A Recent Survey and Problem on Facial Expression Recognition using Pattern Analysis and Machine Intelligence

¹Dr.K Senthamil Selvan, ²K Pandikumar, ³Dr.B Sowmya ¹Professor, Department of ECE, Dhanalakshmi College of Engineering, Chennai ²Assistant Professor, Department of CSE, Dhanalakshmi College of Engineering, Chennai ³Principal, Alpha College of Engineering, Chennai

Abstract

Emotions play an important role in viewer's content selection and consumption. When a user watches video clips or listens to music experience certain feelings and emotions which manifest through bodily and physiological cues, pupil dilation and contraction, facial expressions, frowning, and changes in vocal features, laughter. In order to translate a user's bodily and behavioral reactions to emotions and emotion assessment techniques are required. Emotion assessment is a task even users are not always able to express their emotion with words all the time and the self-reporting emotions have a high probability of false emotions. In this research the emotion of the users are used to characterize the image and to arrange them accordingly. The emotion of the user is recognized with the captured image and the features extracted from them. The features extracted from the image will be quantified and will be used as training set for the pattern recognizing neural network. The trained neural network in future will classify the images according to the emotions expressed by the person.

Facial expressions are recognised by the humans, virtually without effort or delay. But automatic expression recognition is still a challenge. There are challenges in capturing and preprocessing the image, in feature extraction or selection, and classification. Attaining successful recognition automatically is very difficult. The objective of this research is to overcome these difficulties and obtain a successful recognition.

This paper gives a review on the mechanisms of human facial behavior recognition using pattern analysis and machine intelligence, which includes a brief detail on framework, literaturesurvey, problems ,applications and comparative survey in facial behavior recognition using pattern analysis and machine intelligence.

Keywords—Face detection, Featureextraction, classification, Pattern analysis and machine intelligence, emotion recognition, human-computer interaction

ISSN: 2348 - 8549

I. INTRODUCTION

Human Emotions play an important role in viewer's content selection and consumption. Emotion assessment is task even users are not always able to express their emotion with words all the time and the self-reporting emotions have a high probability of false emotions.

There are challenges in capturing and preprocessing the image, in feature extraction or selection, and classification The new methods are developed in the field of human computer interaction and to go for many research is necessary to find optimal methods with respect to automation ,speed and accuracy.

II. OBJECTIVE OF THE RESEARCH

To design a soft computing based face emotion independent detection system by applying different face acquisition, facial feature extraction, facial expression classification.

A. Applications of the research

- Psychological diagnosis and training
- Video surveillance and security
- Testing driver stress
- Intelligent tutoring system
- Age estimation
- Human machine intelligent interactions
- Health support appliances
- Gaming
- Pain and depression analysis
- Human emotion analysis

III. EXISTING RESEARCH

- Existing results are obtained 93.9% accuracy only
- Not successful emotion detection in the conditions of pose variation, feature acclusion, lighting condition
- Need to improve the accuracy and reliability of driving fatigue detection
- Still challenges in the expression classifications in real time from live webcam feed

- Leads incorrect recognition while training data is insufficient
- Some system require more processing power
- Some system does not more flexible, accurate and more feasibility
- Existing system takes more time per frame
- Does not fully person independent
- Need good method for handle partial occlusions and make robustness

IV. PROPOSED RESEARCH

- To achieve Improved emotion recognition rate when compared to previous research.
- To proposed to detect new positive emotions such as interest and confidence, negativeemotion such as stress and anxiety,neutral emotion such as calm and relaxed.

- Handle occlusion
- Recognize all possible expressions

B. Automatic Process

- Automatic face acquisition
- Automatic facial feature extraction
- Automatic expression recognition

C. Real Time Process

- Real time face acquisition
- Real time facial feature extraction
- Real time expression recognition

D. Autonomic Process

- Output recognition with confidence
- Adaptive to different level outputs based on input images

V. PROPOSED ARCHITECTURE

A. Robustness

- Deal with subjects of different age, gender
- Handle lighting changes
- Handle large head motion

