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Abstract 

Biphase codes are more preferable in pulse 

compression radars because these codes are easy to 

implement with digital hardware, and needs less signal 

processing in the receiver. This paper presents the 

design of long binary coded signals, which have low 

side lobes. These sequences are optimized by using 

Particle Swarm Optimization (PSO) algorithm. Further 

sidelobes are minimized by using mismatch filter. 

 

I.  INTRODUCTION 

There was a rapid growth in radar technology 

and systems during World War II. The major areas of 

radar applications includes military, remote sensing, air 

traffic control, law enforcement and highway safety, 

aircraft safety and navigation, ship safety and space [1]. 

Simple pulsed radar is limited in range sensitivity by 

the average radiation power and, in range resolution by 

the pulse length. The pulse compression theory has 

been introduced in order to get a high range resolution 

as well as a good detection probability at long ranges 

[2]. Pulse compression allows radar designers use of 

long duration waveforms to obtain high energy and 

simultaneously achieve the resolution of a short pulse 

by modulating the long transmitted pulse. The 

resolution is the ability of radar to distinguish targets 

that are closely spaced together in either range or 

bearing. The receiver matched filter output is the 

autocorrelation of the transmitted signal. If peak 

sidelobe level (PSL) at the output of the matched filter 

is not satisfactory, a mismatch filter can be used so as to 

reduce the side lobes further at a cost of introducing 

signal to noise ratio (SNR) mismatch loss. Low 

autocorrelation side lobes are required to prevent the 

masking of weak targets that occurs in the range side 

lobe of strong target. The internal modulation of 

transmitted pulse may be binary phase coding, 

polyphase coding, and frequency modulation. In this 

paper we are discussing the design of bi-phase codes 

for longer lengths, to achieve the high compression 

ratio. 

 

 

 

 

 

 

II. BARKER CODED AND COMPOUND 

BARKER CODE 

The binary code consists of a sequence of  

+1and -1. The phase of the transmitted signal alternates 

between 0 and 180° in accordance with the sequence of 

elements in the phase code. The order of the so called 

random 0 or π phases is in fact critical. The binary 

choice of 0 or π phase for each sub-pulse may be made 

at random. However, some random selections may be 

better suited than others for radar application. One 

criterion for the selection of a good ―random‖ phase-

coded waveform is that its autocorrelation function 

should have equal time side-lobes. The binary phase-

coded sequence of 0 or π values that result in equal 

side-lobes after passes through the matched filter is 

called a Barker code. Fig. 1 shows the Autocorrelation 

Function (ACF) of the Barker code of length N=13. 

Barker codes of lengths more than 13 are not available. 

The maximum compression ratio that can be achieved 

through Barker codes is 13 only, which is not enough in 

many radar applications.  

One of the popular ways of generating long 

binary sequences for high pulse compression ratio is 

Compound Barker codes. Compound Barker Codes is 

demonstrated using pair wise combinations of Barker 

Codes of length 5, 7, 11 and 13. If a code 𝐶𝑁1
of length 

N1 is compounded with another code 𝐶𝑁2
of length N2, 

the z-domain representation for such compounding is 

given by 𝐶𝑁1 ,𝑁2
= 𝐶𝑁2

(z)⊗𝐶𝑁1
 (z) Where 𝐶𝑁1

(z) is the 

outer code and 𝐶𝑁2
(z) is the inner code. 
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Fig. 1: Auto correlation of Barker code N=13. 

 

In the time domain, the inner code is repeated 

a number of times equal to the number of bits in the 

outer code. In each repetition, the inner code is phase 

inverted or not depending on whether the corresponding 

bit in the outer is -1 or +1 respectively. Let us consider 

the Barker Codes of length 7 and 5 as 𝐵7 = {1 1 1 -1 -1 

1 -1} 𝐵5= {1 1 1 -1 1}. Either of these codes could be 

compounded with the other to produce a code of length 

35. If the outer code is length 5 and the inner code is 

length 7, the compound code is denoted by B5 B7, 

where represents the Kronecker product. The 

compound code is given by [1 1 1 -1 -1 1 -1 1 1 1 -1 -1 

1 - 1 1 1 1 -1 -1 1   -1 -1 -1 -1 1 1 -1 1 1 1 1 -1 -1 1 -1]. 

Literature results [5-6] reveal that by using the 

compound Barker codes only compression ratio can be 

achieved but there is no improvement in sidelobe 

suppression. 

 

A. Linear Recursive Sequences 

The another method of generating long binary 

sequences of length greater than 13 is using shift 

registers with feedback and modulo-2 arithmetic. This 

method generates pseudo random sequences of 1 and 0 

of length 2N-1, where N is the number of stages in shift 

registers [6].  Fig. 3, shows the ACF of the pseudo 

random sequence of length N=31, generated by using 5 

shift registers that is 2N-1. The major limitation of both 

the codes, that is compound Barker codes and linear 

recursive codes, only a fixed length of codes can be 

generated. Therefore, this paper discusses the 

generation of long binary sequences of any length using 

optimization technique. In next section we are 

discussing about the Particle Swarm Optimization 

(PSO) and its application in optimization of binary 

sequences. 

 

III. PARTICLE SWARM OPTIMIZATION 

ALGORITHM 

The Particle Swarm Optimization (PSO) 

algorithm is a biologically-inspired algorithm motivated 

by a social analogy. The algorithm and its concept of 

―Particle Swarm Optimization was introduced by James 

Kennedy and R ussel Ebhart, based on the social 

behavior of flock of birds in 1995 [7]. Every bird is a 

particle in hyper-dimensional search space. Also every 

particle has some sociopsychological nature by which it 

tries to enhance its scope of other particles. In PSO the 

swarm is a collection of particles in motion and every 

particle concerns a   potential solution. The solution 

approaches the desired value as the particle moves with 

its knowledge of personal as well as global experience. 

