
SSRG International Journal of Electronics and Communication Engineering Volume 8 Issue 1, 1-5, January 2021
ISSN: 2348 – 8549 /doi:10.14445/23488549/IJECE-V8I1P101 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Autonomous Navigation for Mobile Robot Based on

Reinforcement Learning

Roan Van Hoa*#, Dinh Thi Hang#, Tran Quoc Dat#, Tran Dong#, Tran Thi Huong#

#University of Economics - Technology for Industries, Viet Nam

Received Date: 28 November 2020
Revised Date: 04 January 2021

Accepted Date: 09 January 2021

Abstract - Reinforcement learning is a subset of machine

learning that deals with learning decisions from the

environment's rewards. Classic reinforcement learning

algorithms are usually applied to small sets of states and

actions. However, in real applications, the state spaces are
large, bringing the problems of generalization and the curse

of dimensionality. In this paper, we integrate the neural

network into reinforcement learning methods to generalize

the value of all the states. Simulation results on the Gazebo

framework show the feasibility of the proposed method. The

Robot can complete navigation tasks safely in an unpredicted

dynamic environment and becomes a truly intelligent system

with strong self-learning and adaptive abilities.

Keywords - Artificial intelligence, autonomous navigation,

mobile robots, reinforcement learning.

I. INTRODUCTION

A mobile robot's automatic navigation can be

divided into three subsystems: information perception,
behavioral decision making, and manipulation control. Path

planning is the basis of mobile robot navigation and control

[1, 2]. The goal of route planning for the mobile Robot is to

find the path from the current location to the target location.

The path should be as short as possible; the road's

smoothness must meet the dynamics of the mobile Robot and

the safe path without collision [3]. Depending on the amount

of environmental information known in the road planning

process, road planning can be divided into global road

planning and local road planning [4]. There are many ways

to plan your way. According to specific algorithms and

strategies, path planning algorithms can be divided into four
categories: pattern matching, artificial lead field, map

construction, and artificial intelligence [5, 13, 14]. Each type

of route planning algorithm has an optimal application

scenario and limitations. Current route planning of mobile

robots is mainly based on their surroundings. In addition to

the limitations of traditional path planning, robots cannot

complete their learning and judgment in complex

Footnotes: 8-point Times New Roman font;

Manuscript received July 1, 2012; revised August1, 2012; accepted

September 1, 2012.

Copyright credit, project number, corresponding author, etc.

environments, a bottleneck in developing research in the

field [6]. Therefore, it is especially important to develop a

road planning method with low dependence on the

environment, quickly adapting to the surrounding

environment.
Endowing robots with human-like abilities to perform

specific skills smoothly and naturally is one of the important

goals of robotics to cover a large range of real-life missions

such as delivery, search or rescue missions, security

surveillance. Such missions require different levels of

autonomy in the navigation to react to different dynamic

factors such as environmental conditions changes. One of the

most common approaches is to train mobile robots via

multiple expert demonstrations. These demonstrations

provide robots prior experiences from examples, defined as a

sequence of state-action pairs recorded during the teacher’s

demonstration of the desired robot behavior. However, in
some cases, such as exploring hazardous environments, no

prior experience or demonstrations are available to mobile

robots.

In this paper, we present a reinforcement learning (RL)

based self-learning algorithm in unknown environments.

Experiments are conducted on autonomous navigation tasks

for mobile robots. More specifically, we introduce a neural

network structure to generalize and approximate all the states

of RL algorithms' value. The experiments are conducted on

the Gazebo simulator using its open-source extension Gym

to perform autonomous navigation tasks [7].

The rest of this paper is organized as follows. Section 2

gives an overview of the related works. Section 3 describes

the general methodology and model-free RL-based methods.

Then, section 4 introduces some experimentation results

followed by a discussion of the proposed method's

efficiency. Finally, Section 5 concludes our paper and

presents our future works.

II. RELATED WORK

Autonomous navigation is a fundamental and
critical research area of mobile robotics. Different

reinforcement learning algorithms have been applied to this

problem, such as the fuzzy Q-learning presented in [8] or the

dueling network architectures [9].

