
SSRG International Journal of Electronics and Communication Engineering Volume 8 Issue 1, 12-17, January 2021
ISSN: 2348 – 8549 /doi:10.14445/23488549/IJECE-V8I1P103 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Research and Application Deep Q-Network

Algorithm for Automatic Navigation for

Omnidirectional Mobile Robots

Tran Thi Huong#, Pham Thi Thu Ha#, Pham Van Bang#

#Faculty of Electronic Engineering Technology, University of Economics - Technology for Industries, Viet Nam

Abstract - In this paper, the setting up of the Deep Q-

Network (DQN) algorithm in the mobile robot's Gazebo

simulation environment has been calculated, designed, and

controlled. Building experiments aim to make the robot
model learn the best actions to control and navigate in an

environment with many obstacles. For the mobile robot to

move in an obstacle environment, the robot will then

automatically control to avoid these obstacles. After that, the

robot can remain within a specific limit, the more rewards it

accumulates. The authors have performed various tests with

many parameters and demonstrated the performance curves

on the simulation. The research results will be the basis for

designing and establishing control algorithms for current

and future mobile robots for application in programming

techniques and automation control in industrial control. 

Keywords - Artificial intelligence, mobile robots, Obstacle

robots, autonomous navigation, reinforcement learning, deep
Q-learning.

I. INTRODUCTION

The automatic navigation of a mobile robot can be
divided into three basic problems: information perception,

behavioral decision making, and control manipulation.

Setting up a route tracking plan is the basis of the mobile

robot navigation and control problem [1] - [3]. Planning the

entire mobile robot control environment is to find the way

from the current location to the target location. The path

must be as short as possible, the smoothness of the road

should meet the mobile robot's dynamics, and the path must

be safe, no collisions occur [2]. Based on specific algorithms

and strategies, the control planning algorithms for robots can

be divided into four categories: first, pattern matching,

second artificial lead field, construction setting mapping, and
fourth artificial intelligence [3, 4]. Each type of motion map

planning algorithm for a robot has an optimal application

scenario and eliminates the limitations of algorithm control

errors. The current map planning of a mobile robot is mainly

based on its surroundings. In addition to the limitations of

traditional route planning, robots cannot complete their

Footnotes: 8-point Times New Roman font;

Manuscript received July 1, 2012; revised August 1, 2012; accepted

September 1, 2012.

Copyright credit, project number, corresponding author, etc.

learning and judgment in complex environments, which is an

issue in developing research in the field [9, 16]. Therefore, it

is especially important to develop a method of mapping the

robot so that the omnidirectional mobile robot is less
dependent on the environment and can quickly adapt to its

surroundings.

Creating robots with human-like abilities to execute

specific skills smoothly and naturally is one of the mobile

robot's key goals for performing various real-life tasks such

as a delivery row, search or rescue, security surveillance in

the army. Such tasks require varying degrees of autonomy in

navigation in response to various motivational factors such

as changing environmental conditions. One of the most

popular approaches is to train mobile robots through

numerous expert demos. These demonstrations provide the
robot with previous experiences from the examples, defined

as a series of state-action pairs recorded during the teacher's

demonstration of the desired behavior boots. However, in

some cases, such as exploring dangerous environments,

mobile robots have no experience or require pre-

demonstration [6, 8, 9, 10, 11, 13].

Although the DQN algorithm and its extensions have

enjoyed great success in the console environment of reward-

seeking games, at the beginning of the teaching process, the

current DQN algorithms required millions of policy-based

random patterns to teach robots any optimal policy, and the

right variety of patterns will lead to slower training speeds.
However, in many cases, the teaching sampling can be

different or time-consuming. Therefore, some researchers try

to represent a real-world basis by using synthetic models [1,

6, 8, 25] to improve sample performance. When the general

model is well trained, the DQN algorithm can be trained

without interacting with the actual environment. In [1, 2, 4,

7, 18, 20], teaching methods for robots give optimal policies

for when to use teaching patterns.

In this paper, the authors present a DQN based self-

learning algorithm in the cases of an unknown environment.

