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Abstract 
Fulfilling mobile data demands such as 

high-resolution (lower delay) applications, videos, 

IoT, videogames, virtual and augmented reality is 
expected to increase the amount of energy consumed 

by mobile networks. Massive MIMO is expected to 

play a key role in meeting this demand by 

significantly increasing the number of antennas at the 

base stations (BS). The growing amount of demand 

for mobile applications and the corresponding 

Radiofrequency (RF) architecture will have an 

impact on the energy consumed at the base station. It 

is known that within the mobile operators, base 

stations (BS) are the most energy-consuming entities 

and account for more than 50% of the total power 

consumption. To manage this energy challenge, a 
new metric has been introduced called “Energy-

Efficiency (EE)”, measured in bits/Joule. Itis often 

encountered in the literature that hardware 

circuitry’s impact is best utterly simplified; however, 

at expected operating frequencies in 5G wireless 

systems (i.e., massive MIMO to play a key role), these 

effects cannot be neglected and need to be modeled 

properly. We further enhance this model and 

delivered performance simulations to analyze the EE 

performance under different channel gains and these 

hardware imperfections. 
 

Keywords—Massive MIMO, 5G, Energy Efficiency 

(EE). 

I. INTRODUCTION 

The International Telecommunication Union (ITU) 

guides the standardization of every new emerging 

technology, which provides the performance 

requirements for operation. For the new 5G standard, 

[1]-[2] guide the minimum requirements of being an 

IMT-2020 radio interface. 

But what is motivating this new emerging 

technology? For example, developments in the 
domain of the Internet of Things (IoT) and 

digitalization has increased and will continue to 

increase the use of Information and communication 

technology (ICT) applications (and therefore also the 

usage of connectivity) almost everywhere. The 

number of mobile devices in use, such as 

smartphones are growing globally, leading to 

increasing demand for mobile data [3].  

Fulfilling the demand for mobile data and new 

services, such as high-resolution applications, videos, 
IoT, and virtual and augmented reality, is expected to 

increase the amount of energy consumed by mobile 

networks [4], as the bit rate is expected to increase to 

an estimate of 300 Mbps (downlink) in a dense urban 

area [5]. Hence the challenge: seeking for much 

greater throughput, much lower latency, ultra-high 

reliability, much higher connectivity density, and 

higher mobility range while at the same time taking 

care of the environment and thereby becoming an 

energy-efficient technology. Achieving this enhanced 

performance is expected to be provided along with 

the capability to control a highly heterogeneous 
environment and the capability to, among others, 

ensure security, reliability, trust, identity, and privacy 

[5]. To give an idea of the growth in all areas, For 

example, the Next Generation Mobile Networks 

(NGMN) Alliance has proposed that 5G should 

support 200 − 2500 connections within a square-

kilometer with 750Gbps/km2 area throughput and 

also up to 2000 connected vehicles with 50Mbps per 

car downlink (DL) connection [5]. 

However, this growth in all connected devices 

brings a growing challenge: managing and 
optimizing the energy utilized by these devices. For 

example, a typical mobile phone network in the 

United Kingdom may consume approximately 40-50 

megawatts (MW), even excluding the power 

consumed by the users’ handsets [6]. In developing 

countries, direct electricity connections are not 

readily available, so Vodafone, for example, use over 

1 million gallons of diesel per day to power their 

network [6]. Mobile communications thus contribute 

a significant proportion of the total energy consumed 

by the information technology industry [6]. The 

impact on the environment is even not yet truly 
quantified.  

The typical power consumption of different 

elements of a current wireless network is shown in 

Figure 1, as presented in [6]. These results clearly 

show that reducing the base station's power 

consumption or access point must be an important 

element. 

