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Abstract 

           Artificial neural network based nonlinear 

equalizers (ANN-NLEs) have received much attention 

in the last three years due to its ability of complex 

mapping between the complex input and  output 

spaces.In the history of ANN-NLE, the focus has 

always been improving the performance of coherent 

optical orthogonal frequency division multiplexing 

(CO-OFDM) system. Recent developments in ANN-

NLE have led to a decision that a single neuron based 

ANN i.e., functional link artificial neural network 

(FLANN) has been considered as an efficient 

technique of performance improvement with less 

computational complexity.There are many types of 

FLANN available in literature depending on the 

expansion technique used in network such as PPN 

(Polynomial Perceptron Network), T-FLANN 

(Trigonometric Functional link Artificial Neural 

Network), Le-FLANN (Legendre Functional link 

Artificial Neural Network) and Ch-FLANN 

(Chebyshev Functional link Artificial Neural 

Network).Until now this methodology has only been 

applied to Ch-FLANN based NLE. It has not yet been 

established whether other types of FLANN can do the 

task of nonlinearity mitigation in CO-OFDM system. 

In this context authors tried to use other types of 

FLANN-NLE for the mitigation of nonlinearities in 

CO-OFDM system. 
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I.  INTRODUCTION  

  In coherent optical orthogonal frequency 
division multiplexing (CO-OFDM) techniquepartial 
overlapping subcarriers is the main cause of a high 
spectral efficiency [1]. Addition of cyclic prefix code 
is responsible for elimination of chromatic dispersion 

(CD) and polarization mode dispersion (PMD) [1, 3]. 
Nonlinear effects such as self-phase modulation 
(SPM) and cross-phase modulation (XPM) has 
become a critical issue in CO-OFDM system. It is 
well known that SPM and XPM are the nonlinear 
phase shifts depending on the intensity of an optical 
pulse due to the pulse itself and a nearby pulse, 
respectively [4]. Linear equalizer based solutions to 
optical fiber nonlinearity compensation are 
inadequate due to linear decision limits present in 
them [5]. Recent findings regarding nonlinearity 
compensation in CO-OFDM system have led to 
Artificial Neural Network based equalizer as an 
alternative technique. Multilayer Perceptron (MLP) 
based Artificial Neural Networks are attracting 
considerable interest due to its capability to 
accomplish complex mapping between input and 
output spaces with noteworthy achievement [6]. In 
[7] the authors studied MLP based ANN-NLE with 
the Riedmiller’s resilient BP algorithm for linear and 
nonlinear impairment’s compensation in coherent 
optical OFDM system. The pitfalls of their method 
have been clearly recognized. The main limitation of 
MLP model is its complexity which made neural 
network training difficult.  

A recent review of the literature on this topic 
[2016] found that the convenient way to remove these 
difficulties is to use a single neuron based functional 
link ANN (FLANN) [8, 9]. FLANN is a network in 
which the original input pattern is expanded to a 
higher dimensional space using nonlinear functions 
and it has a capability to provide arbitrarily complex 
decision regions. Until now Chebyshev type FLANN 
has been considered as nonlinear equalizer in CO-
OFDM system. As per author’s knowledge there is a 
lack of comparative study between various types of 
FLANN for nonlinearity mitigation in CO-OFDM 
system. Including this fact into consideration, authors 
tried to present the comparison of various types of 
existing FLANNs for nonlinear effects mitigation in 
CO-OFDM system. The remainder of this paper has 
been organized as follows. In second section the 
simulation setup has been outlined; third section 
presents the theory of various types of artificial neural 
networks. Simulation results have been discussed and 
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compared with MLP based NLE in section four. The 
conclusion has been outlined in fifth section. 