Experiments are conducted on the autonomous navigation
tasks for mobile robots. More specifically, we introduce a

neural network structure to generalize and approximate the

value of all the states of DQN algorithms. The experiments

are conducted on the Gazebo simulator using its open source

extension Gym to perform the autonomous navigation tasks

for omnidirectional mobile robots.

http://www.internationaljournalssrg.org/IJECE/paper-details?Id=372
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Tran Thi Huong et al. / IJECE, 8(1), 12-17, 2021

13

II. BUILDING CONTROL MODELS FOR

OMNIDIRECTIONAL MOBILE ROBOTS

A. The controller design for the robot

 The omnidirectional mobile robot model is set up

on the same basis as the four-wheeled Asimo robot with

dimensions: height 65cm, width 42cm square. The robot

mission is for the mobile omnidirectional robot. Figure 1

shows the control system block diagram of an

omnidirectional mobile robot.

Controller
Setpoint

System

Sensor and

fillters

Output

(-)

Fig 1: Control system block diagram

The input signal is a setpoint signal. The robot's Smart

Sensor measures the frame's winding angle, pitch, and tilt

angle every second and sends them to the microprocessor to

command control based on algorithms. Intelligent control

such as adaptive control, sustainable control, neural network
control and artificial intelligence, etc. Then the controller

will calculate the optimal action-value to respond to the unit

controlled by a closed control loop, and then it will make the

control of the robot stable; figure 1 shows the robot's control

system, [1, 8].

B. Reinforcement learning methods as controllers

Previously, we worked on traditional controllers

like PID, Fuzzy PD, PD, PI & LQR algorithm. The biggest

problem with those methods is that they need to be tuned
manually. So, reaching optimal values of controllers depends

on many trials and errors. Many times optimum values aren’t

achieved at all. The biggest benefit of reinforcement learning

algorithms as controllers is that it tunes itself to reach the

optimum values. The following two sections discuss the Q

Learning algorithm and Deep Q Network algorithm.

With Q learning algorithm: According to document [3],

“this algorithm gives actors the ability to learn how to act

optimally in Markovian domains by experiencing the

consequences of actions without asking them to build control

environment maps for an omnidirectional mobile robot.” In
the Markovian domain, the function Q - algorithmically

generated model - computes the expected utility for a given

finite state s and any possible finite action a. for agents -

which are omnidirectional mobile robots, in this case -

allowing to choose the optimal action with the highest value

of Q (s, a), this action selection rule is also called priority

policy. Initially, the function values Q (s, a) are assumed to

be 0. Then through each training step, the values are updated

according to the following equation, [1, 3]:

    

   1

, ,

, ,

t t t t t

t t t tmax
a A

Q s a Q s a

Q s a Q s a

R

 





 

  
 (1)

   , . ,
1

Q s a R max Q s at t t ta A
 


 (2)

In the DQN algorithm, when training the neural network,

there exists an arithmetic coefficient (α) in the

backpropagation process, so it is reasonable to omit the

learning coefficient (α) in formula (2). By doing this, the

calculation of updating values also becomes simpler then we

have:

 ), .((,)
1

Q s a R r maxQ s at t t t
  


 (3)

The Q matrix had 20 columns, each column representing a

state and ten rows representing every action. Initially, the Q-

values were assumed to be 0, and some random actions were

specified for every state in the policy π . We trained or 1500

episodes, each episode having 2000 iterations. At the

beginning of each episode, the simulation refreshed.

Whenever the robot’s state exceeded the limit, it was
penalized by assigning a reward to -100. The Q Table is

updated at each step according to equation (3). This

algorithm shows the full algorithm, [23 - 25].

III. RESEARCH AND APPLICATION OF

DQN ALGORITHM

A. DQN algorithm learning method

DQN inherits all properties of Q-learning. It is a

model in the form of a free model, learns online, and belongs
to off-policy algorithms.

As mentioned in document [1, 11, 17]. The Q-learning and

State Action Reward State Action SARSA (State Action

Reward State Action) algorithms have memory problems

when storing the evaluation function as a two-dimensional

array Q(s, a). When the state space and the action space are

very large, about hundreds or thousands, this storage will

have memory problems, not to mention that the

computational cost of updating the value will increase

exponentially.

