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Abstract - Reinforcement learning is a subset of machine 

learning that deals with learning decisions from the 

environment's rewards. Classic reinforcement learning 

algorithms are usually applied to small sets of states and 

actions. However, in real applications, the state spaces are 
large, bringing the problems of generalization and the curse 

of dimensionality. In this paper, we integrate the neural 

network into reinforcement learning methods to generalize 

the value of all the states. Simulation results on the Gazebo 

framework show the feasibility of the proposed method. The 

Robot can complete navigation tasks safely in an unpredicted 

dynamic environment and becomes a truly intelligent system 

with strong self-learning and adaptive abilities.  

Keywords - Artificial intelligence, autonomous navigation, 

mobile robots, reinforcement learning. 

I. INTRODUCTION  

A mobile robot's automatic navigation can be 

divided into three subsystems: information perception, 
behavioral decision making, and manipulation control. Path 

planning is the basis of mobile robot navigation and control 

[1, 2]. The goal of route planning for the mobile Robot is to 

find the path from the current location to the target location. 

The path should be as short as possible; the road's 

smoothness must meet the dynamics of the mobile Robot and 

the safe path without collision [3]. Depending on the amount 

of environmental information known in the road planning 

process, road planning can be divided into global road 

planning and local road planning [4]. There are many ways 

to plan your way. According to specific algorithms and 

strategies, path planning algorithms can be divided into four 
categories: pattern matching, artificial lead field, map 

construction, and artificial intelligence [5, 13, 14]. Each type 

of route planning algorithm has an optimal application 

scenario and limitations. Current route planning of mobile 

robots is mainly based on their surroundings. In addition to 

the limitations of traditional path planning, robots cannot 

complete their learning and judgment in complex 
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environments, a bottleneck in developing research in the 

field [6]. Therefore, it is especially important to develop a 

road planning method with low dependence on the 

environment, quickly adapting to the surrounding 

environment. 
Endowing robots with human-like abilities to perform 

specific skills smoothly and naturally is one of the important 

goals of robotics to cover a large range of real-life missions 

such as delivery, search or rescue missions, security 

surveillance. Such missions require different levels of 

autonomy in the navigation to react to different dynamic 

factors such as environmental conditions changes. One of the 

most common approaches is to train mobile robots via 

multiple expert demonstrations. These demonstrations 

provide robots prior experiences from examples, defined as a 

sequence of state-action pairs recorded during the teacher’s 

demonstration of the desired robot behavior. However, in 
some cases, such as exploring hazardous environments, no 

prior experience or demonstrations are available to mobile 

robots. 

In this paper, we present a reinforcement learning (RL) 

based self-learning algorithm in unknown environments. 

Experiments are conducted on autonomous navigation tasks 

for mobile robots. More specifically, we introduce a neural 

network structure to generalize and approximate all the states 

of RL algorithms' value. The experiments are conducted on 

the Gazebo simulator using its open-source extension Gym 

to perform autonomous navigation tasks [7]. 

The rest of this paper is organized as follows. Section 2 

gives an overview of the related works. Section 3 describes 

the general methodology and model-free RL-based methods. 

Then, section 4 introduces some experimentation results 

followed by a discussion of the proposed method's 

efficiency. Finally, Section 5 concludes our paper and 

presents our future works. 

II. RELATED WORK 

Autonomous navigation is a fundamental and 
critical research area of mobile robotics. Different 

reinforcement learning algorithms have been applied to this 

problem, such as the fuzzy Q-learning presented in [8] or the 

dueling network architectures [9]. 

Humanoid robot navigation is described in [10] by using a 

http://www.internationaljournalssrg.org/IJECE/paper-details?Id=370
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supervised RL approach combined with Gaussian distributed 

state activation. The Robot successfully performed a 

backward docking movement used for autonomous 

recharging. In [11], a neural network reinforcement learning 

method was studied for visual control of a robot manipulator. 
A direct mapping from the image space to the actuator 

command was developed using two different RL algorithms, 

Q-learning and SARSA, combined with neural networks. A 

database of representative learning samples was also 

employed to speed up the convergence of the algorithms. 

This hybrid system could provide the high accuracy of a 

manipulator positioning in a situation of low-resolution 

images. 