 

http://www.internationaljournalssrg.org/IJECE/paper-details?Id=315
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1.Power consumption of a typical wireless cellular network 

- Source: Vodafone and [6] 

It becomes noticeable with the evolution of 

communication technology that optimization in 

energy consumption is also growing and should 

become compulsory in deploying these new 

technologies. Across different surveys [5],[6], the 

mobile operators are amongst the top energy 

consumers, and their consumption is growing at a 

very fast rate. As mentioned in [6] and reproduced 

here in Figure 1, the base station consumes a large 

part of the energy generating a large electricity bill. 

Thus, not only from the operator’s but also from the 
consumer’s point of view, obtaining energy 

efficiency has significant economic benefits and 

therefore, becoming energy efficient becomes 

compulsory for new emerging technologies, like 5G. 

 

Analysis within [6] shows that the greatest 

potential for increasing the overall base station 

efficiency comes from improving the efficiency of 

the PA and antenna, as well as optimizing the power 

transfer between them. 

 

Figure 2 shows the different elements of a MIMO 
transmit chain [6] to clearly understand the elements 

that contribute to more power consumption in the RF 

transmitter chain. Sometimes, for simplifications in 

the mathematic analysis, these impairments are 

neglected, leading to unrealistic results or its 

generalization without setting clear conditions where 

they can become neglected. 

 

Generally, MIMO systems are divided into two 

categories: single-user MIMO (SU-MIMO) and 

multiuser MIMO (MU-MIMO). In SU-MIMO, the 
transmitter and receiver are outfitted with more than 

one antenna. The performance is enhanced in terms 

of coverage, link reliability, and sum-rate can be 

executed, for instance, via strategies such as 

beamforming, diversity-oriented space-time coding, 

and spatial multiplexing of numerous data streams. 

These methods cannot be thoroughly used 

simultaneously;therefore, we commonly add a 

tradeoff between them. The situation with MU-

MIMO is different: the wireless channel is now 

spatially shared byway of different User Terminals 

(UTs), and the users transmit and obtain barring joint 
encoding and detection amongst them. By exploiting 

differences in spatial signatures at the BS antenna 

array caused by spatially dispersed users, the BS 

communicates concurrently to the users. Thus, 

overall performance beneficial properties regarding 

sum rates of all users can be significantly improved. 

Signal processing techniques in MU-MIMO regularly 
targets at suppressing inter-user interference; thus 

spatial channel knowledge turns into another 

indispensable in contrast to SU-MIMO 

 

Scaling up MIMO provides many extra degrees of 

freedom in the spatial domain than any other trendy 

systems. This issue rescues us from the state of 

affairs that wireless spectrum has to turn out to be 

congested and expensive, mainly in frequency bands 

beneath 6 GHz [16]. In contrast to traditional MU-

MIMO with up to eight antennas, we name MIMO 

with a large variety of antennas“massive MIMO”, 
“very-large MIMO,” or “large-scale MIMO”. 

In massive MIMO operation, we consider an MU-

MIMO scenario, where a base station geared up with 

a large number of antennas serves many terminals in 

the same time-frequency resource. Processing efforts 

can be done at the base station side, and terminals 

have simple and inexpensive hardware. 

Massive MIMO is, therefore, a new notion that 

makes use of hundreds of antennas at the BS to serve 

tens of UTs simultaneously in the same time-

frequency resource (a.k.a. coherence interval). 
Massive MIMO mostly approves us to reap all the 

benefits of conventional MIMO on a large scale. In 

Massive MIMO systems, a huge number of 

BSantennas enhance spectral efficiency and radiated 

energy efficiency compared to the present wireless 

technologies. 

 

 
Fig.2.One transmitter chain of a MIMO system is shown [6]. 

