATION

Logic

Utlization

Used

Available

Utlization

Number of Slices

43

2448

1%

Number of Slice Flip Flop

47

4896

0%

Number of 4 Input LUTs

79

4896

1%

Number of IOBs

29

108

26%

Number of GCLKs

1

24

4%

Comparing Table I and Table II, the number of

slices utlized by folded tree is very less compared to

binary tree architecture. That is the area is reduced in

folded tree. The number of slice flipflop required for

binarytree 20% higher than folded tree and number of

LUTs required for folded tree is very less. From this

tables, reaches to the infornation that folded tree is

more efficient than the binary tree.

TABLE III

PARAMETER COMPARISON

Architectures

Area in

Percentage

Power in

Percentage

Delay

Binary tree

Architecture

39

65

107.743

Folded tree

Architecture

1

57

71.537

The comparison table gives the binary tree

consumes 39% area, folded tree consume only 3%

area. Power consumption in both architecture is

milliWatt range, so the measurement of power is so

deficult. But number of device included in each

architecture can measure. From this measurement

power consumption is obtained. Binarytree utlizing

65% power, but the folded tree utlizing only 57%

power. And the delay is always reduced from 107.743

in binarytree to 71.537 in folded tree.That is the

Folded tree architecture with SAD algorithm for

motion estimation is area efficient, low power and

reducing delay.

VII. CONCLUSION

This paper presented the folded tree architecture

with SAD algorithm for motion estimation. The SAD

algorithm for motion estimation can be described

using binary tree, but it utlizing high power and area.

Reducing the area, power and delay in folded tree by

reusing the PEs. The simplicity of the programmable

PEs, which constitute the folded tree architecture

resulted in high integration, reduced area, reduced

delay and low power consumption. The binary tree

can be reused as folded tree.

REFERENCES
[1] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava,

“Energyawarewireless microsensor networks,” IEEE Signal

Process. Mag., vol. 19, no. 2, pp. 40–50, Mar. 2002.

[2] G. Blelloch, “Scans as primitive parallel operations,” IEEE

Trans.Comput., vol. 38, no. 11, pp. 1526–1538, Nov. 1989.

[3] Cedric Walravens, Wim Dehaene, “Low-Power Digital Signal

Processor Architecture for Wireless Sensor Nodes” , IEEE

transactions on very large scale integration (vlsi) systems,

vol. 22, no. 2, february 2014.

[4] S.C.Hsia, P.Y.Hong, “ Very large scale integretion(VLSI)

implementation of low-complexity variable block size

motion estimation for H.264/AVC coding” , IET Circuits

Devices Syst., 2010, Vol. 4.Iss. 5, pp. 414-424.

[5] J. Hennessy and D. Patterson, Computer Architecture A

Quantitative Approach, 4th ed. San Mateo, CA: Morgan

Kaufmann, 2007.

[6] P. Sanders and J. Träff, “Parallel prefix (scan) algorithms for

MPI,” in Proc. Recent Adv. Parallel Virtual Mach. Message

Pass. Interf., 2006, pp. 49–57.

[7] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and

Systems Perspective. Reading, MA, USA, Addison Wesley,

2010.

[8] M. Hempstead, J. M. Lyons, D. Brooks, and G.-Y. Wei,

“Survey of hardware systems for wireless sensor networks,”

J. Low Power Electron., vol. 4, no. 1, pp. 11–29, 2008.

[9] C. Walravens and W. Dehaene, “Design of a low-energy data

processing architecture for wsn nodes,” in Proc. Design,

Automat. Test Eur. Conf. Exhibit., Mar. 2012, pp. 570–573.

[10] H. Karl and A. Willig, Protocols and Architectures for

Wireless SensorNetworks, 1st ed. New York: Wiley, 2005

[11] S. Mysore, B. Agrawal, F. T. Chong, and T. Sherwood,

“Exploring the processor and ISA design for wireless sensor

network applications,” in Proc. 21th Int. Conf. Very-Large-

Scale Integr. (VLSI) Design, 2008, pp. 59–64

[12] Yu-Wen Huang, Shao-Yi Chien, Bing-Yu Hsieh, and Liang-

Gee Chen, “Global Elimination Algorithm and Architecture

Design for Fast Block Matching Motion Estimation” , IEEE

transactions on circuits and systems for video technology,

vol. 14, no. 6, june 2004

[13] J. Vanne, et al., .A high-performance sum of absolute

difference implementation for motion estimation,. IEEE

Transactions on Circuits and Systems for Video Technology,

vol. 16, no. 7, pp. 876.883, July 2006.

[14] Y.S. Jehng, L.G. Chen and T.D. Chiueh, "An efficient and

simple VLSI tree architecture for motion estimation

algorithms," IEEE Trans. on Signal Processin.g, vol. 41,

no.2,pp.889-900,Feb.1993.

 [15] Y. H. Yeh and C. Y. Lee, “Cost-effective VLSI architectures

and buffer size optimization for full-search block matching

algorithms,” IEEE Trans. VLSI Syst., vol. 7, pp. 345–358,

Sept. 1999.