70.82

st

at

70.82

action at

state st
DQN

Q(s,a) Q(3,2)

3
s

2
a

Q(s,a) Q(3,2)

Q-Table

70.82

60.12 61.22 63.43 64.75 66.49

84.5182.6362.73 66.31

1
a

2
a

70.82

Input

Hidden

Output

1 2 3 4 5
s s s s s

Figure 2: The from Q-Table to DQN algorithm

In addition, the Q-learning algorithm still has another
major weakness: the inability to estimate values for unknown

Tran Thi Huong et al. / IJECE, 8(1), 12-17, 2021

14

states
1 2{ }i Ts S s s s, ,... , thus, inability to predict, leading

to lack of generalization. To solve this problem, the DQN

algorithm can remove the two-dimensional Q-Table array

instead of building a neural network to approximate this Q-

Table algorithm table shown in figure 2 below the illustrative

example.

The same Q – learning algorithm, DQN training process

is also based on temporary differential method, DQN Agent

updates network parameter θ of Q rating (S, A) at each step

of the network training, to Execute action a, receiving the

new algorithm R, then it will significantly improve the

performance of the control model for the mobile robot when

using the control programming using the DQN algorithm.

B. The robot navigation using DQN

The DQN algorithm was originally introduced as an

AI agent that can play videogames at a level that can rival

human players [3, 14]. The DQN algorithm has been able to

complete different games with the same algorithm. In

videogames, each new screen is a new state where the agent

can take action. Since there are so many possible states and
actions, it is impossible to explore them or use conventional

algorithms to solve the game.

State

st

at

k1

k2

Q value for action 1

Q value for action 2

Input

Hidden

Output
na nk Q value for action n

Figure 3: The schematic diagram of the reinforcement

learning model

A deep Q - network algorithm starts by exploring a game

and gradually learning its mechanics; the more the agent

plays this game, the more it learns and can achieve higher

scores. In this work, the DQN will learn the connection

between the change of geometrical properties and their effect

on final results through simulations and then use that

knowledge to design structures that produce the optical

responses that we desire. First, the environment is set up; this

includes the initial structure design and the simulation

environment. Second, the agent's actions to change the
structure are decided, and finally, the reward system is

defined. The DQN algorithm that connects all these parts is

shown in figure 3.

The decision to take in a given state is decided by an

updated neural network based on what it has learned. To

improve the performance of the DQN, an auxiliary model is

used alongside. This network is used to select the agent's

action, while the main DQN network predicts the Q-value of

the state-action pair. This prevents the overestimation that is

a problem in general DQN. At each iteration, two models

are trained, and the weights of the target model are gained
from the combination of the main model weights and the

target model weights. This method helped the overestimation

caused by using just one model. The auxiliary network is

updated periodically with the parameters of the DQN

algorithm.

The implementation of the DQN algorithm on our Robot

model: is similar to the Q-Learning algorithm. However,

there are some exceptions. At first, a model was initialized

instead of Initializing the Q matrix. Instead of choosing the

action based on policy π, Q values were calculated according

to the model in the greedy policy. At the end of every

episode, the model was trained using random mini-batches of
experience. At first, an architecture with two hidden Relu

layers of 20 units was selected, whereas the last layer was a

Linear Dense layer with ten units. With the  of 0.999 and

 of (0.65, 0.7, 0.8). The DQN algorithm deployed on the

robot model shows that to evaluate the algorithm's quality

and efficiency when the estimation function is used in the

whole process, the objective function helps to create a

separation for improvement. Stability improvement.

Furthermore, the neural network training process is kept

fixed for computation and is updated gradually, and the

network training process is somewhat similar to supervised

learning.

The performance of the deployed DQN algorithm is very

satisfactory. One of the main reasons this algorithm offers

omnidirectional robot control is to develop an algorithm that
can be used to control autonomous robots and industrial

robots in industrial factories. , in industrial environments

such as the 5S environment, Japan's 6S environment applies

to all factories. Compared to other algorithms, the

comparison of DQN algorithms shows the optimization of

RL, Q-learning, etc., was also successful. Several tests for

process control have been given and clearly show how well

the DQN algorithms work under different circumstances.