The right side shows the main circuits, but these can complement 

additional intermediate filters and amplifiers, depending on the 

implementation. Most of the circuits affect only one antenna, while 

the LO can be common for all antennas or different, as described 

in [11]. 
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However, the energy efficiency challenge remains, 

and to properly manage it, a new metric has been 

introduced in [1], which is called “Energy-Efficiency 

(EE)” whose definition is given by [7],[8] as: 

 

EE [𝑏𝑖𝑡𝑠
𝑗𝑜𝑢𝑙𝑒⁄ ] =  

Data rate [𝑏𝑖𝑡𝑠
𝑠⁄ ]

Energy consumption [
𝑗𝑜𝑢𝑙𝑒

s⁄ ]
 

(1) 
 

As said in [9], this equation is a benefit-cost ratio, 

and the energy consumption term should include 

transmitting power and dissipation power in the 

transceiver hardware and baseband processing. A 

general view is that higher data rates can only be 

achieved by consuming more energy; if the EE is 

constant, then 100× higher data rate in 5G is 

associated with a 100× higher energy consumption 

[9]. This remains an environmental concern since 

wireless networks are generally not powered from 

renewable green sources, and therefore, it is highly 
desirable to increase the EE in 5G [9] vastly. 

 

There is a clear shift towards becoming more 

“efficient”, and this is only further reinforced with 

the constant evolution of the Internet of Things (IoT), 

which is expected to grow exponentially in the 

bandwidth consumption, and therefore the need to 

become more efficient, as shown in [12]. 

 

 
Fig.3.A shift on reducing energy consumption in 5G 

implementations, as shown in [12]. 

In summary, we could argue that there are at least 
three key challenges to consider when deploying new 

5G technologies: 

 Infrastructure/Technical Requirements: 
The expected growth in connected devices 

request for low latency, higher bandwidth 

(despite some applications may need less; 

however, the number of applications/devices 

connected are expected to continue 

growing), higher reliability, among others.  

 

 Economic Requirements: Current networks 

are designed to maximize the capacity by 
scaling up the transmit powers or proving 

certain “fair” capacity at certain power 

constraints or any combination in between. 

However, given the expected growth of the 

number of connected devices, such an 

approach is not sustainable. Using more and 

more energy to increase the (physical) 

capacity will result in unacceptable 
operating costs that current operators may 

not afford. Present wireless communication 

techniques are thus simply not able to 

provide the desired capacity increase by 

merely scaling up the transmit powers. 

 

 Environmental Requirements: Current 

wireless communication systems are mainly 

powered by traditional carbon-based energy 

sources as not yet renewable green sources 

are available. At present, information and 

communication technology (ICT) systems 

are responsible for 5% of the world’s CO2 

emissions [13], [14], but this percentage is 

increasing as rapidly as the number of 

connected devices. Following this trend, it is 

foreseen that 75% of the ICT sector will be 
wireless by 2020 [15], thus implying that 

wireless communications will become the 

critical sector to address as far as reducing 

ICT-related CO2 emissions is concerned. 

Figure 4 shows the critical requirements in 

bandwidth and delay for the applications expected to 

be used extensively over the new 5G networks. From 

that analysis, we can conclude that the quality of 

service applied to each application may play a key 

role. 

Fig.4.Bandwidth and latency requirements for typical applications 

over 5G networks, Source: GSMA Intelligence 

II. SYSTEM MODEL 

 

We will start by showing the single antenna model 

and then extend it to the multi-antenna.  

A. Single Antenna Systems 

 

For the case of a single antenna, the EE would be 

given by: 
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𝐸𝐸 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟
=

𝐵 log2(1+
𝑃 |ℎ|2

𝐵 𝑁0+𝑃 𝛼
)

𝑃𝑇
 (2) 

 
 

Where |ℎ|2 = 𝛽 will denote the channel gain, P 

is the transmit power, B is the bandwidth, 𝑁0 is the 

noise power spectral density, and 𝛼 ( 𝛼 >
0)corresponds to the sum of the channel gains from 

all the interfering transmitters. 𝑃𝑇 will denote the 

total consumed power, including the transmit power 

𝑃𝑡plus any other power considered as, the power to 

fuel the circuit systems. 

