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Abstract  - The article, the implementation of the Deep 

Deterministic Policy Gradient algorithm on the Gazebo 

model and the reality of a multi-directional mobile robot, has 

been studied and applied. The empirical studies' goal is to 
make the multi-directional mobile robot learn the best 

possible action to travel in real-world environments when 

facing obstacles. When the robot moves in an environment 

with obstacles, the robot will automatically control to avoid 

these obstacles. Then, the more time it can remain within a 

specific limit, the more the reward is accumulated, and 

therefore the better results will be achieved. The author has 

performed various tests with many metamorphic parameters 

and proved that the DDPG algorithm is more efficient than 

algorithms like Q-learning, Machine learning, deep Q-

network, etc. The research results will be the basis for 
designing and establishing control algorithms for present 

and future mobile multi-directional robots and industrial 

robots for application in programming engineering and 

home automation control industrial production machines.  

Keywords - Multi-directional mobile robots, artificial 

intelligence, Obstacle robots, DDPG algorithm, autonomous 
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I. INTRODUCTION  
Our world is constantly evolving and changing. 

Underwent three industrial revolutions since 1784 was the 

first revolution, 1090 was the 2nd revolution, 2013 was the 

third revolution with computer and industrial automation 

robot emitted So far, the fourth industrial revolution 2020 

has come into being: the strong development of digital 

technology, biotechnology, and physics, and also evident in 

the fields of artificial intelligence, Internet of Things (IoT), 

robot control field is receiving much attention. A lot has 
changed since the introduction of robots in 1917. Even 

Asimov's famous ideas about robots and his three famous 

robots' laws seem to be far behind us today. Today, machines 

are present in our lives, supporting us in our daily activities, 

[1]-[5]. Some scientists understand robotics as an applied 

science born of the "marriage" between computer science 

and machine tools, so this tool can now process and manage 

information. Logically and automatically without human 

assistance, worker replacement, tireless, non-strike, and 

100% operational. However, reality shows that we are still 

                                                   
 

very far from such a technology. Although trivial to humans, 

perceiving the environment (feel) and making decisions (to 

act) is a very difficult task for the computer. Therefore, 

Artificial Intelligence (AI) is needed for multi-directional 
mobile robots to solve such problems [3, 4, 5, 7, 9, 14]. 

The Q - learning, SARSA are all based methods, meaning 

that if you want to find the optimal policy, you must build 

that value function to estimate the value for each action in 

the entire workspace. Then, to find the optimal policy, the 

algorithm picks out the action with the largest Q value in the 

entire action space. Although the important approach is 

reinforcement learning, the goal of reinforcement learning is 

policy resolution, so it seems that algorithms of this type are 

indirectly reaching their destination. In practice, it is often 

combined with policy-based methods to solve complex 
problems with large discrete action spaces or continuous 

action spaces [6, 9, 21, 22]. Deep Deterministic Policy 

Gradient (DDPG) is a modern and typical algorithm for this 

problem. This algorithm combines two perfect approaches 

between two value-based and policy-based methods to build 

smart enough agents for complex problems in the continuous 

action space control the multi-directional mobile robot. 

Although the training takes thousands of episodes to be 

repeated repeatedly, each test episode's policy decision will 

take a very short time. Based on a real-world case of the 

mobile robot's path, the models for robot control problems 

are set up as a training and testing environment. To validate 
the proposed algorithm's energy-saving and real-time 

functionality, four experiments were designed and 

conducted. The results show that the proposed algorithm has 

real-time performance and significant percent energy savings 

under random noise during robot control [8, 11, 15, 20, 24]. 

In this paper, the author presents a modern and intelligent 

control DDPG algorithm based on controlling robots with 

complex environments in a continuous action space of 

mobile robots, which is zero. Determine when the robot is 

teleported. Test studies are performed on automated 

navigation missions for multi-directional mobile robots. The 
author also introduces the neural network structure to 

generalize and approximate all states' values based on the 

DDPG algorithm. This is an off-policy intensive learning 

algorithm, online learning, and based on Actor-Critic smart 

network structure. Tests were conducted on the Gazebo 

emulator using a high-profile computer with a multi-

directional mobile robot, with its open-source extension to 

perform automated navigation tasks for mobile robots, in 
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reality, there are complex environments that overcome 

obstacles, [5, 7, 8, 12, 13, 25, 27]. 

