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Abstract  - In this paper, the setting up of the Deep Q-

Network (DQN) algorithm in the mobile robot's Gazebo 

simulation environment has been calculated, designed, and 

controlled. Building experiments aim to make the robot 
model learn the best actions to control and navigate in an 

environment with many obstacles. For the mobile robot to 

move in an obstacle environment, the robot will then 

automatically control to avoid these obstacles. After that, the 

robot can remain within a specific limit, the more rewards it 

accumulates. The authors have performed various tests with 

many parameters and demonstrated the performance curves 

on the simulation. The research results will be the basis for 

designing and establishing control algorithms for current 

and future mobile robots for application in programming 

techniques and automation control in industrial control.  

Keywords - Artificial intelligence, mobile robots, Obstacle 

robots, autonomous navigation, reinforcement learning, deep 
Q-learning. 

I. INTRODUCTION  

The automatic navigation of a mobile robot can be 
divided into three basic problems: information perception, 

behavioral decision making, and control manipulation. 

Setting up a route tracking plan is the basis of the mobile 

robot navigation and control problem [1] - [3]. Planning the 

entire mobile robot control environment is to find the way 

from the current location to the target location. The path 

must be as short as possible, the smoothness of the road 

should meet the mobile robot's dynamics, and the path must 

be safe, no collisions occur [2]. Based on specific algorithms 

and strategies, the control planning algorithms for robots can 

be divided into four categories: first, pattern matching, 

second artificial lead field, construction setting mapping, and 
fourth artificial intelligence [3, 4]. Each type of motion map 

planning algorithm for a robot has an optimal application 

scenario and eliminates the limitations of algorithm control 

errors. The current map planning of a mobile robot is mainly 

based on its surroundings. In addition to the limitations of 

traditional route planning, robots cannot complete their 
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learning and judgment in complex environments, which is an 

issue in developing research in the field [9, 16 ]. Therefore, it 

is especially important to develop a method of mapping the 

robot so that the omnidirectional mobile robot is less 
dependent on the environment and can quickly adapt to its 

surroundings. 

Creating robots with human-like abilities to execute 

specific skills smoothly and naturally is one of the mobile 

robot's key goals for performing various real-life tasks such 

as a delivery row, search or rescue, security surveillance in 

the army. Such tasks require varying degrees of autonomy in 

navigation in response to various motivational factors such 

as changing environmental conditions. One of the most 

popular approaches is to train mobile robots through 

numerous expert demos. These demonstrations provide the 
robot with previous experiences from the examples, defined 

as a series of state-action pairs recorded during the teacher's 

demonstration of the desired behavior boots. However, in 

some cases, such as exploring dangerous environments, 

mobile robots have no experience or require pre-

demonstration [6, 8, 9, 10, 11, 13]. 

Although the DQN algorithm and its extensions have 

enjoyed great success in the console environment of reward-

seeking games, at the beginning of the teaching process, the 

current DQN algorithms required millions of policy-based 

random patterns to teach robots any optimal policy, and the 

right variety of patterns will lead to slower training speeds. 
However, in many cases, the teaching sampling can be 

different or time-consuming. Therefore, some researchers try 

to represent a real-world basis by using synthetic models [1, 

6, 8, 25] to improve sample performance. When the general 

model is well trained, the DQN algorithm can be trained 

without interacting with the actual environment. In [1, 2, 4, 

7, 18, 20], teaching methods for robots give optimal policies 

for when to use teaching patterns. 

In this paper, the authors present a DQN based self-

learning algorithm in the cases of an unknown environment. 

Experiments are conducted on the autonomous navigation 
tasks for mobile robots. More specifically, we introduce a 

neural network structure to generalize and approximate the 

value of all the states of  DQN algorithms. The experiments 

are conducted on the Gazebo simulator using its open source 

extension Gym to perform the autonomous navigation tasks 

for omnidirectional mobile robots. 

http://www.internationaljournalssrg.org/IJECE/paper-details?Id=372
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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II. BUILDING CONTROL MODELS FOR 

OMNIDIRECTIONAL MOBILE ROBOTS 

A. The controller design for the robot  

 The omnidirectional mobile robot model is set up 

on the same basis as the four-wheeled Asimo robot with 

dimensions: height 65cm, width 42cm square. The robot 

mission is for the mobile omnidirectional robot. Figure 1 

shows the control system block diagram of an 

omnidirectional mobile robot. 
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Fig 1: Control system block diagram 

 

The input signal is a setpoint signal. The robot's Smart 

Sensor measures the frame's winding angle, pitch, and tilt 

angle every second and sends them to the microprocessor to 

command control based on algorithms. Intelligent control 

such as adaptive control, sustainable control, neural network 
control and artificial intelligence, etc. Then the controller 

will calculate the optimal action-value to respond to the unit 

controlled by a closed control loop, and then it will make the 

control of the robot stable; figure 1 shows the robot's control 

system, [1, 8]. 