 

B. Multiple Antenna Systems 

 

We assume the transmitter has 𝑴 antennas, and 

the receiver is equipped with 𝑵 antennas, forming a 

MIMO system. The channel matrix describes the 

channel 𝑯 ∈ ℂ𝑵𝒙𝑴, If we initially assume there is no 

interference, as in [9], the received signal 𝒚 ∈ ℂ𝑵 is: 

 

𝒚 = 𝑯𝒙 + 𝒏  (3) 

 

Where 𝒙 ∈ ℂ𝑴  is the transmit signal and 

𝒏 ~𝓝ℂ(𝟎, 𝑩𝑵𝟎𝑰𝑵) is 𝐀𝐖𝐆𝐍 

 

The channel capacity of this MIMO system is 

given by [10] and is reproduced here as: 
 

𝐶 = max
𝐾≽0:𝑡𝑟(𝐾)≤𝑃

𝐵 log2 det(𝐼𝑁
1

𝐵𝑁0
𝐻𝐾𝐻𝐻) 

     (4) 

 

And is achieved by  x ~𝓝ℂ(𝟎, 𝑲) where the positive 

semidefinite correlation matrix 𝑲is selected based on 

the water-filling algorithm.  

 

C. Analyzing Power contributors (Hardware 

impairments) 

 

Let’s start with the simple definition of the EE as 

in (1), and let’s now consider not only the transmit 

power but also the power of circuit systems, letting it 

𝑷𝒄𝒔 be the power of circuit systems. 
 

EE =  
ℱ𝑟 x B x 𝒩𝑠𝑝 x log2(1+𝑆𝐼𝑁𝑅(𝑑))

𝑃𝑡+𝑃𝑐𝑠
  

    (5) 

 

Where ℱ𝑟  is the frequency re-use factor (within a 

cellular network; for a backhaul, we can assume a 

single frequency factor ℱ𝑟 = 1  ), B  is the signal 

bandwidth, 𝒩𝑠𝑝  is the number of spatial beams -

spatial multiplexing factor-, d corresponds to a single 

link distance, SINR is the signal-to-interference-plus-

noise ratio at the receiver that increases with 

decreasing d (from basic propagation analysis and it 

likely becomes more complex when considering all 

interference) and 𝑃𝑡  is the transmit power.  

 
When decreasing the coverage of area per cell (a.k.a. 

“small cells”), it is no longer possible to make the 

simplification often used as 𝑃𝑡 + 𝑃𝑐𝑠 ≈  𝑃𝑡  so then we 

need to find another way to model the dependence on 

B  and other variables (i.e., sampling rate is 

proportional to B  and at the same time the energy 

consumed by the Analog-Digital (A/D), Digital-to-

Analog (D/A) converters is proportional to the 

sampling rate). 

 
Let’s now evaluate the different components of the 

𝑃𝑐𝑠  and how to model it properly to capture the 

essence of their contributions to this analysis. 

 

1)  ADC Analysis 

 
We will consider only the digital combining, 

despite the analysis can be easily extended to the 

analog combining too, as described in [18]. For 

digital combining, ADCs are employed to quantize 

the signal before the baseband combiner; each block 

labeled “I/Q ADC” represents two ADCs, one for the 

in-phase and another for the corresponding 

quadrature one., both with a sampling rate equal to 

the Nyquist rate. For the digital combining 

architecture, we have 𝑁 LNAs and 𝑁 mixers but also 

𝑁 ADCs1. Figure 7 reproduces the digital combining 

as analyzed in [18], and for the sake of completeness, 

it also includes the analog combining.  

 

We assume each ADC consists of a b-bin scalar 

quantizer. We will use the same approach as in [18], 

considering an Additive Quantization Noise Model 

(AQNM) for the quantizer assuming Gaussian 

quantization noise and Gaussian inputs. Denoting the 

output of the ADC corresponding to input 𝑧 by 𝑄(𝑧) 

and considering the quantizer output 𝑧𝑞 = 𝐸[(𝑧|𝑧𝑞)], 

the quantizer 𝑄(. )  can be represented by the 

following AQNM [19]: 

𝑧𝑞 =  𝛼𝑧 + 𝑛𝑞   
   (6) 

 

                                                
1For the analog combining, there would be 𝑁 LNAs, 𝑁 phase 

shifters, one combiner, one mixer and one I/Q ADC 
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Fig 7: Receiver Architectures in MIMO systems a) Digital 

Combining b) Analog Combining, as [18]. 
 