II. BUILDING CONTROL MODELS FOR MULTI -

DIRECTIONAL MOBILE ROBOTS 

Consider a mobile robot as figure 1 with three 

wheels, two of which are the driving fixed standard wheels 

located at the back of the chassis and one is the front caster 

wheel, which can make the mobile robot keep balance and 

doesn't exert any motion constraint to the mobile robot. Two 

coordinate frames can be used to describe the motion of the 

mobile robot. One is the global coordinate frame (X, Y), 

which is fixed in the world, and the other is the local 

coordinate frame (Xl, Yl ) which is fixed on the mobile robot. 
The angle between the two coordinate frames is denoted as θ. 

The robot's motion will be defined for the navigation stack. 

As the global coordinate is chosen in figure 1, it is clear that 

the robot's velocity contains three components: the linear 

velocity along the OX axis and the OY axis and angular 

speed. 

 

Yl

Xl

 
Fig 1: The model multi-directional mobile robot 

 

To specify the multi-directional mobile robot's position, 

the P-coordinate is selected on the robot's frame as its control 

center position reference point. P is positioned by the 

coordinates (x, y) in the global frame of the robot's entire 

control environment. To describe the motion of the mobile 

robot as component movements, it is necessary to define the 

motion mapping along the axes of the spherical frame with 
the motion along the local frame's coordinate axes, which 

The entire control environment for the robot. This mapping 

is represented as the following expression: 

0
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By considering the limit of standard wheel slip, 
ly  = 0, 

meaning that the wheel cannot slide orthogonal to the wheel 

plane, then we can obtain: 

0xsin ycos       (2) 

Denoting the forward velocity 
lx  of the multi-directional 

mobile robot as v and the rotation speed θ as w, the 

kinematics of the multi-directional mobile robot becomes: 
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The forward velocity and rotation speed of the multi-

directional mobile robot have the following relationships 

with the linear velocities of the two wheels: 

1
( ),

2 2

v vrlv v v w =rl L


    (4) 

If we consider the linear velocities at the wheels and the 

two qualified wheels' angular velocities, we can get: 

l lv w R  and r rv = w R . Then, we can represent the 

angular velocities of the two standard wheels according to 

the forward velocity and rotation speed of the multi-

directional mobile robot would be: 

,
v wL v wL

w wrl R R

 
    (5) 

By considering the acceleration of the multi-directional 

mobile robot in its local working coordinate limit, then the 

dynamic model can be expressed as [12]: 

1 1

1v Rm Rm

L Lw 2
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   (6) 

where m and I are the mass and inertia of the mobile 

robot, respectively; R is the radius of the two fixed standard 

wheels; L is the half of the distance between the two fixed 

standard wheels; 
T

τ = [τ τ ]
1 2 is the input torque vector 

from the motors exerted to the two fixed standard wheels, [1, 

4, 8, 29]. 

The goal is to teach multi-directional mobile robots to 

track and follow certain trajectories within the right spaces 

and work environments e 0, e 0, e 0
x,k y,k θ,k

   . 

 

III. RESEARCH AND APPLICATION OF DDPG 

ALGORITHM TO CONTROL MULTI-DIRECTIONAL 

MOBILE ROBOT 

A. The DDPG algorithm learning method  

DDPG algorithm is built similar to the idea of 

Double Deep Q-Network. It is a model with reinforcement 

learning, onlone learning, and an off-policy algorithm group 
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with an Actor - critical network structure. 

    , , ,max
Q Q Qa

Q s a Q s arg Q s amax
  

  (7) 

If we build a neural network to choose the optimal action 

for a particular state ( ) ( , )s arg max s a
Qa

Q
 
 , then optimize 

the component 
Q

Q


 according to the network parameters 




 just created, then we have:  

, ( )arg max s s
Q

Q 


  
 
 

   (8) 

This optimization considers the change 
Q

Q


 according to 

the variable 


, or in other words, the evaluation of the 

action. This can be calculated using a string rule like the 
following expression: 

.

dQ dQ dQ Q

d d d

  

   
    (9) 

So building a function that approximates the value of an 

action by a ( )s


 neural network here is the main 

difference of DDPG. 