Humanoid robot navigation is described in [10] by using a

http://www.internationaljournalssrg.org/IJECE/paper-details?Id=370
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Roan Van Hoa et al. / IJECE, 8(1), 1-5, 2021

2

supervised RL approach combined with Gaussian distributed

state activation. The Robot successfully performed a

backward docking movement used for autonomous

recharging. In [11], a neural network reinforcement learning

method was studied for visual control of a robot manipulator.
A direct mapping from the image space to the actuator

command was developed using two different RL algorithms,

Q-learning and SARSA, combined with neural networks. A

database of representative learning samples was also

employed to speed up the convergence of the algorithms.

This hybrid system could provide the high accuracy of a

manipulator positioning in a situation of low-resolution

images.

III. NEURAL NETWORK-BASED REINFORCEMENT

LEARNING METHODS

A. Model-Free Reinforcement Learning
Reinforcement learning can be formulated as a

Markov Decision Process (MDP). Model-based RL

algorithms can be used if we know the state transition

function ,, ,T s a s . In contrast, we focus more on model-

free RL that the environment model T is not known in

advance, especially in our work of autonomous navigation

tasks.

In this paper, we focus on robot control problems. A

mobile robot acts in a stochastic environment by sequentially

choosing actions over time steps to maximize a cumulative

reward. We model the problem as a Markov Decision

Process: a state-space S, an action space A, a transition

dynamics distribution 1| ,t t tP s s a satisfying the Markov

property 1 1 1 2 2 1| , , , ,..., , | ,t t t t t tP s s a s a s a P s s a , any

trajectory 1 1 2 2, , , , ..., ,T Ts a s a s a in state-action space, and a

reward function :r S A R . A stochastic policy

 , |t t t ts a P a s is used to select actions and produce a

trajectory of states, actions, and rewards S A R .

Agent

Enviroment

Reward

Rt

State

St
Action

At

Figure 1: The schematic diagram of the reinforcement learning

model
We study model-free RL methods that the Robot drives an

optimal policy without explicitly learning the environment's

model. More specifically, we focus on Q-learning

algorithms, one of the most major model-free reinforcement

learning algorithms.

B. Q-Learning
Q-Learning algorithm is an important off-policy

model-free reinforcement learning algorithm for temporal

difference learning. The update of state-action values in Q-

learning is defined by

 1 1, : , max , ,t t t t t a t t t tQ s a Q s a r Q s a Q s a (1)

Where α is the learning rate, with a value between 0 and 1.

If the learning rate is set to 0, the Q-values are never updated.

If this value is set to a value near 1, learning can occur

quickly, γ is the discount factor, and models the importance

of future rewards worth less than immediate rewards.

Start

Has the number oftraining

sessions been reached?

Initialization parameters

establish Q value

Robot initial position

Step - step+1

Use action strategies

 and execute

Move to the next position

status s and reward r

Is s the target state?

Save Q value and output

END

Yes

No

Yes No

Figure 2: Schematic diagram of Q-Learning path planning

method

C. Neural Network-based Q-Learning
This paper introduces a new model-free

reinforcement learning method by integrating a neural

network to Q-learning. This hybrid method takes advantage

Roan Van Hoa et al. / IJECE, 8(1), 1-5, 2021

3

of the strengths of both Q-learning and neural networks.

Because the reinforcement learning can be modeled as an

MDP, we need first to define the state space S and action

space A.

a) State action space
Six discrete robot actions define the action space A.

Among them, five are basic moving actions: move forward

(F), turn left at 30° (L30), turn left at 60° (L60), turn right at

30° (R30), turn right at 60° (R60) and one emergency action:

move backward (B). A turn at 90° is not defined because a

sharp turn will bring great danger to a real vehicle. In sum,

{ , 30, 60, 30, 60, }A F L L R R B (2)

The state-space S is composed of a very large but finite

number of states, defined by four groups of features, and is

expressed in:

[]
T

t t t tS D V I U (3)

Where
7 1

tD R

 are sensory degrees of danger? It

7 1

tU R

 is a vector to indicate if a wall is detected (U = 1)

or an object obstacle (U = 0) for the seven sensors in tD .