 

Where 𝑛𝑞 is the additive quantization noise such that 

𝑧  and 𝑛𝑞  are uncorrelated. As noted in [18], the 

following equations hold true: 

 

𝐸[𝑛𝑞] = (1 − 𝛼) E[z]  
    (7) 

𝜎𝑛𝑞

2
= (1 − 𝛼)𝛼𝜎𝑧

2  
    (8) 

 

Where 𝜎𝑛𝑞
2  is the variance of the additive quantization 

noise and 𝛼  can be computed as 𝛼 = 1 − 𝛽 where 

𝛽 =
𝜎𝑒𝑞

2

𝜎𝑧
2 , 𝜎𝑒𝑞

2  corresponds to the variance of 

quantization error, 𝑒𝑞 = 𝑧 − 𝑧𝑞 and 𝜎𝑧
2 is the variance 

of the quantization input. 

 

2)  LNA Analysis 

 
The low noise amplifier (LNA) is an analog circuit 

that amplifies the received signal. It is shown in [20] 

that the behavior of an LNA is characterized by the 

figure of merit (FoM) expression, given by: 

 

𝐹𝑜𝑀𝐿𝑁𝐴 =
𝐺

(𝐹−1)𝑃𝐿𝑁𝐴
  

    (9) 

 

Where 𝐹 ≥ 1 is the noise amplification factor, 𝐺 

is the amplifier gain, and 𝑃𝐿𝑁𝐴  is the power 

dissipation in the LNA. Hence, LNA contributes to 

the receiver noise variance 𝜉 with 𝐹𝜎2 . For 

optimized LNAs, 𝐹𝑜𝑀𝐿𝑁𝐴  is a constant determined 

by the circuit architecture [20]. 

 

3)  Local Oscillator (LO) Analysis 

 
Phase noise in the LOs is the main source of 

multiplicative phase drifts and changes the phases 

gradually at each channel use.  We will model here 

the phase noise by a Wiener process (random walk) 

as in [9], yielding to the phase noise variance given 

by: 

 

δ = 4 π2𝑓𝑐
2𝑇𝑠 𝜍  

    (10) 
 

where𝑓𝑐  is the carrier frequency, 𝑇𝑠  is the symbol 

time, and 𝜍 is a constant that characterizes the LO's 

quality, as demonstrated in [21]. 

The power consumed by 𝑃𝐿𝑂  is coupled to (the 

constant) 𝜍  such that 𝑃𝐿𝑂𝜍 ≈  𝐹𝑜𝑀𝐿𝑂  where the 

figure-of-merit value 𝐹𝑜𝑀𝐿𝑂  depends on the circuit 

architecture and hardware quality (cost), [9], [21]. 
As it is well known, imperfections in the LOs also 

cause intercarrier interference in OFDM systems (as 

the orthogonality of the subcarriers is lost). 

 

4)  Encoding/Decoding Analysis 

 
In the transmitter, the information symbols need to 

be encoded and modulated to counteract the effects 

of the noise and interference. The users then use 

demodulation and decoding to recover the desired 

signal. Higher data rates will require larger 

codebooks, and the largest number of bits will incur 

more power for encoding and decoding on baseband 
circuit boards.  

 

The BS applies channel coding, and modulation to 

K sequences of information symbols, and each User 

Equipment (UE) applies some suboptimal fixed-

complexity algorithm to decode it. Power 

consumption is 𝐾(𝑃𝑐𝑜𝑑 + 𝑃𝑑𝑒𝑐) Joule/channel use, 

where 𝑃𝑐𝑜𝑑  and 𝑃𝑑𝑒𝑐  are the coding and decoding 

powers, respectively.  