Thus, in each DDPG algorithm structure, there are always 

two components, one is Actor ( )s


 , and the other is 

Critic ( , )s a
Q

Q
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Figure 2: The DDPG algorithm structure 

The relationship between the two components above and 

their connection to this algorithm's enhanced learning 

environment when controlling the multi-directional mobile 
robot in a random open environment with many fixed and 

obstacle obstacles mobile. At that time, the DDPG algorithm 

always meets the requirements of the control quality and the 

robot's working quality, as shown in figure 2.  
We can understand more clearly that the DDPG algorithm 

is improved from other algorithms to have the ability to 

compute continuous action space problems for multi-

directional mobile robots; when Then we go to update the 

target function as follows: 

For an input sample set of 
'

( , , , )s a R s
i i i i

, then the formula 

updates the target function value as follows:  

' '
'( , '( ))y R Q s s

i i i i
      (10) 

Then we compute the loss function for the sample M value 

'
( , , , )s a R s

i i i i
to train the written network: 

1 2( ( )),
1

M
J y Q s ai i iM i
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According to the string rule in expression (9), the gradient 

is calculated as follows: 

1

1

M
J G Gai iM i
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Which ( , )ai Q s a
ia

G   is the output gradient of the 

Critic network according to variable a, estimated by the 

Actor-network ( )a s
i

 . And ( )i s
i

G   is the 

gradient of the Actor-network input according to the model 

parameter 


? 

The DDPG algorithm with neural network training and 

training always ensures accurate and reliable control; DDPG 

Agent updates the network parameter θ of the Q rating (S, a) 

at each step of the process. Network trainer, to do action a, 
receive new algorithm R, then it will significantly improve 

the performance of the control model for multi-directional 

mobile robot when using DDPG algorithm control 

programming. Moreover, DDPG always constantly explores 

the space for action, which is also a great challenge for 

scientists [5, 6]. 

B. The robot navigation using the DDPG algorithm 

DDPG is a very recently developed algorithm for 
deep reinforcement learning to solve complex sensory input 

tasks, not multidimensional processing [23]. This algorithm 

is comparable to the human level in many control problems 

for industrial robots, mobile robots, and civil robots helping 

humans. However, it has not yet been used in intelligent 

control in industrial factories or workshops. This algorithm 

inherits its advantages from previous algorithms such as Q-

learning and deep Q-network [3, 5, 7]. Furthermore, 

compared to Q-learning, it has continuous action space. 

Compared with a deep Q - network, it has a policy network 

that provides definite action. Here, the principle of DDPG is 
introduced. 

Both DDPG and Q-learning have a deterministic policy 

gradient. The deterministic policy gradient is the expected 

gradient of the action-value function gradient, which can be 

estimated much efficiently than the usual stochastic policy 

gradient [7]. Considering the target policy µ: S → A directly 

maps state to deterministic action, The action-value function 



Chau Thanh Phuong / IJECE, 8(1), 18-23, 2021 
 

21 

is built based on continuous action space thanks to the robot's 

intelligent automatic navigation process.  

The DDPG is a member of the actor-critic algorithm, 

which contains four neural networks: Current critic network 

( , )Qs aQ  , current actor-network ( )s  ), target critic 

network '( , )' Qs aQ  , and target actor-network '( )' s  , 

where 
' ', , ,Q Q 

    are the weights of each network. The 

ingredient 'Q and '  are a copy of Q and µ respectively in 

the structures. Both 
'Q

 and 
'

  are partially updated from 

the current networks at each timestep. The current critic 

network is updated by minimizing the loss function. Then, 

the gradient function is continuous, ensuring that the robot's 

agent action when controlled in an obstacle environment and 

now the algorithm is updated in a continuous space. The 

specific process of the DDPG algorithm for navigating multi-

directional mobile robots is described in detail as follows: 

 

Algorithm: Deep Deterministic Policy Gradient  algorithm for multi-directional mobile robot

1:

2:
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15:

16:

17:  
 
The performance of the DDPG algorithm deployed is very 

positive on the multi-directional mobile robot control model. 

One of the reasons the author chose to study this algorithm 

for the primary control of multi-directional robots was to 

develop something industrially controllable. Comparing the 

DDPG algorithms with other algorithms has also been 

successful for mobile navigation for robots. Some tests for 

each form have been given, and it is clear that the DDPG 

algorithm works better than other algorithms like Q-learning, 

RL, etc. Therefore, to build a complete DDPG algorithm, it 

is always necessary to meet the needs: from selecting a 
control action to a robot, executing the action; receive 

rewards, store and sample to train the algorithm, then go to 

the calculation of the target function, thereby updating the 

model parameters by minimizing the loss function on all 

selected samples, followed by selecting the method to update 

the target neural network parameters, and finally updating 

the environmental discovery coefficient during the control 

process, [1, 3, 10, 15, 21]. 