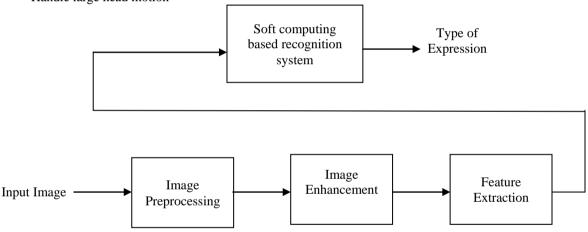


Fig 1: Overall architecture of proposed emotion detection system

VI. COMPARATIVE SURVEY

The comparative analysis of human facial behaviour recognition systems using pattern analysis and machine intelligence is given in the table. The table shows the technique they use in each phase, advantage and disadvantage of that system.

Publicati on/year	Title	Methods and techniqu es	Key points +pros & - cons	
ELSEVIE	Facial	Transfera	+It is a	
R/2007	expression	ble belief	poweful	
	classification	model	approach	
	: an approach		for static	

ISSN: 2348 - 8549

	based on the		classificatio	
	facial		n	
	deformations		-not	
	using the		suitable for	
	transferable		dynamic	
	belief model		approach	
IEEE/200	Emotion	Fuzzy	+good	
9	Recognition	approach	accuracy	
	From Facial		90%	
	Expressions			
	and Its			
	Control			
	Using Fuzzy			
	Logic			
ELSEVIE	Sad benefit	Cognitiv	+applied for	
R/2011	in face	e	psychologic	

	working memory: An emotional bias of melancholic depression	behaviou ral therapy	al intervention s -not for positve emotions	Springer/ 2012	Facial expression recognition using local binary patterns and discriminant	DKLLE(discrimin ant kernel locally linear embeddi	+handle embedded data set- high discriminati ng power	
Springer/ 2011	Multi-label classification of music by emotion	Multilab el feature selection method	+overall predictive performanc e was high	Springer/	kernel locally linear embedding	ng) Different	Itrosking	
Springer/ 2011	Face Detection and Facial Expression Recognition Using a Novel	Gd mixture models	+it is a powerful approach for dealing with the problems of face	Springer/ 2013	landmark point detection and tracking for human facial expression	ial evolution -markov chain(DE -MC)	+tracking video sequences -low tracking performanc e	
	Variational Statistical Framework		detection and expression recognition	IEEE/201 3	Phase- Blender- Based FIR Noise Filtering	FIR filter	+good noise filtering	
Springer/ 2011	Biologically inspired emotion recognition from speech	Mel frequenc y cepstral coefficie nts and	+better recognition rate		Techniques for Fractional-N PLL			
ELSEVIE	Classification	lyon cochlear model	+improve	ELSEVIE R/2014	Sentiment analysis algorithm and application:	Machine learning,l exicon and hybrid	+applied to real time applications -need some enhanceme	
R/2012	Algorithms Research on	nearest neighbor	reliability -lack of		A survey	approach	nts	
	Facial Expression Recognition	alogorith m	mixed emotions	Springer/ 2014	Effect of negative emotions evoked by	PANAS method (positive and	+increase negative rating -more	
ELSEVIE R/2012	Theory of evidence for face detection and tracking	Evidentia I modellin g and classical bootstrap	or 1 modellin d g and classical	+settings are made easier +computati onal cost is reduced.		light, noise and taste on trigeminal thermal sensitivity	negative affect states)	complex opeartion
		particle filter techniqu e	-not for dynamic settings and detection rate reach only 80%	IEEE/201 4	Face Detection and Facial Expression Recognition System	Active appearan ce model	+achieved 92 % accuracy -require the extraction and training of	
Springer/ 2012	A model for inference of emotional	Kalman filtering	+produce excellent result				additional facial points	
	state based on facial expressions		-detect slow emotion	IEEE/201 4	Robust Driver Fatigue Recognition	SVM	+detect driver fatique -low	