II. CO-OFDM SIMULATION SETUP 

In this study the simulation set up bears a close 

resemblance to the one proposed by M.A. Jarajreh in 

2010 [10] and has been presented in Fig. 1. This 

model was chosen because it is one of the most 

practical ways to mitigate the nonlinearity in CO-

OFDM system.  The design of the CO-OFDM system 

was based on the idea of dividing the input complex 

data of an equalizer into two parts i.e., real and 

imaginary, applying separately these parts to ANN 

networks and recombining the output of the ANN 

equalizer [11]. In this study, various artificial neural 

network techniques for fiber nonlinearity 

compensation have been validated by carrying out 

numerical simulations in MATLAB. More details can 

be found in author’s previous paper [12]. 

 
Fig.1 CO-OFDM modem block diagram used for numerical simulations [10] 

 

Various transceiver parameters have been 

summarized in Table 1. 

Table 1. Transceiver parameters for the CO-OFDM 

transmission model 

Parameter Value 

Bit Rate 80Gb/s 

Operating Wavelength 1550nm 

Fiber Length 200-1000km 

Modulation Technique 16-QAM 

Cyclic Prefix Overhead 25% 

Number of OFDM subcarriers 64 

Clipping Ratio 13dB 

Chromatic Dispersion 17ps/nm/km 

Polarization Mode Dispersion 0.1ps/km(1/2) 

Fiber Loss 0.2dB/km 

Nonlinear kerr coefficient 2.6x10-20 m2/w 

Photo Detector PIN 

 

III. TYPES OF ARTIFICIAL NEURAL 

NETWORKS 

In this section the network structure for each 

artificial neural network used for the nonlinearity 

compensation under study has been presented. 

A. Multilayer Perceptron (MLP)  

First, Multilayer perceptron is the most widely used 

and basic structure of artificial neural network. The 

final output of the MLP shown in Fig. 2 is expressed 

in equation (i). 

 

𝑦𝑘 = 𝜓𝑘   𝑤𝑘𝑗 𝜓𝑗   𝑤𝑗𝑖𝜓𝑖   𝑤𝑖𝑠𝑖 + 𝑏𝑖

𝑛

𝑖=1

 

𝑃1

𝑗=1

+ 𝑏𝑗 

𝑃2

𝑘=1

+ 𝑏𝑘 … . (𝑖) 

 

 

where𝑠1, 𝑠2 ………  𝑠𝑛denotes the inputs and 

𝑦𝑘represents the output of the final layer of the neural 

network. The connecting weights between the input 

layer to the first hidden layer, first to second hidden 

layer and the second hidden layer to the output layer 

are represented by 𝑤𝑖 , 𝑤𝑗𝑖 and 𝑤𝑘𝑗 respectively. 
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Fig. 2 MLP Neural Network using Back-Propagation 

Algorithm  

 

In Fig. 2 the most popular form of activation 

functions used for signal processing application are 

Sigmoid and the hyperbolic tangent function since 

these are differentiable. For nonlinearity 

compensation in CO-OFDM, mostly MLP is trained 

using popular Riedmiller’s resilient back-propagation 

(RR-BP) algorithm [13]. 

B. Polynomial Perceptron Network  

Weierstrass approximation theorem asserts that any 

continuous function in a closed interval can be 

uniformly approximated within any given tolerance 

over same interval by some polynomial [14].  

 
Fig. 3 Polynomial Perceptron Network [15] 

 

          PPN structure is shown in Fig. 3. Let us 

consider a two-dimensional input pattern X =
 x1x2 

T . This pattern has been enhanced by 

polynomial processor expressed as X∗ given in 

equation (𝑖𝑖)[15]. 
𝑋∗ = [1   𝑥1  𝑥1

2𝑥1𝑥2  𝑥2  𝑥2
2]𝑇 ………  (𝑖𝑖) 

The PPN is a single layered network and thus the 
training time is much less than that of the MLP 
structure. However, in the case of the PPN, the 
number of weights grows rapidly as the polynomial 
order and the dimension of the input pattern 
increases. 