To accomplish for this it has 2 parameters i.e. position 

and velocity of the particle. 

 

𝑥𝑖(t) = 𝑖𝑡ℎ  particle position at time slot ‗t‘.       (1) 

𝑣𝑖(t) = 𝑖𝑡ℎ  particle velocity at time slot ‗t‘.       (2) 

 

In a particular iteration the position is updated as 

 

𝑥𝑖(t + 1) = 𝑥𝑖(t) + 𝑣𝑖(t + 1)                                (3) 

 

It can be understood from above expression 

that the velocity updates the position with the 

knowledge of globally exchanged information. 

Updating velocity, there are many methods for adopting 

PSO, Individual best PSO, Global best PSO and local 

best PSO. However, in the present work, global best 

PSO is considered as it is supposed to have good 

convergence criterion. In  

Global best PSO, the velocity is updated with including 

the knowledge of the best particle‘s position in the 

flock. 

 

𝑣𝑖(𝑡 + 1)  = 𝑣𝑖(𝑡) +𝜌1 (𝑥𝑖(𝑝𝑏𝑒𝑠𝑡 )  – 𝑥𝑖(𝑡) )+𝜌2 (𝑥𝑔𝑏𝑒𝑠𝑡  – 

𝑥𝑖(𝑡))       (4)                                                       

 

For above all the three cases the personal best is 

updated in iteration as follows 

If    Fitness (𝑥𝑖(𝑡)) < pbest(𝑥𝑖) 

then      𝑥𝑖(𝑝𝑏𝑒𝑠𝑡 ) = 𝑥𝑖(𝑡) 

else     𝑥𝑖(pbest)  remains with its value 

Also in Global Best method the 𝑥𝑔𝑏𝑒𝑠𝑡  is updated as 

if     Fitness (𝑥𝑖(𝑡) < gbest 

then    𝑥𝑔𝑏𝑒𝑠𝑡  = 𝑥𝑖(𝑡) 

else 𝑥𝑔𝑏𝑒𝑠𝑡  will retain its value. 

 

The flow chart for optimization is shown in 

Fig. 2. The main advantage is, by using this method 

binary sequences of any length can be optimized unlike 

in the case of compound Barker codes or linear 

recursive sequences. Fig. 5 & Fig 7 are showing the 

ACF of optimized binary sequence of length N=31, and 

N= 63 respectively, which are achieved by using PSO 

algorithm.  

 
IV. MISMATCHED FILTER 

Further, the sidelobes of optimized sequences 

can be minimized by using mismatch filter at the cost of 

some signal-to-noise ratio (SNR) loss [8]. The binary 

sequence is given by 
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S = {𝑠1 , 𝑠2, s3,…...,𝑠𝑁}                 (5) 

The filter elements are 

  H = {h1, h2, h3 …….hM}                  (6) 

where the elements are real and N ≤M. For simplicity 

we will assume that if N is odd then M is also odd, and 

when N is even M is also even. This implies that M − 

N is 

 

 

         
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2. Flow Chart of Optimization Process of PSO 

Always Even, Hence (M −N)/2 = z is an integer. 

  

We will now define Z as an all-zero sequence 

of length z, and create a zero-padded signal sequence of 

length M = N + 2z given by 

     

S0 = {Z S Z}                (7) 

 

Clearly, the sequences H and S0 are both of equal 

length M. We will also assume that the filter is 

designed so that the cross-correlation Rk (H, S0) 

between H and S0 will peak at zero delay (k = 0). Rk (H, 

S0) is not necessarily symmetric around zero delay. 

   

 
Fig 3. ACF  of  Linear Recursive Sequence, N=31 

 
    

Fig. 4. Output of Mismatch Filter N=31, M=93 

(Linear Recursive sequence) 
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Initial population of particles with random 

positions and velocities 

Evaluate the fitness of each particle 

 

Compare each particle‘s fitness evaluation 

with the current particle‘s to obtain 𝑃𝑏𝑒𝑠𝑡   

Compare fitness evaluation with the population‘s 

overall previous best to obtain 𝐺𝑏𝑒𝑠𝑡  

𝑣𝑖 = 𝑣𝑖 + 2 ∗ 𝑟𝑎𝑛𝑑  ∗  𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖 + 2

∗ 𝑟𝑎𝑛𝑑  ∗ (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖) 

𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖  

Is the shopping 

Criterion met? 

    STOP 
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Fig 5. ACF of  Optimized Sequence using PSO, N=31 

 

Fig 6. Output of Mismatch Filter N=31, M=93  

(PSO optimized sequence) 

 

 
Fig 7. ACF  of  Optimized Sequence using PSO, N=63 

 
Fig 8. Output of Mismatch Filter N=63, M=189  

(PSO optimized sequence) 

 

V. RESULTS AND CONCLUSION 

The objective is mainly to demonstrate the 

capability of the PSO algorithm in the generation of 

binary sequences of any length with good auto-

correlation properties. These sequences are widely used 

in pulse compression radar for improving system 

performance. Figs 3-8, show that the results obtained by 

using PSO are better than the sequences generated by 

LRS method for the same sequence length. 

Additionally, sidelobes can be further suppressed by 

using mismatch filter. One can also observe that as the 

length of sequence increases, sidelobe suppression in 

mismatch filter is also increases.  
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