	Using Image Processing		processing speed	ELSEVIE R/2016	Testosterone and attention deficits as	IPV	+high attention -poor
ELSEVIE R/2015	A Human Facial Expression Recognition Model based on Eigen Face Approach	Eigen face approach	+suitable for training datasets -need more extensive training		possible mechanisms underlying impaired emotion recognition in intimate partner violence		emotion recognition
ELSEVIE R/2015	Facial expression recognition: A survey	Automati c FER	+increase accuracy rate -handle occlusion	ELSEVIE R/2016	Student Emotion Recognition System	Viola jones algorith m	+ good face analyzing -only for positive
ELSEVIE R/2015	Breaking bad news, the diagnosis of cystic fibrosis in childhood	Utrecht copyng list	+it identify strong emotions -accuracy was poor		(SERS) for e- learning improvement based on learner concentration metric		emotions
ELSEVIE R/2015	Facial expression recognition: A survey	FER	+good accuracy +handle acclusion -improve accuracy rate	ELSEVIE R/2016	Intact emotion recognition and experience but dysfunctional	QADP,S ADS	+good intensity -poor accuracy
Springer/ 2015	Towards effective touch interaction: Predicting mobile user emotion from	SVM,ma ximum entropy model,K- means clusterin	+achieved 90.47 accuracy	ELSEVIE	emotion regulation in idiopathic Parkinson's disease	3D	+applied
	finger strokes	g		R/2016	emerging role of in	neuron model	medical field
IEEE/201 5	Driver Gaze Tracking and Eyes Off the Road Detection System	EOR(eye s off the road)met hod	+does not require any driver- dependent calibration		vitro electrophysio logical methods in CNS safety pharmacolog y		-problem in appropriate training set
Springer/ 2016	Secured ECG signal transmission for human emotional stress classification in wireless body area networks	Probabili ty of data intercept data detection model	+high classificatio n rate 90% -improve transmissio n rate	ELSEVIE R/2016	Smart environment architecture for emotion detection and regulation	Bayesain network classifier, neuralnet work,SV M,hidden markov models	+it maintain emotions towards positive mood -used more techniques

6	Recognition and Intensity Classification Using Facial Expressions	features and SVM	higher accuracies - computatio nally expensive -recognition rate was low
ELSEVIE R/2017	Emotion recognition using facial expressions	recognition NN,MLP using facial	
ELSEVIE R/2017	Emotion expression modulates perception of animacy from faces	Pearson correlatio ns	+good threshold -more complex
ELSEVIE R/2017	The expectancy bias: Expectancy-violating faces evoke earlier pupillary dilation than neutral or negative faces	Pupilary dilation method	+increased attention -suitable for negative emotion
ELSEVIE R/2017	A systematic review of anxiety interventions in stroke and acquired brain injury: Efficacy and trial design	Medline, embase,p sychinfo	+design high quality assessment -more complex operation
ELSEVIE R/2017	Impact of emotional intelligence on teacher performance in higher education institutions of Pakistan	PLS- SEM(par tial least square structural equation modeling	+improve emotional intelligence
ELSEVIE	Designing	Optimize	+it

	emotional support messages tailored to stressors	d algorith m	performs better -very low accuracy
Springer/ 2017	Sensorimotor simulation and emotion processing: Impairing facial action increases semantic retrieval demands	Facial motor interfere nce	+measures neural correlates associated with semantic processing -very complex operation
Springer/ 2017	COGNIMUS E: a multimodal video database annotated with saliency, events, semantics and emotion with application to summarizatio n	Multimo dal computat ional algorith m	+highly consistent & accurate algorithm
IEEE/201 7	Robust Driver Fatigue Recognition Using Image Processing	Robust algorith m	+less complex algorithm +good accuracy and reliable performanc e
IEEE/201 7	Retrieval of TV Talk- Show Speakers by Associating Audio Transcript to Visual Clusters	Clusterin g strategy	+fast tracking video image

VII. CONCLUSION

Emotion recognition through facial expression detection is a challenging task in the area of image processing and human computer interaction. Extensive research have already been conducted in this field for around past two decades and last few

years it received a great amount of attention due of its various applications and implementations in many domains. In this paper we have presented a comparative study on various approaches of real-time emotion recognition through detection of facial expression from a live image and video using approaches such land as marking algorithm, Bayesian model, corner detection, skinclassifi er, fourierdescriptors, Principle of component analysis and Support vector machines. This paper shows a survey of recent trends to automatic recognition of human facial behavior using pattern analysis and machine intelligence .Pattern analysis and machine intelligence proves effective techniques to the problem of classification, prediction, optimization, pattern recognition, image processing, etc. There are a lot of effective methods are there to detect face expression, but no method performs best in all types of situation. Each method has their limitations. The future of human facial behavior recognition system is to make a robust system that will perform efficiently in any circumstances.