B. Reinforcement learning methods as controllers 

Previously, we worked on traditional controllers 

like PID, Fuzzy PD, PD, PI & LQR algorithm. The biggest 

problem with those methods is that they need to be tuned 
manually. So, reaching optimal values of controllers depends 

on many trials and errors. Many times optimum values aren’t 

achieved at all. The biggest benefit of reinforcement learning 

algorithms as controllers is that it tunes itself to reach the 

optimum values. The following two sections discuss the Q 

Learning algorithm and Deep Q Network algorithm. 

With Q learning algorithm: According to document [3], 

“this algorithm gives actors the ability to learn how to act 

optimally in Markovian domains by experiencing the 

consequences of actions without asking them to build control 

environment maps for an omnidirectional mobile robot.” In 
the Markovian domain, the function Q - algorithmically 

generated model - computes the expected utility for a given 

finite state s and any possible finite action a. for agents - 

which are omnidirectional mobile robots, in this case - 

allowing to choose the optimal action with the highest value 

of Q (s, a), this action selection rule is also called priority 

policy. Initially, the function values Q (s, a) are assumed to 

be 0. Then through each training step, the values are updated 

according to the following equation, [1, 3]: 
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In the DQN algorithm, when training the neural network, 

there exists an arithmetic coefficient (α) in the 

backpropagation process, so it is reasonable to omit the 

learning coefficient (α) in formula (2). By doing this, the 

calculation of updating values also becomes simpler then we 

have:  

  ), .( ( , )
1

Q s a R r maxQ s at t t t
  


  (3) 

The Q matrix had 20 columns, each column representing a 

state and ten rows representing every action. Initially, the Q-

values were assumed to be 0, and some random actions were 

specified for every state in the policy π . We trained or 1500 

episodes, each episode having 2000 iterations. At the 

beginning of each episode, the simulation refreshed. 

Whenever the robot’s state exceeded the limit, it was 
penalized by assigning a reward to -100. The Q Table is 

updated at each step according to equation (3). This 

algorithm shows the full algorithm, [23 - 25]. 

III. RESEARCH AND APPLICATION OF                   

DQN ALGORITHM 

A. DQN algorithm learning method  

DQN inherits all properties of Q-learning. It is a 

model in the form of a free model, learns online, and belongs 
to off-policy algorithms. 

As mentioned in document [1, 11, 17]. The Q-learning and 

State Action Reward State Action SARSA (State Action 

Reward State Action) algorithms have memory problems 

when storing the evaluation function as a two-dimensional 

array Q(s, a). When the state space and the action space are 

very large, about hundreds or thousands, this storage will 

have memory problems, not to mention that the 

computational cost of updating the value will increase 

exponentially.  
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Figure 2: The from Q-Table to DQN algorithm 

 

In addition, the Q-learning algorithm still has another 
major weakness: the inability to estimate values for unknown 
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states 
1 2{ }i Ts S s s s, ,... , thus, inability to predict, leading 

to lack of generalization. To solve this problem, the DQN 

algorithm can remove the two-dimensional Q-Table array 

instead of building a neural network to approximate this Q-

Table algorithm table shown in figure 2 below the illustrative 

example. 

The same Q – learning algorithm, DQN training process 

is also based on temporary differential method, DQN Agent 

updates network parameter θ of Q rating (S, A) at each step 

of the network training, to Execute action a, receiving the 

new algorithm R, then it will significantly improve the 

performance of the control model for the mobile robot when 

using the control programming using the DQN algorithm. 