C. Functional Link Artificial Neural Network  

                Functional Link Artificial Neural 

Network (FLANN) is a type of higher Order 

Artificial Neural Networks that uses higher 

combination of its inputs [15-17]. It has been 

successfully used in many applications [18]. Here, the 

FLANN for the channel equalization to compensate 

the nonlinearities in optical OFDM has been used. In 

this paper, three types of functional expansions i.e., 

trigonometric expansion, Chebyshev expansion and 

Legendre expansion have been used to mitigate the 

nonlinear effects and their respected structures are 

shown in Fig. 4. 

 
Fig. 4 (a) Trigonometric expansion 

 

 
Fig. 4 (b) Chebyshev expansion 

 

 

 
Fig. 4(c) Legendre Structure 

 

1) Trigonometric expansion 

                                       Let us consider a two-

dimensional input pattern 𝑋 = [𝑥1𝑥2]𝑇. This input 

pattern of an equalizer has been enhanced by 

functional expansion using Trigonometric functions 

as shown in equation (𝑖𝑖𝑖).  

[𝑥1 cos 𝜋𝑥1  𝑠𝑖𝑛(𝜋𝑥1) … 𝑐𝑜𝑠(2𝜋𝑥1) 𝑠𝑖𝑛 2𝜋𝑥1 … 

𝑥2𝑐𝑜𝑠(𝜋𝑥2) sin 𝜋𝑥2  … 𝑐𝑜𝑠 2𝜋𝑥2 𝑠𝑖𝑛 2𝜋𝑥2 … 

                                                       𝑥1𝑥2]𝑇 …… (𝑖𝑖𝑖) 

 

2) Chebyshev expansion 

                            The input of CO-OFDM system is 

expanded using Chebyshev polynomial and shown in 

equation (𝑖𝑣). 

𝜑 = [𝜑1(𝑥𝑖(𝑘)),𝜑2(𝑥𝑖(𝑘)),……𝜑𝑝(𝑥𝑖(𝑘))] …… (𝑖𝑣) 
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3) Legendre expansion 

                          Legendre functional link artificial 

Neural Network (Le-FLANN) has a wonderful 

striking feature of faster training rate as compared to 

T-FLANN and Ch-FLANN. The Legendre expansion 

polynomials are represented by 𝐿𝑛 𝑋 , where n is the 

order of polynomial. The 0th and 1st order Legendre 

polynomials are given by 𝐿0(𝑥)=1 and𝐿1 𝑥 = 𝑥. 

Legendre network higher order polynomials are 

formed by following mathematical equation (v). 

𝐿𝑛+1 𝑥 =
1

𝑛 + 1
  2𝑛 + 1 𝑥𝐿𝑛 𝑥 − 𝑛𝐿𝑛−1 𝑥  …… (𝑣) 

 

For a two-dimensional input pattern 𝑋 = [𝑥1𝑥2]𝑇. 

This input pattern has been enhanced by Legendre 

functional expansion using the equation  𝑣𝑖 . 
𝑋𝑒

=  1, 𝐿1 𝑥1 , 𝐿2 𝑥1 , 𝐿3 𝑥1 , 𝐿1 𝑥2 , 𝐿2 𝑥2 , 𝐿3 𝑥2  … (𝑣𝑖) 

For Legendre neural network, training procedure of 

network is same as that in FLANN and PPN. Hence 

FLANN and Le-FLANN is appropriately used as 

nonlinear equalizer in CO-OFDM system due to less 

computational cost. 

IV. SIMULATION RESULTS AND DISCUSSIONS 

The results obtained without ANN equalizer, 

with MLP based ANN equalizer, with PPN based 

ANN equalizer and with various types of FLANN 

equalizers by performing various simulations, have 

been summarized in Fig. 5 to Fig. 8. In the Fig.5 (a) - 

5(f) various scatter plots has been presented. From 

these scatter plots, it has been clear that Chebyshev 

FLANN provides more converged points as 

compared to all other techniques under study. 