 

The power consumption could be assumed to be a 

function of the number of bits, as: 

 

𝑃𝐶𝐷 = (𝑃𝑐𝑜𝑑𝑒 + 𝑃𝑑𝑒𝑐)𝛿(𝑟𝑏)(11) 

 

 

Where (𝑃𝑐𝑜𝑑𝑒 + 𝑃𝑑𝑒𝑐) ≥ 0  [W/bits/s] equals a 

constant and 𝛿(𝑟𝑏)  is a differentiable, strictly 

increasing, and convex function of a specific data rate 

𝑟𝑏 satisfying𝛿(0) = 0. 

 

5)  Putting all impairments together 

 
Now we can include all the hardware impairments 

contributors, leading to: 

𝑃𝑐𝑠(1 − 𝛼)𝛼𝜎𝑧
2 +  

𝐺

(𝐹−1)𝑃𝐿𝑁𝐴
+

 4 π2𝑓
𝑐
2𝑇𝑠 𝜍 (𝑃𝑐𝑜𝑑𝑒 + 𝑃𝑑𝑒𝑐)𝛿(𝐶) + 𝑃𝐵𝑇𝛿(𝐶) 

      

   (12) 

Where the term 𝑃𝐵𝛿(𝑟𝑏)  Stands for the power 

consumed by the backhaul, defining the backhaul 

where it is used to communicate data signals between 

the core network and the base stations.  

Here, the power consumption largely depends on the 

employed backhaul technology but can be modeled 

by this term, where  𝑃𝐵𝑇  [W/bit/s] gives the power 

consumption due to backhaul and network switches 

for a rate unit. This also scales with the data rate. 
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Therefore, inserting (12) into (2) and replacing 𝑟𝑏 for 

the capacity𝐶 will lead to: 

𝐸𝐸 =
𝐶

𝑃𝑇
= 

𝐶

𝑃𝑡+(1−𝛼)𝛼𝜎𝑧
2+ 

𝐺
(𝐹−1)𝑃𝐿𝑁𝐴

+4 π2𝑓𝑐
2𝑇𝑠 𝜍+(𝑃𝑐𝑜𝑑𝑒+𝑃𝑑𝑒𝑐)𝛿(𝐶)+𝑃𝐵𝑇𝛿(𝐶)

 

(13) 

 
Reorganizing (13), and simplifying based on 

dependencies, will lead to: 

 

𝐸𝐸 =
𝐶

𝑃𝑡+𝓊𝜎𝓊
2 +𝓋𝜎𝓋

2 +𝓌𝜎𝓌
2 +𝜑𝐶

  

   (14) 

 

Where 𝓊 , 𝓋 , and 𝓌  are hardware characterizing 

constants given by the circuit architecture, 

representing the ADC, LNA and LO terms, 

respectively and 𝜎𝓊 
2 , 𝜎𝓋

2  and 𝜎𝓌
2  are their 

corresponding variances (power) and 𝜑 corresponds 
to the hardware characterization dependent on the 

overall capacity (encoding/decoding and backhaul 

power). 

6)  Analyzing and simplifying the EE expression 

 

Using the Lambert W function as in [9],[22], and 

doing the substitution of 𝑧 =  
𝑃𝑡

𝐵⁄ , and noticing 

that 𝓊 and 𝓌 terms are dependent on the bandwidth 

(i.e., the sampling rate is proportional to B and the 

energy consumption -power consumed- of the 

AD/DA converters is proportional to the sampling 

rate and also proportional to the quantization bits), 
we can rewrite (14) in the following way: 

 

𝐸𝐸 =
𝐶

𝐵⁄

𝑃𝑡
𝐵⁄ +𝓊′+𝓋′ +𝓌′+𝜑𝐶

𝐵⁄
   

   (15) 

 
Which can be further simplified by knowing that 𝐶 =

𝐵 log2(1 +
𝑃𝑡|ℎ|2

𝐵𝑁0
′ ), 𝑧 =  

𝑃𝑡
𝐵⁄ , and therefore, leading to: 

 

log2(1+
|ℎ|2

𝑁0
′ 𝑧)

𝑧+(𝓊
′
+𝓌′)+𝓋

′
+𝜑 log2 (1+

|ℎ|2

𝑁0
′ 𝑧)

  

    (16) 
 

Where 𝓊 ′ , 𝓋 ′ , 𝓌 ′  account for the same 

variables 𝓊,𝓋, and 𝓌  but now independent on the 

bandwidth by the given variable change (using the 

Lambert W function). 
 