{1, 2, ..., 9}tV is the target region and {0,1}tD is the

indicator that determines if the Robot has detected the target.

b) Reward function

The reward function measures the immediate feedback for

the action taken at a given state. It evaluates how good or

how bad the performed action is. Before giving the reward

function, one environment state at each time instant is

classified into five state properties: Safe State (SS), Cozy

State (CS), Dangerous State (DS), Winning State (WS), and

Failure State (FS). The Reward Function can be defined as

Table 1.
TABLE 1: REWARD FUNCTION

State Transition Extra Criteria r

Other states Winning State 1

Safe State → Cozy State 0

Cozy State → Safe State 0

Dangerous State → Cozy

State
 0.6

Cozy State → Dangerous

State
 0

Dangerous State → Failure

State
 -1

Dangerous State →

Dangerous State

(approaching obstacles)

1

min min 2
t t

warnd d d

 -0.3

1

min min 1
t t

warnd d d

 -0.3

1

min min 2
t t

warnd d d

 -0.6

1

min min 3
t t

d d

 -1

Nonsafe State → Nonsafe

State

(evading obstacles)

min

t

warnd d 0.7

min

t

warnd d 0.3

Component r od and r td define the distances between

the Robot and obstacles, and the target, component boud

defines the boundary distance (sensor detection range) of SS

and other states, the component cold defines the radius of the

collision region around the obstacle, component wind defines

the radius of the winning region around the target,

component cozyd defines the cozy distance, component warnd

is a warning distance that the Robot is approaching too close

to an obstacle, component
1

min

t
d

 and components
min

t
d are the

minimum distances between the Robot and the surrounding

obstacles.

c) State- action value iteration

The Q-value function expresses the mapping policy from

the perceived state of the environment to the executing

action. One Q-value ,t tQ s a corresponds with one specific

state and one action in this state. In our method, we propose

predicting all state Q-values using a three-layer neural

network, as shown in Fig. 3.

Figure 3: A three-layer neural network architecture

The action value iteration is realized by updating the

neural network by means of its weights. Unlike the classic

neural network, the neural network in the reinforcement

learning does not have label outputs. Q-learning is a process

of value iteration, and the optimal value after each iteration

serves as the target value for neural network training. The

update rule is

 1 1, : , max , ,k t t k t t t a k t t k t tQ s a Q s a r Q s a Q s a (4)

Where a component ,k t tQ s a is the Q-value in the
th

k

iteration. We also employ the popular stochastic gradient
descent (SGD) to train the neural network online. The goal is

to minimize the cross-entropy cost function.

Roan Van Hoa et al. / IJECE, 8(1), 1-5, 2021

4

d) Robot Navigation Using Neural Network-based Q-

learning

After training the Robot via the integrated neural network,

the resulting policy is still stochastic but near-deterministic

used by the Robot for future navigation tasks in various
environments. The Robot starts its navigation through the

environment by finding its current state. If it is a Safe State,

the Robot does not need to follow the policy but changes its

orientation towards the target and moves one step forward. It

continues moving until entering a Non-Safe region where the

Robot needs to adopt the trained control policy. The Robot

uses the Neural Network to generate all possible state-action

Q-values. The Robot greedily takes the action that has the

biggest Q-value. After that, the Robot finds its new state and

repeats action selection until the Robot reaches its goal or

collides with an obstacle.

IV. EXPERIMENTAL RESULTS

Our objective is to demonstrate the preliminary

results obtained by the offline learning phase in Gazebo-

based simulation [7] and the OpenAI Gym extension [12].

We define a navigation mission as the problem of visiting a

set of waypoints. The simulation environment in Gazebo is

shown in Fig. 4.

Figure 4: Example of a simulation environment in Gazebo with

seven dynamic obstacles: single box or cylinder in red models

dynamic obstacles, blue area represent laser scan. The flags

represent the example of navigation waypoints

The dynamic obstacles can be randomly generated in the

environment. A learning episode of Q-learning is a

completed mission. We deployed 400 learning episodes in

simulation. The first 200 episodes are to visit a set of

waypoints with the total optimal trajectory length of 204m

and the last 200ones for a different set of waypoints with the

total path length of 166 m.

Fig.5 depicts the total reward obtained over 400 learning

episodes. Despite many fluctuations due to the variable

complexity of environments and the efficiency of existing

navigation algorithms, the trend line also indicates the total

reward growth of the total reward during the learning phase.

Figure 5: Total reward of the learning phase of 400 episodes

with the trend line in green

V. CONCLUSIONS
In this paper, we presented the robot self-learning

strategy without prior experience under explicit feedback.