B. The robot navigation using DQN 

The DQN algorithm was originally introduced as an 

AI agent that can play videogames at a level that can rival 

human players [3, 14]. The DQN algorithm has been able to 

complete different games with the same algorithm. In 

videogames, each new screen is a new state where the agent 

can take action. Since there are so many possible states and 
actions, it is impossible to explore them or use conventional 

algorithms to solve the game.  
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Figure 3: The schematic diagram of the reinforcement    

learning model 

A deep Q - network algorithm starts by exploring a game 

and gradually learning its mechanics; the more the agent 

plays this game, the more it learns and can achieve higher 

scores. In this work, the DQN will learn the connection 

between the change of geometrical properties and their effect 

on final results through simulations and then use that 

knowledge to design structures that produce the optical 

responses that we desire. First, the environment is set up; this 

includes the initial structure design and the simulation 

environment. Second, the agent's actions to change the 
structure are decided, and finally, the reward system is 

defined. The DQN algorithm that connects all these parts is 

shown in figure 3. 

The decision to take in a given state is decided by an 

updated neural network based on what it has learned. To 

improve the performance of the DQN, an auxiliary model is 

used alongside. This network is used to select the agent's 

action, while the main DQN network predicts the Q-value of 

the state-action pair. This prevents the overestimation that is 

a problem in general DQN.  At each iteration, two models 

are trained, and the weights of the target model are gained 
from the combination of the main model weights and the 

target model weights. This method helped the overestimation 

caused by using just one model. The auxiliary network is 

updated periodically with the parameters of the DQN 

algorithm. 

The implementation of the DQN algorithm on our Robot 

model: is similar to the Q-Learning algorithm. However, 

there are some exceptions. At first, a model was initialized 

instead of Initializing the Q matrix. Instead of choosing the 

action based on policy π, Q values were calculated according 

to the model in the greedy policy. At the end of every 

episode, the model was trained using random mini-batches of 
experience. At first, an architecture with two hidden Relu 

layers of 20 units was selected, whereas the last layer was a 

Linear Dense layer with ten units. With the   of 0.999 and 

  of (0.65, 0.7, 0.8). The DQN algorithm deployed on the 

robot model shows that to evaluate the algorithm's quality 

and efficiency when the estimation function is used in the 

whole process, the objective function helps to create a 

separation for improvement. Stability improvement. 

Furthermore, the neural network training process is kept 

fixed for computation and is updated gradually, and the 

network training process is somewhat similar to supervised 

learning. 

The performance of the deployed DQN algorithm is very 

satisfactory. One of the main reasons this algorithm offers 

omnidirectional robot control is to develop an algorithm that 
can be used to control autonomous robots and industrial 

robots in industrial factories. , in industrial environments 

such as the 5S environment, Japan's 6S environment applies 

to all factories. Compared to other algorithms, the 

comparison of DQN algorithms shows the optimization of 

RL, Q-learning, etc., was also successful. Several tests for 

process control have been given and clearly show how well 

the DQN algorithms work under different circumstances. 

Therefore, to build a complete DQN algorithm, it is always 

necessary to meet the needs: from selecting a control action 

to a multicast mobile robot, executing the action; receive 
rewards, store and sample to train the algorithm, then go to 

the calculation of the target function, thereby updating the 

model parameters by minimizing the loss function on all 

selected samples, teach, followed by choosing a method to 

update neural network parameters and target function, and 

finally updating the control coefficients with uncertainty, [1, 

3, 10, 15, 21]. 
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Algorithm: DQN Algorithm as applied in the system

Initialize Robot;

Initialize model M;

Initialize Penalty Reward pen;

for number of episodes do

      Reset simulation ;

      Wait for 1 second ;

      Pause simulation ;

       Read the pitch angle ϕ of the robot ;

       state ← ϕ ;

       start simulation ;

       for number of iterations do

             Generate a random number rand;

             if  rand ≤ δ then

                 take random action ;

             end

             else 

                   Q ← M(state);

                   action ← action formax(Q);

             end

             statenew ← ϕ;

             Pause simulation;

             if   absolute value of statenew ≥ limit then

                  if   rewardtotal ≤ Target then

                       reward ← pen;

                       experience ←

                        (state, reward,  action,  statenew);

                       Add Experience to Memory;

                  end 

                  Break ;

                  else

                        Print Passed ;

                        Break ;

                  end

            end

            else

                  reward ← 1;

                  experience ← 

                    (state, reward,  action,  statenew);

                  Add Experience to Memory;

                  state ← statenew

            end

      end

      Take radom minibatch of Experience;

      if reward = = pen then

           Qpred← reward;

      end

      else

          Qpred ← 

          reward + γmax(Q(statenew, action))

     end

     ;

     Train the model according to loss

      abs(Qpred(state, action) ‒ Qpred(state, action));

end

 

IV. EXPERIMENTAL RESULTS 

In this section, some simulations are conducted 

based on the powerful simulation environment tool in 

Gazebo. Figure 5 shows that the map built on Gazebo is a 

map made with strict walls and a mobile robot that can be 
manipulated to move around those environments to get the 

necessary data. Used to construct the map. The red lines are 

laser scan signals generated from pine sensors, smart 

cameras, and the robot's current position is updated (the 

robot is denoted in green) using geometric measurements. 