Similarly, we can extend this analysis to cover MU-

MIMO systems by starting from (4) and assuming all 

singular values of 𝐻 are equal to the maximum value 

𝜎𝑚𝑎𝑥(𝐻) of the matrix (equivalent to the upper 

bound), yielding to (17): 

 

C = min(M, N) B log2(1 +
𝑃

𝑀𝐵𝑁0
′ 𝜎𝑚𝑎𝑥

2 (H))  

   (17) 
 

here we can intuitively notice that 𝜎𝑚𝑎𝑥
2 (H) ≤ 1 as 

the receiver could never receive more signal power 

than 𝑃 as per the law of energy conservation. Using 

the equality in 𝜎𝑚𝑎𝑥
2 (H) = 1  would take us to 

calculate the EE limit in this MU-MIMO system by 

further working from (15) and using the change of 

variable 𝑧 =  
𝑃𝑡

𝐵 min(M,N)
 will lead to: 

 

𝐸𝐸 =

 log2(1 +
𝑧

𝑁0
′ 𝜎𝑚𝑎𝑥

2 (H))

𝑧 + (𝓊′ + 𝓋′  + 𝓌′) + 𝜑  log2(1 +
𝑧

𝑁0
′ 𝜎𝑚𝑎𝑥

2 (H))
 

(18) 
Having something very similar in structure to the 

single-antenna case. We will use here also the 
Lambert function. 

I.  NUMERICAL RESULTS AND PERFORMANCE 

ANALYSIS 

 
The analysis considers a 𝑁0

′ = −174 dBm/Hz as in 

[9] and a channel gain |ℎ|2 to vary from -60 to -110 

dB. 

Results from this simulation are depicted in Fig. 8. 
A thick line across the plot illustrates the maximum 

EE for certain combinations of 𝑃𝑡  and B. Certainly, a 

constraint in the data rate could be added to reduce 

the set of possible feasible (maximum) points, but it 

is left for future work. For each equivalent hardware 

impairments variables, we can optimize the EE based 

on a given 𝑃𝑡  and B (similar approach in [9]; 

however, we have extended the circuit hardware 

analysis, to our opinion). The current values account 

for current hardware circuitry imperfections, using 
the same parameters as in [9], for comparison 

purposes.. 

 

 

Channel gain =-60   Channel gain =-70 
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Channel gain =-80   Channel gain =-90 

 

Channel gain =-100   Channel gain =-110 

Fig 8: EE variation with 𝑃𝑡  and B for different channel gains 

 

CONCLUSIONS 

It has been motivated and conceptually proven that 

hardware impairments at the RF chain cannot be 

neglected in the deployment of 5G wireless systems 
as they vary with the (growing) number of antennas, 

the bandwidth (due to the sampling rate), and the 

overall capacity of the system (base station). This 

new technology will likely make use of a higher 

frequency range, and therefore, these impairments 

cannot be neglected nor simplified as in previous 

developments.  

 

We have derived a mode where the total power 

now encompasses different power contributors’ terms 

that affect the performance on energy-efficient 
wireless systems and therefore need to and must be 

included for any further problem formulation to be 

optimized in MU-MIMO systems. 

 

We have shown the EE performance for different 

channel gains using the model derived here, where all 

these hardware impairments are considered separate 

and aggregated to a close form expression. As 

circuitry technology evolves, this model can be easily 

adjusted in every part. 
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