III. NEURAL NETWORK-BASED REINFORCEMENT 

LEARNING METHODS 

A. Model-Free Reinforcement Learning 
Reinforcement learning can be formulated as a 

Markov Decision Process (MDP). Model-based RL 

algorithms can be used if we know the state transition 

function  ,, ,T s a s . In contrast, we focus more on model-

free RL that the environment model T is not known in 

advance, especially in our work of autonomous navigation 

tasks. 

In this paper, we focus on robot control problems. A 

mobile robot acts in a stochastic environment by sequentially 

choosing actions over time steps to maximize a cumulative 

reward. We model the problem as a Markov Decision 

Process: a state-space S, an action space A, a transition 

dynamics distribution  1| ,t t tP s s a satisfying the Markov 

property    1 1 1 2 2 1| , , , ,..., , | ,t t t t t tP s s a s a s a P s s a  , any 

trajectory 1 1 2 2, , , , ..., ,T Ts a s a s a  in state-action space, and a 

reward function :r S A R  . A stochastic policy 

   , |t t t ts a P a s   is used to select actions and produce a 

trajectory of states, actions, and rewards  S A R  . 

Agent

Enviroment

Reward

Rt

State

St
Action

At

Figure 1: The schematic diagram of the reinforcement learning 

model 
We study model-free RL methods that the Robot drives an 

optimal policy without explicitly learning the environment's 

model. More specifically, we focus on Q-learning 

algorithms, one of the most major model-free reinforcement 

learning algorithms. 

B. Q-Learning 
Q-Learning algorithm is an important off-policy 

model-free reinforcement learning algorithm for temporal 

difference learning. The update of state-action values in Q-

learning is defined by 

       1 1, : , max , ,t t t t t a t t t tQ s a Q s a r Q s a Q s a        (1) 

Where α is the learning rate, with a value between 0 and 1. 

If the learning rate is set to 0, the Q-values are never updated. 

If this value is set to a value near 1, learning can occur 

quickly, γ is the discount factor, and models the importance 

of future rewards worth less than immediate rewards. 
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Figure 2: Schematic diagram of Q-Learning path planning 

method 

C. Neural Network-based Q-Learning 
This paper introduces a new model-free 

reinforcement learning method by integrating a neural 

network to Q-learning. This hybrid method takes advantage 
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of the strengths of both Q-learning and neural networks. 

Because the reinforcement learning can be modeled as an 

MDP, we need first to define the state space S and action 

space A. 

a) State action space 
Six discrete robot actions define the action space A. 

Among them, five are basic moving actions: move forward 

(F), turn left at 30° (L30), turn left at 60° (L60), turn right at 

30° (R30), turn right at 60° (R60) and one emergency action: 

move backward (B). A turn at 90° is not defined because a 

sharp turn will bring great danger to a real vehicle. In sum, 

{ , 30, 60, 30, 60, }A F L L R R B  (2) 

The state-space S is composed of a very large but finite 

number of states, defined by four groups of features, and is 

expressed in: 

[ ]
T

t t t tS D V I U                  (3) 

Where 
7 1

tD R


  are sensory degrees of danger? It 

7 1

tU R


  is a vector to indicate if a wall is detected (U = 1) 

or an object obstacle (U = 0) for the seven sensors in tD . 

{1, 2, ..., 9}tV  is the target region and {0,1}tD   is the 

indicator that determines if the Robot has detected the target.       

b) Reward function 

The reward function measures the immediate feedback for 

the action taken at a given state. It evaluates how good or 

how bad the performed action is. Before giving the reward 

function, one environment state at each time instant is 

classified into five state properties: Safe State (SS), Cozy 

State (CS), Dangerous State (DS), Winning State (WS), and 

Failure State (FS). The Reward Function can be defined as 

Table 1. 
TABLE 1: REWARD FUNCTION 

State Transition Extra Criteria r 

Other states Winning State  1 

Safe State → Cozy State  0 

Cozy State → Safe State  0 

Dangerous State → Cozy 

State 
 0.6 

Cozy State → Dangerous 

State 
 0 

Dangerous State → Failure 

State 
 -1 

Dangerous State → 

Dangerous State 

(approaching obstacles) 

