
SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Volume 3 Issue 11 – November 2016

ISSN: 2348 – 8549 www.internationaljournalssrg.org Page16

Ethernet MAC Verification with Loopback

Mechanism using Efficient Verification

Methodology

Sridevi Chitti 1, P Chandrasekhar2, M Asharani3

 Department of Electronics & Communication Engg.,
Hyderabad, Telangana, India.

Abstract- This paper describes Efficient Verification

Methodology (EVM) based constrained random

verification (CRV) of a SoC. SoC taken into

consideration is Ethernet MAC module with loopback

mechanism using XGMII interface. The environment of

verification, which is created by means of efficient

verification methodology for system verilog is scalable,

predictable and reusable and can reduce verification

time. Using this verification environment, existence of

bugs in the design can be found and design errors with

corner cases can be easily located by the help of

constraints.

Keywords: Efficient verification methodology, MAC,
Verification IP, constrained random verification,
Gigabit Ethernet, XGMII.

I. INTRODUCTION

Due to advancement in fabrication technology more

logic is being placed on a single silicon die. Many

components are reused for improving time to market.

Overall, more than 70 percent of the time is spent on

verification. With the need of constructing a robust and

reusable verification environment, efficient verification

methodology was introduced to fulfil the goal. Another

feature of efficient verification methodology is that, it is

supported by all major simulator vendors unlike other

methodologies. The goal of this paper is Verification of

10Gbps Ethernet MAC with loopback mechanism which

decreases the overall simulation time with performance

improvement.

SoC is build by integrating various subsystems which

makes a verification task very challenging at SoC level

[1]. Various challenges in SoC verification are as

follows:

-reusing subsystem level verification environment for

minimizing verification effort at SoC level

Connectivity between Intellectual Properties(IP)
1. System Level scenario verification

2.Synchronization of “C” based testcases

running on Core with Subsystem/IP level verification

environments for enabling maximum reuse
At SoC level, register sequences are used and internal

Subsystem/IP level verification environments are

configured as Passive agents and Interface IP level

verification environments are considered as Active

agents. Register sequences are not dependent on BUS

protocol, it helps in reusing the register sequences with

different BUS at IP/Subsystem/SoC level.

This approach addresses the following aspects of

verification at SoC Level [2]
 Control and configuration of verification blocks

from embedded software


 Reusability of different components of
verification environment from IP to SoC level

 Testcase reusability from IP to SoC level.

 Handing over integration testcases to SoC team,
developed by IP verification team.

II. OVERVIEW OF MAC WITH XGMII

Table 1 shows IEEE 802.3 data frame which consists

of 7 different fields. These fields are set together to form

a single data frame which illustrates the 7 fields:

Preamble, Start-of-Frame delimiter, Destination

Address, Source Address, Length, Data, and Frame

Check Sequence.

TABLE I

IEEE 802.3 ETHERNET FRAME

Ten Gigabit media-independent interface (XGMII) is

a standard which is defined in IEEE 802.3 for connecting

full duplex Ten Gigabit Ethernet (10GbE) ports with

each other and for other electronic devices on printed

circuit board (PCB) [3, 4]. It is comprised of two 32-bit

data paths (Tx & Rx) and two four-bit control paths (Txc

& Rxc), operating at 156.25 MHz’s.

Fig 1: Block Diagram of 10GEMAC

PRE SOF DA SA Length Data FCS

7 1 6 6 2 46-1500 4

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Volume 3 Issue 11 – November 2016

ISSN: 2348 – 8549 www.internationaljournalssrg.org Page17

XGMII interface is generally made up of a 32-bit data

bus, clocked on rising and falling edges. For simplicity

10GE MAC uses a 64-bit interface (I/F) clocked on the

rising edge.
Fig.1 shows block diagram of 10GEMAC has three

major modules. Transmit engine, receive engine and

XGMII.

A. Transmit Engine

The TX Enqueue Engine receives the frames and

stores them in the transmit FIFO in addition to some

additional flags like Start of Packet and End of Packet

indicators. FIFO fill status is provided to the core by this

Tx engine [5].
Fig. 2 shows transmit FIFO is having a depth of 128

bit entry with 64-bit of data and 8-bit of status/entry. As

FIFO can store 512 bytes of data (64 x 64-bit), the MAC

should operate in flow-through mode means the

transmission of a frame on the XGMII interface can start

on the enqueue side to the FIFO while the frame is still

being written.

The TX Dequeue Engine consists of two state-

machines. The first one reads data from data FIFO. After

insertion of Ethernet preamble data the Encoding State-

Machine reads data from Holding FIFO.

Fig 2: Transmit FIFO format

B. Receive Engine

In the RX Enqueue Engine, the Reconciliation layer

monitors the XGMII interface for fault condition

detection and passes the status for checking [5].
Fig. 3 shows RX FIFO is having a depth of 128 bit

entry with 64-bit of data and 8-bit of status/entry. As

FIFO can store 512 bytes of data (64 x 64-bit), the MAC

should operate in flow-through mode means the

transmission of a frame on the packet interface can start

on the enqueue side to the FIFO while the frame is still

being written.
The RX Dequeue Engine interfaces with user logic. Its
primary function is converting the internal status from
RX FIFO to meaningful signals on pkt_rx interface.