REFERENCES

- [1] Mrs. Jyothi S Nayak, Preeti G, ManishaVatsa, Manisha Reddy Kadiri, Samiksha S, "Facial Expression Recognition: A Literature Survey", International Journal of Computer Trends and Technology (IJCTT), Volume-48 Number-1 2017. [1]Lily A.gutnik, Forogh hakimzada .A, "The role of emotion in decision making: A cognitive neuroeconomic approach towards understanding sexual risk behavior", journal of biomedical informatics, 39(2006) 720-736
- [2] Z.Hammal,L.Couvreur,A.Caplier,"Facialexpression classification :an approach based on the fusion of facial deformations using the transferable belief model",journal of approximate reasoning 46(2007) 542-567
- [3] Jesus Romero-Hdz, Baidya Saha, Gengis Toledo-Ramirez, David Beltran-Bqz,"Welding Sequence Optimization using Artificial Intelligence Techniques, an Overview", International Journal of Computer Science and Engineering (SSRG-IJCSE), Volume-3 Issue-11 2016.
- [4] Jun ou,"A classification algorithms research on facial expression recognition", physics procedia 25(2012) 1241-1244
- [5] Anurang De ,Ashim saha,"A human facial expression recognition model based on eigen face approach", international conference on advanced ,2012

- [6] Jyoti kumara, R. Rajesh, "Facial expression recognition: A survey", procedia computerscience 58(2015) 486-491
- Krithika.L.B,Lakshmi priya CG,"Student emotion recognition system for e-learning improvement based on learner concentration metric", CMS(2016)
- [8] Pawel tarnnowski,Marcin kolodziej,"Emotion recognition using facial expressions",ICCS 2017,12-14 june 2017
- [9] Wentao fan, Nizar Bouguila, "Face detection and facial expression recohnition using a novel variational statistical framework", springer (2012)
- [10] R Sindhoori, "Digital image processing. Multi feature face recognition in PSO -SVM", International Journal of Electrical and Electronics Engineering (SSRG-IJEEE), Volume-1 Issue-3 2014.
- [11] Laura caponetti, Cosimo alessandro buscicchio, "Biological inspired emotion recognition from speech", springer (2011)
- [12] Rafael A,M.Goncalves,"A model for inference of emotional state based on facial expressions", springer(2012)
- [13] Hansong Xu,Kun hua,"Secured ECG signal transmission for human emotional stress classification in wireless body area networks",springer(2016)
- [14] Aruna chakraborty, Amit Konar, "Emotion recognition from facial expression its control using fuzzy logic", IEEE, vol 39, july 2009
- [15] Khyati kantharia, "Facial behavior recognition using soft computing techniques: a survey", conference on advanced and communication techniques (2015)
- [16] Kalavathi P,"A Thresholding Method for Color Image Binarization"International Journal of Computer Science and Engineering (SSRG-IJCSE), Volume-1 Issue-7, 2014.
- [17] Mehryar emambakhsh and Adrian evans,"Nasal patches and curves for expression-robust 3D Face recognition",vol.39,no.5,may 2017
- [18] Fang bin,yang jiangyong,"Fatigue driving assessment based on multi-source information fusion",international conference(2019)
- [19] Spiros ioannou,"Robust feature detection for facial expression recognition",may 2007
- [20] S P Khandait, Dr R.C Thool, "Automatic facial feature extraction and expression recognition based on neural network", IJACSA, Vol 2, No. 1, January 2011
- [21] Devi arumugam,"Emotion classification using facia expression", IJACSA, Vol. 2, no. 7,2011
- [22] Gaurav B Vasani,"Human emotional state recognition using facial expression detection",internatational journal,vol.2,issue 2,January 2013
- [23] Qbal wash, "automatic facial expression recognition based on hybrid approach", Vol.3,2017