Therefore, to build a complete DQN algorithm, it is always

necessary to meet the needs: from selecting a control action

to a multicast mobile robot, executing the action; receive
rewards, store and sample to train the algorithm, then go to

the calculation of the target function, thereby updating the

model parameters by minimizing the loss function on all

selected samples, teach, followed by choosing a method to

update neural network parameters and target function, and

finally updating the control coefficients with uncertainty, [1,

3, 10, 15, 21].

Tran Thi Huong et al. / IJECE, 8(1), 12-17, 2021

15

Algorithm: DQN Algorithm as applied in the system

Initialize Robot;

Initialize model M;

Initialize Penalty Reward pen;

for number of episodes do

 Reset simulation ;

 Wait for 1 second ;

 Pause simulation ;

 Read the pitch angle ϕ of the robot ;

 state ← ϕ ;

 start simulation ;

 for number of iterations do

 Generate a random number rand;

 if rand ≤ δ then

 take random action ;

 end

 else

 Q ← M(state);

 action ← action formax(Q);

 end

 statenew ← ϕ;

 Pause simulation;

 if absolute value of statenew ≥ limit then

 if rewardtotal ≤ Target then

 reward ← pen;

 experience ←

 (state, reward, action, statenew);

 Add Experience to Memory;

 end

 Break ;

 else

 Print Passed ;

 Break ;

 end

 end

 else

 reward ← 1;

 experience ←

 (state, reward, action, statenew);

 Add Experience to Memory;

 state ← statenew

 end

 end

 Take radom minibatch of Experience;

 if reward = = pen then

 Qpred← reward;

 end

 else

 Qpred ←

 reward + γmax(Q(statenew, action))

 end

 ;

 Train the model according to loss

 abs(Qpred(state, action) ‒ Qpred(state, action));

end

IV. EXPERIMENTAL RESULTS

In this section, some simulations are conducted

based on the powerful simulation environment tool in

Gazebo. Figure 5 shows that the map built on Gazebo is a

map made with strict walls and a mobile robot that can be
manipulated to move around those environments to get the

necessary data. Used to construct the map. The red lines are

laser scan signals generated from pine sensors, smart

cameras, and the robot's current position is updated (the

robot is denoted in green) using geometric measurements.

Primarily a visualization tool that can provide live updates of

maps generated from the SLAM algorithm. Furthermore, a

vehicle's motion trajectory in the map can also be visualized

and generated in an obstacle-containing environment, as

shown in figure 4.

Figure 4: The example of a simulation environment in Gazebo

with contains a robot (green)

The general idea behind the positioning node is to save the

trajectory data of the vehicle. The vehicle's position is

obtained by looking up a transform from the fixed world
frame to the base-link frame, which represents the actual

position of the vehicle. The estimated position is generated

by the SLAM algorithm. The topic was introduced for testing

purposes to compare the vehicle's actual position with an

estimated position to validate each SLAM algorithm. The

data is saved to the text file is the x and y coordinates and a

time stamp. The values are stored into a vector with a

frequency of 10 Hz; basically, the same as the frequency of

the/car-position topic referred to in the controller.

In figure 5, to create an operating environment to control

and navigate the robot, the authors map intending to create

environments containing obstacles, then programming the

robot. Move around and avoid obstacles (the robot in figure 5

is the red color spot) with devices such as cameras and smart

sensors. Here is primarily a visualization tool that can

provide live updates of maps generated from the SLAM

algorithm. Furthermore, the vehicle's trajectory in the map

can also be visualized.