Fig 3: Receive FIFO format

C. XGMII

XGMII Tx Control: On 64-bit interface, each bit

corresponds to a byte. High status signifies that the byte

is a control character and low status indicates that data is

carried out by the byte.

XGMII Tx Data: While interfacing with 32-bit

devices, xgmii_txd[31:0] is mapped to the positive edge

of the clock and xgmii_txd[63:32] is mapped to the

negative edge. XGMII Rx Control: On 64-bit interface,

each bit corresponds to a byte. High Status Signifies that

the byte is a control character and low status indicates

that data is carried out by the byte.

XGMII Rx Data: While interfaced with 32-bit

devices, xgmii_rxd[31:0] is mapped to the positive edge

of the clock and xgmii_rxd[63:32] is mapped to the

nagative edge.

Figure 4 shows loopback module provides a

mechanism to verify the functionality of the MAC and

PHY during simulation. When local loopback is enabled,

the Ethernet loopback module takes the transmit frame

from the MAC XGMII TX and loops it back to the MAC

XGMII RX data path [6].
In accordance with the IEEE 802.3 Clause 46 Ethernet

standard, transmitting frames on SDR XGMII interface,

MAC Tx ensures the following

 Aligns the first byte of the frame to either lane 0 or

lane 4 of the interface.
 Performs endian conversion. Client Transmit the

frames to the interface are in big endian format.
Frames transmitted on SDR XGMII are in the form
of little endian. The MAC Tx transmits frame on
this interface from LSB (least significant byte).

The MAC RX receives Ethernet frame from SDR

XGMII Interface and forwards the payload with relevant

frame information to the client after checking and

filtering invalid frames in Rx data path. Data lanes

coming through the SDR XGMII are decoded by MAC

RX. First byte of the receive frame should received

either in lane 0 (most significant byte) or lane 4, as

expected by MAC Rx. The Rx frame should be preceded

by a column of idle bytes or by an ordered set. Rx frame

which does not satisfy this condition is invalid and the

corresponding frame is dropped by MAC Rx. After this,

the sequence of the frame is checked by MAC Rx. The

frame begins with 1-byte START, 6-byte preamble data

and 1-byte Start Frame Delimiter (SFD). Otherwise,

MAC RX considers the frame as invalid and drops it

eventually. For all valid frames, MAC RX removes the

START, preamble data, Start Frame Delimiter (SFD)

and End Frame Delimiter (EFD) bytes ensuring that the

first byte of the frame is aligned to byte 0. End Frame

Delimiter is removed by MAC Rx for all valid frames

ensuring that the first byte of the frame is aligned to byte

0.

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Volume 3 Issue 11 – November 2016

ISSN: 2348 – 8549 www.internationaljournalssrg.org Page18

Fig 4: Block Diagram of 10GEMAC Loopback system

III. EFFICIENT VERIFICATION METHODOLOGY

VERIFICATION ENVIRONMENT MAC WITH

LOOPBACK

In order to verify and evaluate the performance of the

MAC RTL and the gate-level net list, Efficient

verification methodology verification environment [7],

[8] has been set up. Apart from the traditional

verification methods such as timing check by assertions

[9], a reusable framework to obtain functional and code

coverage [10] and constrained random data generation

[11] has been implemented here. In MAC Verification

Environment of Fig. 3, it integrates several encapsulated,

ready-to-use and configurable verification agents. Each

of them, the master or slave agent, contains three

subcomponents: the sequencer, driver and monitor. As

shown in Fig. 5, the signal level or the physical level

includes the design for test (DUT) and each agent’s

driver. The drivers are used to drive (in a master) or

respond (in a slave) the bus-signal interface according to

the bus protocol. Considering the sequencer and the

monitor, all the operations are design-specific and both

of them are in the transaction level. The sequencer

controls and arranges the flow of sequence items to the

driver, and the monitor samples the activities and

collects the transactions seen on the signal-level

interfaces and sends them into the analyzer.
Assertion Checker: We have implemented an assertion
checker. This checker checks whether the requests and
responses are protocol specific or not. If any request or
response which violates the protocol, it would generate
an error response and test would be terminated
immediately.

Tests and Sequences: Ethernet VIP has number of tests
and a different sequence for each test. Few error tests
with erroneous sequences are also added for the users to
use to check how the DUT reacts when given an
erroneous stimulus. This library of built-in sequencers
helps jump-start the task to achieve coverage goals and
will enable the user to get to high coverage very rapidly.