 
(a) 

 
    (b) 

 
    (c) 

 
    (d) 

 
(e) 

 
    (f) 

Fig. 5 Received 16-QAM Scatter plots with various 

NLEs 
 

Fig. 6 shows the Input launch power (dBm) 

versus Q-Factor (dB) for the CO-OFDM system 

without NLE, with ANN based NLE’s over fiber 

length 1000km, at payload bit rate 80Gbps. As shown 

in Fig. 6, the value of Q-Factor gets  improved with 

all the techniques under study. But with Chebyshev 

based FLANN technique achieved Q-Factor is 

maximum as compared to all other techniques. This 

plot shows that maximum improvement is achieved at 

-3dBm.  
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Fig. 7 shows the Bit error rate (BER) versus 

OSNR (dB) without ANN equalizer and with 

different equalizers on fiber length of 1000km at 

typical dispersion value of 17ps/nm-km. With the 

60% change in OSNR (i.e., 8dB to 20 dB), the BER 

change without equalizer is 92% and with various 

ANN based equalizer it is almost 99.9% which means 

that  the change in BER is almost same in all types of 

ANN equalizers. At specified value of OSNR at 15dB 

the percentage improvement in BER is 96.16%, 

98.05%, 98.88%, 99.25% and 99.4% for ANN-MLP, 

PPN, Le-FLANN, T-FLANN and Ch-FLANN 

respectively. This result shows that with the increase 

in value of OSNR, the BER improvement is more in 

Chebyshev-FLANN as compared to that of all other 

techniques. 

Fig. 8 shows the fiber length (km) versus Q-

factor (dB) without ANN equalizer and with different 

equalizers on fiber length of 1000km at typical 

dispersion value of 17ps/nm-km. At specified value 

of fiber length-1000km the percentage improvement 

in Q-factor is 5.35%, 6.44%, 7.21%, 7.86% and 8.3% 

for ANN-MLP, PPN, Le-FLANN, T-FLANN and 

Ch-FLANN respectively. This implies that with the 

increase in value of optical fiber length, the Q factor 

improvement is more in Chebyshev-FLANN as 

compared to that of all other techniques of FLANN 

and basic MLP based ANN. 

 

 
Fig. 6 Input Launch Power (dBm) versus Q- Factor (dB)  

 

 
Fig. 7 OSNR (dB) versus BER 

 



SSRG International Journal of Electronics and Communication Engineering(SSRG - IJECE)–Volume5 Issue2 Feb 2018 

ISSN: 2348 – 8549                         www.internationaljournalssrg.org                            Page 6 

 
Fig. 8 Fiber length (Km) versus Q-Factor (dB)

V. CONCLUSION 

It is clear from the comparison between the 

results of BER and Q- factor performance for the 

different types of ANN based equalizer, that the FLANN 

based non-linear equalizers provides better results over 

other equalizers. It has been found from this study that 

different FLANN based nonlinear equalizers such as 

Le-FLANN, T-FLANN and Ch-FLANN provides 

almost same performance improvement for the 

variation in fiber length (i.e., 98.88%, 99.25% and 

99.4% improvement in BER performance and 7.21%, 

7.86% and 8.3% improvement in Q-factor for Le-

FLANN, T-FLANN and Ch-FLANN nonlinear 

equalizers respectively). If the system computational 

cost is the main factor to be considered than the Le-

FLANN based nonlinear is the preferred technique 

because it requires less computational effort. It has 

been seen in above simulation result values, the Ch-

FLANN provides 8.3% improvement in Q-factor which 

is more than the other techniques of FLANN equalizer 

such as Le-FLANN and T-FLANN. Therefore it has 

been concluded that Ch-FLANN technique is preferred 

over other techniques of FLANN if the performance 

improvement is the most important factor of the system 

under consideration. 
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