Tran Thi Huong et al. / IJECE, 8(1), 12-17, 2021

16

Figure 5: The main window shows the map generated by a

SLAM algorithm

The dynamic obstacles can be randomly generated in the

environment. A learning episode of the DQN algorithm is a

completed mission. The authors deployed 4500 learning

episodes in simulation. The first 2250 episodes are to visit a

set of waypoints with the total optimal trajectory length of

255m and the last 2250 ones for a different set of waypoints

with the total path length of 195m. Figure 6 depicts the total

reward obtained over 4500 learning episodes. Despite many

fluctuations due to the variable complexity of environments

and the efficiencyof existing navigation algorithms, the trend

line also indicates the total reward growth of the total reward
during the learning phase [12, 16, 18].

Episodes

C
h

a
n

g
e

s

Figure 6: The changes of neural policy weights during the

learning process of 4500 episodes

The neural network DQN can perceive: the environment

and perform feature extraction to realize the fitting from the

environment to the state action function. This has been

mentioned in the literature. In [7] proposed an adaptive DQN

algorithm strategy and applied it to text recognition. These

results showed that the DQN algorithm is significantly better

than other algorithms, which also indicated the DQN

algorithm's advantages in image recognition [2].

Compared with the deep learning algorithm Q-learning,

the DQN algorithm is better than Q-learning in terms of

value accuracy and strategy, consistent with previous reports

[3]. The hierarchical reinforcement learning technology is

utilized to achieve the mapping from state to action and

meets mobile robots' mobile needs. The data have also

proven that the robot path planning method based on deep

reinforcement learning is an effective end-to-end mobile

robot path planning method, which has also been confirmed

in a study by [17]. The above results illustrate the feasibility

of the proposed method in the path planning of mobile

robots.

V. CONCLUSIONS
In this paper, we presented the robot self-learning

strategy without prior experience under explicit feedback.

The authors explored the mobile robot navigation problem

by combining reinforcement learning and neural network.

The DQN algorithm is applied to enhance the self-learning

ability of a mobile robot through trial - and - error
interactions with an unknown environment. Authors

designed new reward expression and introduced the neural

network architecture to store and train the large-scale Q-

values and generalize the learning performance to large-scale

state and action spaces. Experiments are conducted on the

autonomous navigation tasks for mobile robots. The

simulation results show that the stability and applicability of

the method using the DQN algorithm are very effective;

these new studies can be completely applied to the control

and navigation for mobile robots in industrial factories in

Vietnam as well as in the world, furthermore, than previous
studies [4, 7, 14, 16], the research result of the paper is

better. Then DQN algorithm is simpler, making the

navigation of robot operation monitored through visual tools,

like cameras and intelligent sensors for precise control over

obstacles.

ACKNOWLEDGMENT

This study was supported by the Faculty of

Electronic Engineering Technology, University of

Economics - Technology for Industries, Viet Nam;

http://www.uneti.edu.vn/.

REFERENCES
[1] Nguyen Thanh Tuan, Base Deep learning, The Legrand Orange Book.

Version 2, last update, August 2020.

[2] Charu C. Aggarwal, Neural Networks and Deep Learning, Springer

International Publishing AG, part of Springer Nature, 2018.

[3] Vu Thi Thuy Nga, Ong Xuan Loc, Trinh Hai Nam, Enhanced learning

in automatic control with Matlab Simulink, Hanoi Polytechnic

Publishing House, 2020.

[4] X. Ruan, D. Ren, X. Zhu, and J. Huang, Mobile Robot Navigation

based on Deep Reinforcement Learning, Chinese Control And

Decision Conference (CCDC), 2019.

[5] Han, J., and Seo, Y., Mobile robot path planning with surrounding

point set and path improvement, Appl. Soft Comp. 57, 35–47.

Tran Thi Huong et al. / IJECE, 8(1), 12-17, 2021

17

[6] V. Matt and N. Aran, Deep reinforcement learning approach to

autonomous driving, ed: arXiv, 2017.

[7] Li, G., and Chou, W, Path planning for mobile robot using self-

adaptive learning particle swarm optimization, Sci. China Inform.

Sci. 61, 052204–052213. doi: 10.1007/s11432-016-9115-2, 2018.

[8] Andrea Bacciotti, Stability and Control of Linear Systems, Publishing

Ltd; Springer Nature Switzerland AG, 2019.

[9] Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O., and

Bouzouia, B., Optimal path planning and execution for mobile robots

using genetic algorithm and adaptive fuzzy-logic control, Robot.