1

min min 2
t t

warnd d d


    -0.3 

1

min min 1
t t

warnd d d


    -0.3 

1

min min 2
t t

warnd d d


    -0.6 

1

min min 3
t t

d d


   -1 

Nonsafe State → Nonsafe 

State 

(evading obstacles) 

min

t

warnd d  0.7 

min

t

warnd d  0.3 

Component r od  and r td   define the distances between 

the Robot and obstacles, and the target, component boud  

defines the boundary distance (sensor detection range) of SS 

and other states, the component cold  defines the radius of the 

collision region around the obstacle, component wind  defines 

the radius of the winning region around the target, 

component cozyd  defines the cozy distance, component warnd   

is a warning distance that the Robot is approaching too close 

to an obstacle, component
1

min

t
d


 and components
min

t
d  are the 

minimum distances between the Robot and the surrounding 

obstacles. 

c) State- action value iteration 

The Q-value function expresses the mapping policy from 

the perceived state of the environment to the executing 

action. One Q-value  ,t tQ s a corresponds with one specific 

state and one action in this state. In our method, we propose 

predicting all state Q-values using a three-layer neural 

network, as shown in Fig. 3. 

 

Figure 3: A three-layer neural network architecture 

The action value iteration is realized by updating the 

neural network by means of its weights. Unlike the classic 

neural network, the neural network in the reinforcement 

learning does not have label outputs. Q-learning is a process 

of value iteration, and the optimal value after each iteration 

serves as the target value for neural network training. The 

update rule is 

       1 1, : , max , ,k t t k t t t a k t t k t tQ s a Q s a r Q s a Q s a        (4) 

Where a component  ,k t tQ s a  is the Q-value in the 
th

k

iteration. We also employ the popular stochastic gradient 
descent (SGD) to train the neural network online. The goal is 

to minimize the cross-entropy cost function. 
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d) Robot Navigation Using Neural Network-based Q-

learning 

After training the Robot via the integrated neural network, 

the resulting policy is still stochastic but near-deterministic 

used by the Robot for future navigation tasks in various 
environments. The Robot starts its navigation through the 

environment by finding its current state. If it is a Safe State, 

the Robot does not need to follow the policy but changes its 

orientation towards the target and moves one step forward. It 

continues moving until entering a Non-Safe region where the 

Robot needs to adopt the trained control policy. The Robot 

uses the Neural Network to generate all possible state-action 

Q-values. The Robot greedily takes the action that has the 

biggest Q-value. After that, the Robot finds its new state and 

repeats action selection until the Robot reaches its goal or 

collides with an obstacle. 

IV. EXPERIMENTAL RESULTS 

Our objective is to demonstrate the preliminary 

results obtained by the offline learning phase in Gazebo-

based simulation [7] and the OpenAI Gym extension [12]. 

We define a navigation mission as the problem of visiting a 

set of waypoints. The simulation environment in Gazebo is 

shown in Fig. 4. 

 

Figure 4: Example of a simulation environment in Gazebo with 

seven dynamic obstacles: single box or cylinder in red models 

dynamic obstacles, blue area represent laser scan. The flags 

represent the example of navigation waypoints 

The dynamic obstacles can be randomly generated in the 

environment. A learning episode of Q-learning is a 

completed mission. We deployed 400 learning episodes in 

simulation. The first 200 episodes are to visit a set of 

waypoints with the total optimal trajectory length of 204m 

and the last 200ones for a different set of waypoints with the 

total path length of 166 m. 

Fig.5 depicts the total reward obtained over 400 learning 

episodes. Despite many fluctuations due to the variable 

complexity of environments and the efficiency of existing 

navigation algorithms, the trend line also indicates the total 

reward growth of the total reward during the learning phase. 

 

Figure 5: Total reward of the learning phase of 400 episodes 

with the trend line in green 
 

V. CONCLUSIONS 
In this paper, we presented the robot self-learning 

strategy without prior experience under explicit feedback. 

We explored the mobile robot navigation problem by 

combining reinforcement learning and neural network. Q-

learning is applied to enhance the self-learning ability of a 

mobile robot through trial-and-error interactions with an 

unknown environment. We designed a new reward 

expression and introduced the neural network architecture to 

store and train the large-scale Q-values and generalize the 

learning performance to large-scale state and action spaces. 