We explored the mobile robot navigation problem by

combining reinforcement learning and neural network. Q-

learning is applied to enhance the self-learning ability of a

mobile robot through trial-and-error interactions with an

unknown environment. We designed a new reward

expression and introduced the neural network architecture to

store and train the large-scale Q-values and generalize the

learning performance to large-scale state and action spaces.

Experiments are conducted on autonomous navigation tasks

for mobile robots. The simulation results show the stability
and feasibility of the hybrid method.

ACKNOWLEDGMENT

This study was supported by the Faculty of

Electrical Engineering, University of Economics -

Technology for Industries, Viet Nam;

http://www.uneti.edu.vn/.

REFERENCES
[1] Ghosh, S., Panigrahi, P. K., and Parhi, D. R, Analysis of FPA and BA

meta-heuristic controllers for optimal path planning of mobile robot

in the cluttered environment, IET Sci. Measure. Technol. 11,(2017)

817- 828. doi: 10.1049/iet-smt.2016.0273.

[2] Orozco-Rosas, U., Montiel, O., and Sepúlveda, R, Mobile robot path

planning using membrane evolutionary artificial potential field, Appl.

Soft Comp. 77 (2019) 236–251. doi: 10.1016/j.asoc.2019.01.036.

[3] Han, J., and Seo, Y., Mobile robot path planning with surrounding

point set and path improvement, Appl. Soft Comp. 57, (2017)35–47.

doi: 10.1016/j.asoc.2017.03.035.

[4] Li, G., and Chou, W., Path planning for mobile robot using self-

adaptive learning particle swarm optimization, Sci. China Inform.

Sci. 61, 052204–052213. doi: 10.1007/s11432-016-9115-2.

[5] Zhao, Y., Zheng, Z., and Liu, Y. (2018), Survey on computational

intelligence-based UAV path planning, Knowledge-Based Syst. 158,

(2018) 54–64. doi: 10.1016/j.knosys.2018.05.033.

[6] Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O., and

Bouzouia, B., Optimal path planning and execution for mobile robots

using genetic algorithm and adaptive fuzzy-logic control, Robot.

Autonomous Syst. 89,((2017) 95–109.

doi:10.1016/j.robot.2016.12.008.

[7] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero,

Extending the open-air gym for robotics: A toolkit for

reinforcement learning using ros and gazebo, arXiv preprint

Roan Van Hoa et al. / IJECE, 8(1), 1-5, 2021

5

arXiv:1608.05742, 2016.

[8] A. D. Pambudi, T. Agustinah, and R. Effendi, Reinforcement Point

and Fuzzy Input Design of Fuzzy Q-Learning for Mobile Robot

Navigation System, 2019 International Conference of Artificial

Intelligence and Information Technology (ICAIIT), 2019.

[9] X. Ruan, D. Ren, X. Zhu, and J. Huang, Mobile Robot Navigation

based on Deep Reinforcement Learning, 2019 Chinese Control And

Decision Conference (CCDC), 2019.

[10] N. Navarro-Guerrero, C. Weber, P. Schroeter, and S. Wermter, Real-

world reinforcement learning for an autonomous humanoid robot,

Robotics and Autonomous Systems, 2012.

[11] Z. Miljković, M. Mitić, M. Lazarević, and B. Babić, Neural network

reinforcement learning for visual control of robot manipulators,

Expert Systems with Applications, 40 (2013) 1721–1736.

[12] G. Brockman, V. Cheung, L. Pettersson, J.Schneider, J. Schulman, J.

Tang, and W. Zaremba, Openai gym, arXiv preprint in

arXiv:1606.01540, 2016.

[13] Roan Van Hoa, L. K. Lai, Le Thi Hoan, Mobile Robot Navigation

Using Deep Reinforcement Learning in Unknown Environments,

SSRG International Journal of Electrical and Electronics

Engineering (SSRG-IJEEE), , (2020) 7(8) 15-20.
[14] Pham Ngoc Sam, Tran Duc Chuyen, Research and Designing a

Positioning System, Timeline Chemical Mapping for Multi-Direction

Mobile Robot, SSRG International Journal of Electronics and

Communication Engineering, 7 (11), (2020) 7-12.