In the top module , dut and test are instantiated and

connected using the interface. Interface is also passed to

the verification environment using configuration.
module top;
import mac_test_pkg::*; import uvm_pkg::*;
logic clock_156m25;
logic clock_wb;

logic reset_156m25_n;
logic reset_xgmii_rx_n;
logic reset_xgmii_tx_n;
logic wb_rst_n;
logic [7:0] mgii_txc_reg;
logic [63:0] mgii_txd_reg;
initial
begin
fork wb_reset(); xgmii_rx_reset();
xgmii_tx_reset(); system_reset();
join
end
task wb_reset(); wb_rst_n = 0; repeat(2)
@(posedge clock _wb); wb_rst_n = 1;
endtask
mac_if mif(.clock(clock_156m25),
.reset_156m25_n(reset_156m25_n));

Listing. Top Class

D. Test Cases

To check the functionality of the ETHERNET according
to the specification the scenarios which have been
covered are as follows- Receive Enable, Receive
available, Valid data (Tx and Rx), Start of packet (Tx
and Rx), End of packet (Tx and Rx), Modulus length (Tx
and Rx), Packets data(Tx and Rx), Receive error and
Transmit full.

Fig 5: MAC with XGMII VIP Architecture

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Volume 3 Issue 11 – November 2016

ISSN: 2348 – 8549 www.internationaljournalssrg.org Page19

IV. COVERAGE REPORTS AND SIMULATION RESULTS

Fig 6: Simulation Results of MAC with XGMII

Fig. 6 represents the simulation result as viewed by

using mentor graphics Questa tool. It displays

transmitted data from the transmit engine to the XGMII

receiver then it retransmit to the MAC through receiver

engine while it receives the data from the XGMII

transmitter.

TABLE III

LOCAL INSTANCE COVERAGE DETAILS

From Simulation waveform we can observe that

transmitted packets have been received in the receiver

side as per our expectation following the specification.

Table 2 shows code and functional coverage report

generated by the Questa-sim simulator for MAC with

Loopback mechanism. 94.61% overall coverage has

been achieved.

V. CONCLUSION

Gigabit Ethernet MAC verification has been

presented here by using most advanced verification

methodology. Verification is very crucial to find bugs

which only appear with random stimulus. The

constrained random approach is more time-efficient for

reaching coverage goal compared to some other simpler

methods such as directed test method. The verification

flow in this research has not only reduced resources and

efforts of SOC team to gather knowledge, develop test

bench and test cases and debugging but also minimized

the IP team’s resources and efforts as well.

ACKNOWLEDGEMENT

Authors would like to express sincere thanks to

Department of Science and Technology, New Delhi for

their financial support to carry out this work under

project Grant No. SR/WOS-A/ET- 17 /2012(G). Further

our sincere feelings and gratitude to management and

principal of Sumathi Reddy Institute of Technology for

Women, for their support and encouragement to carry

out the research work.

REFERENCES

[1] Young-Nam Yun;, “Beyond UVM for practical SoC

verification”, SoC Design Conference (ISOCC), 2011

International, pp158-162, 2011.

[2] Creating a reusable testbench using cadance’s testbuilder

and AMBA TVM Prakash Rashinkar, Peter Paterson and

Leena Singh, SYSTEM-ON-A-CHIP VERIFICATION

Boston: Kluwer Academic Publishers, 2001.

[3] MV Lau,, S. Shieh, Pei-Feng Wang, B. Smith, D. Lee, J.

Chao, B. Shung, and Cheng-Chung Shih, "Gigabit ethernet

switches using a shared buffer

architecture,"Communications Magazine, IEEE, vol. 41, no.

12, pp. 76 - 84, dec. 2003.

[4] Assaf, M.H, Arima ; Das, S.R. ; Hernias, W, Petriu, E.M,

“Verification of Ethernet IP Core MAC Design Using

Deterministic Test Methodology”, IEEE International

instrumentation and Mesurements Technology Conference,

doi.10.1109/IMTC.2008.4547312, victoria, May 2008.

[5] Tonfat, J, Reis, R, “Design and Verification of a layer-2

Ethernet MAC classification Engine for a gGigabit Ethernet

Switch”, Proc IEEE Electronics, Circuits, and Systems doi.

10.1109/ICECS.2010.5724475, Athens, Dec 2010.

[6] Frazier,H. “The 802.3z gigabit Ethernet Standard”, Proc

IEEE J, doi10.1109/65.690946, vol-12, May-June 1998.

[7] H. D. Foster, A. Krolnik, and D. Lacey, “Assertion-Based

Design,” 2nded., Kluwer Academic Publishers, 2004.

[8] J. Bergeron, E. Cerny, A. Hunter, A. Nightingale,

“Verification Methodology Manual for SystemVerilog,”

Springer Publisher, Sep 1, 2005, pp. 260-282.

[9] Accellera, UVM 1.1 Reference Manual, Jun. 2011

[10] Accellera, UVM 1.1 User Guide, May. 2012.

[11] J. Cho, S. Choi, S.-I. Chae, “Constrained-Random Bitstream

Generation for H.264/AVC Decoder Conformance Test,”

IEEE Trans. on Consumer Electronics, vol. 56, no. 2, pp.

848-855, May. 2010.

Weighted Average: 97.08%

Coverage Type Bins Hits Misses Coverage (%)

Branch 400 365 35 91.25%

Assertion Attempted 9 9 0 100.00%

Assertion Failures 9 0 - 0.00%

Assertion Successes 9 9 0 100.00%

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5720492