Experiments are conducted on autonomous navigation tasks 

for mobile robots. The simulation results show the stability 
and feasibility of the hybrid method. 

ACKNOWLEDGMENT 

This study was supported by the Faculty of 

Electrical Engineering, University of Economics - 

Technology for Industries, Viet Nam; 

http://www.uneti.edu.vn/. 

REFERENCES  
[1] Ghosh, S., Panigrahi, P. K., and Parhi, D. R, Analysis of FPA and BA 

meta-heuristic controllers for optimal path planning of mobile robot 

in the cluttered environment, IET Sci. Measure. Technol. 11,( 2017) 

817- 828. doi: 10.1049/iet-smt.2016.0273. 

[2] Orozco-Rosas, U., Montiel, O., and Sepúlveda, R, Mobile robot path 

planning using membrane evolutionary artificial potential field, Appl. 

Soft Comp. 77 (2019) 236–251. doi: 10.1016/j.asoc.2019.01.036. 

[3] Han, J., and Seo, Y., Mobile robot path planning with surrounding 

point set and path improvement, Appl. Soft Comp. 57, (2017)35–47. 

doi: 10.1016/j.asoc.2017.03.035. 

[4] Li, G., and Chou, W., Path planning for mobile robot using self-

adaptive learning particle swarm optimization, Sci. China Inform. 

Sci. 61, 052204–052213. doi: 10.1007/s11432-016-9115-2. 

[5] Zhao, Y., Zheng, Z., and Liu, Y. (2018), Survey on computational 

intelligence-based UAV path planning, Knowledge-Based Syst. 158, 

(2018) 54–64. doi: 10.1016/j.knosys.2018.05.033. 

[6] Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O., and 

Bouzouia, B., Optimal path planning and execution for mobile robots 

using genetic algorithm and adaptive fuzzy-logic control, Robot. 

Autonomous Syst. 89,( (2017) 95–109. 

doi:10.1016/j.robot.2016.12.008. 

[7] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, 

Extending the open-air gym for robotics: A toolkit for 

reinforcement learning using ros and gazebo, arXiv preprint 



Roan Van Hoa et al. / IJECE, 8(1), 1-5, 2021 

 

5 

arXiv:1608.05742, 2016. 

[8] A. D. Pambudi, T. Agustinah, and R. Effendi, Reinforcement Point 

and Fuzzy Input Design of Fuzzy Q-Learning for Mobile Robot 

Navigation System, 2019 International Conference of Artificial 

Intelligence and Information Technology (ICAIIT), 2019. 

[9] X. Ruan, D. Ren, X. Zhu, and J. Huang, Mobile Robot Navigation 

based on Deep Reinforcement Learning, 2019 Chinese Control And 

Decision Conference (CCDC), 2019. 

[10] N. Navarro-Guerrero, C. Weber, P. Schroeter, and S. Wermter, Real-

world reinforcement learning for an autonomous humanoid robot, 

Robotics and Autonomous Systems, 2012. 

[11] Z. Miljković, M. Mitić, M. Lazarević, and B. Babić, Neural network 

reinforcement learning for visual control of robot manipulators, 

Expert Systems with Applications, 40 (2013) 1721–1736. 

[12] G. Brockman, V. Cheung, L. Pettersson, J.Schneider, J. Schulman, J. 

Tang, and W. Zaremba, Openai gym, arXiv preprint in 

arXiv:1606.01540, 2016. 

[13] Roan Van Hoa, L. K. Lai, Le Thi Hoan, Mobile Robot Navigation 

Using Deep Reinforcement Learning in Unknown Environments, 

SSRG International Journal of Electrical and Electronics 

Engineering (SSRG-IJEEE), , (2020) 7(8) 15-20.  
[14] Pham Ngoc Sam, Tran Duc Chuyen, Research and Designing a 

Positioning System, Timeline Chemical Mapping for Multi-Direction 

Mobile Robot, SSRG International Journal of Electronics and 

Communication Engineering, 7 (11), (2020) 7-12.    

 

 

 

 