Primarily a visualization tool that can provide live updates of 

maps generated from the SLAM algorithm. Furthermore, a 

vehicle's motion trajectory in the map can also be visualized 

and generated in an obstacle-containing environment, as 

shown in figure 4. 

 

 
Figure 4: The example of a simulation environment in Gazebo 

with contains a robot (green) 

The general idea behind the positioning node is to save the 

trajectory data of the vehicle. The vehicle's position is 

obtained by looking up a transform from the fixed world 
frame to the base-link frame, which represents the actual 

position of the vehicle. The estimated position is generated 

by the SLAM algorithm. The topic was introduced for testing 

purposes to compare the vehicle's actual position with an 

estimated position to validate each SLAM algorithm. The 

data is saved to the text file is the x and y coordinates and a 

time stamp. The values are stored into a vector with a 

frequency of 10 Hz; basically, the same as the frequency of 

the/car-position topic referred to in the controller. 

In figure 5, to create an operating environment to control 

and navigate the robot, the authors map intending to create 

environments containing obstacles, then programming the 

robot. Move around and avoid obstacles (the robot in figure 5 

is the red color spot) with devices such as cameras and smart 

sensors. Here is primarily a visualization tool that can 

provide live updates of maps generated from the SLAM 

algorithm. Furthermore, the vehicle's trajectory in the map 

can also be visualized. 
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Figure 5: The main window shows the map generated by a 

SLAM algorithm 

The dynamic obstacles can be randomly generated in the 

environment. A learning episode of the DQN algorithm is a 

completed mission. The authors deployed 4500 learning 

episodes in simulation. The first 2250 episodes are to visit a 

set of waypoints with the total optimal trajectory length of  

255m and the last 2250 ones for a different set of waypoints 

with the total path length of 195m. Figure 6 depicts the total 

reward obtained over 4500 learning episodes. Despite many 

fluctuations due to the variable complexity of environments 

and the efficiencyof existing navigation algorithms, the trend 

line also indicates the total reward growth of the total reward 
during the learning phase [12, 16, 18]. 
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Figure 6: The changes of neural policy weights during the 

learning process of 4500 episodes 

The neural network DQN can perceive: the environment 

and perform feature extraction to realize the fitting from the 

environment to the state action function. This has been 

mentioned in the literature. In [7] proposed an adaptive DQN 

algorithm strategy and applied it to text recognition. These 

results showed that the DQN algorithm is significantly better 

than other algorithms, which also indicated the DQN 

algorithm's advantages in image recognition [2]. 

Compared with the deep learning algorithm Q-learning, 

the DQN algorithm is better than Q-learning in terms of 

value accuracy and strategy, consistent with previous reports 

[3]. The hierarchical reinforcement learning technology is 

utilized to achieve the mapping from state to action and 

meets mobile robots' mobile needs. The data have also 

proven that the robot path planning method based on deep 

reinforcement learning is an effective end-to-end mobile 

robot path planning method, which has also been confirmed 

in a study by [17]. The above results illustrate the feasibility 

of the proposed method in the path planning of mobile 

robots. 

V. CONCLUSIONS 
In this paper, we presented the robot self-learning 

strategy without prior experience under explicit feedback. 

The authors explored the mobile robot navigation problem 

by combining reinforcement learning and neural network. 

The DQN algorithm is applied to enhance the self-learning 

ability of a mobile robot through trial - and - error 
interactions with an unknown environment. Authors 

designed new reward expression and introduced the neural 

network architecture to store and train the large-scale Q-

values and generalize the learning performance to large-scale 

state and action spaces. Experiments are conducted on the 

autonomous navigation tasks for mobile robots. The 

simulation results show that the stability and applicability of 

the method using the DQN algorithm are very effective; 

these new studies can be completely applied to the control 

and navigation for mobile robots in industrial factories in 

Vietnam as well as in the world, furthermore, than previous 
studies [4, 7, 14, 16], the research result of the paper is 

better. Then DQN algorithm is simpler, making the 

navigation of robot operation monitored through visual tools, 

like cameras and intelligent sensors for precise control over 

obstacles. 
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