Autonomous Syst. 89, (2017) 95–109.

doi:10.1016/j.robot.2016.12.008.

[10] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero,

Extending the open-air gym for robotics: A toolkit for

reinforcement learning using ros and gazebo, arXiv preprint

arXiv:1608.05742, 2016.

[11] Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement

learning for robotic manipulation with asynchronous off-policy

updates. In Proceedings of the 2017 IEEE International Conference

on Robotics and Automation (ICRA), Marina Bay Sands, Singapore,

3389–3396, 29 (2017).

[12] A. D. Pambudi, T. Agustinah, and R. Effendi, Reinforcement Point

and Fuzzy Input Design of Fuzzy Q-Learning for Mobile Robot

Navigation System, 2019 International Conference of Artificial

Intelligence and Information Technology (ICAIIT), 2019.

[13] Do Quang Hiep, Ngo Manh Tien, Nguyen Manh Cuong, Pham Tien

Dung, Tran Van Manh, Nguyen Tien Kiem, Nguyen Duc Duy, An

Approach to Design Navigation System for Omnidirectional Mobile

Robot Based on ROS, (IJMERR); 11(9) (2020) 1502-1508.

[14] X. Ruan, D. Ren, X. Zhu, and J. Huang, Mobile Robot Navigation

based on Deep Reinforcement Learning, Chinese Control And

Decision Conference (CCDC), 2019.

[15] N. Navarro-Guerrero, C. Weber, P. Schroeter, and S. Wermter, Real-

world reinforcement learning for an autonomous humanoid robot,

Robotics and Autonomous Systems, 2012.

[16] Saleem, Y.; Yau, K.L.A.; Mohamad, H.; Ramli, N.; Rehmani, M.H.;

Ni, Q. Clustering and Reinforcement Learning-Based Routing for

Cognitive Radio Networks. IEEE Wirel. Commun. 2017.

[17] Z. Miljković, M. Mitić, M. Lazarević, and B. Babić, Neural network

reinforcement learning for visual control of robot manipulators,

Expert Systems with Applications, 40 (2013) 1721–1736.

[18] Pham Ngoc Sam, Tran Duc Chuyen, Research and Designing a

Positioning System, Timeline Chemical Mapping for Multi-Direction

Mobile Robot, 7(11) (2020) 7-12, Publishing by SSRG - IJECE
Journal.

[19] Shota Ohnishi, Eiji Uchibe, Yotaro Yamaguchi, Kosuke Nakanishi,

Yuji Yasui, and Shin Ishii, constrained Deep Q-Learning Gradually

Approaching Ordinary Q-Learning, 13 (2019) 7-12, Publishing by

Frontiers in Neurorobotics Journal, December.

[20] Roan Van Hoa, L. K. Lai, Le Thi Hoan, Mobile Robot Navigation

Using Deep Reinforcement Learning in Unknown Environments,

SSRG International Journal of Electrical and Electronics Engineering

(SSRG-IJEEE), 7(8) (2020) 15-20.

[21] Song Han, Luo Li and Xinbin Li Deep Q-Network-Based Cooperative

Transmission Joint Strategy Optimization Algorithm for Energy

Harvesting-Powered Underwater Acoustic Sensor Networks, Sensors

(Basel) 2020 Nov; 20(22): 6519. Published online 2020 November

14.

[22] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.;

Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement

learning. Nature 2015.

[23] Fu X, Du J, Guo Y, Liu M, Dong T, et al. A machine learning

framework for stock selection. arXiv, cited 2018 August 2018.

[24] Ganggang Guo, Yulei Rao, Feida Zhu, Fang Xu, Innovative deep

matching algorithm for stock portfolio selection using deep stock

profiles, PLoS One. 15(11) (2020), Published online November.

[25] Wu, Y.; Tan, H.; Peng, J.; Zhang, H.; He, H. Deep reinforcement

learning of energy management with continuous control strategy and

traffic information for a series-parallel plug-in hybrid electric bus.

Appl. 247, (2019) 454-466, Energy.