IV. RESULTS OF SIMULATION AND 

EXPERIMENTAL 

A. Research multi-directional mobile robot 

Here, the author studies the multi-directional mobile 

robot model: with the actual hardware architecture, which is 

shown in figure 3. Each hardware module will perform a 

number of tasks. In the sequence of activities of this multi-

directional mobile robot: such as finding a path, crossing 

obstacles, etc. 

 

 
 

Figure: 3. The components of the Turtlebot robot mobile 

multi-directional 

 

The authors implement some tasks in the multi-

directional mobile robot operation on a Raspberry Pi 3 

Model B+, which supports Ubuntu in the experiments. The 

embedded computer Raspberry Pi 3 Model B+ directly 

processes information from a series of sensors, including 

Astra camera intelligence, and sensor intelligence, then 

transmits the command to a microcontroller intelligence. For 

capturing images from the environment as well as measuring 

the distance between the multi-directional mobile robot an 

unknown obstacle, the mobile robot is equipped with a 
camera and sensor intelligence, in which the camera 

intelligent can perform 360-degree  and laser scanning range 

within 15m  that produces map data used for the mapping 

process. The intelligent microprocessor control circuit will be 

the part that receives the control signal from Raspberry Pi 3 

Model B+ and then directs the signal to the MOSFET bridge 

circuit to operate two motors. 

B. The simulation results 
In this section, some simulations are conducted 

based on the powerful simulation engine and the 

environment in Gazebo. Figure 4 shows the map built on 

Gazebo is a map created with strict walls, and a mobile robot 

can be manipulated to move around fixed obstacles creating 
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a context for robot movements used to build mobile robot 

action mapping. The blue lines represent the robot's path 

when avoiding obstacles created by smart tree sensors, smart 

cameras, and updated robot current position (the blue tree 

denotes mobile robot) using the geometrical measuring 
dimensions. This visual tool can provide live updates of 

maps generated from the SLAM algorithm to control the 

robot. Furthermore, a multi-directional mobile robot's motion 

trajectory in the map can also be visualized and generated in 

an obstacle environment, as shown in figure 4 for the robot 

to move. 

 

 

Figure 4: The Constructing visual maps and robot 

simulation models in Gazebo 

As shown in figure 4, a navigation system for the mobile 

robot is fully automated; the path planning will determine the 

route for the robot that needs to be programmed with a smart 
control algorithm to reach the desired final destination 

without hitting any obstacles. 

C. The experimental results 

This section shows Turtlebot, the actual multi-directional 

mobile robot into a real environment, which is the 

environment used for real testing. 

In figure 5, to create an operating environment to control, 

navigate, and navigate the robot, the author has set up the 
mapping to create obstacle environments and then program 

the controller for multi-directional mobile robots. Move 

around and avoid obstacles with devices like cameras and 

smart sensors. The environment here includes obstacles 

created by different flower pots, the robot's path will be 

taught in advance through a computer, a Wifi network, and 

the actual Turtlebot Robot. Based on the DDPG algorithm 

and SLAM algorithm. This is primarily a visualization tool 

that can provide live updates of the maps generated from the 

SLAM and DDPG algorithms. Moreover, the vehicle's 

trajectory in the map can also be displayed in the real 
environment that the training and teaching process, 

identification so that the robot knows during obstacle 

avoidance smartly and completely good. 

 

Figure 5: The navigation for Turtlebot mobile multi-

directional robot in realistic map with the obstacle 

Compared with some other algorithms: deep learning Q-

learning, DDPG algorithm is better than DQN, Q-learning in 

terms of value accuracy and control strategy [13, 17, 21, 28], 

this is also consistent with the DDPG algorithm that the 

author has suggested in this article. Accelerated learning 

technology and rapid action processing in large environments 
can be used to achieve the state-to-action mapping and meet 

mobile robots' moving needs. The data also demonstrated 

that the robot path planning method based on the DDPG 

method, the end-to-end mobile robot path planning method, 

was also studied in a study of [17]. The above results 

illustrate the algorithm's strength, the optimal problem of the 

proposed method in planning the path of the multi-

directional mobile robot. 

V. CONCLUSIONS 
In this article, the author has presented the robot 

self-training strategy without prior experience under clear 
feedback. The author explores the navigation problem of the 

multi-directional mobile robot using the reinforcement 

learning method and the neural network. The DDPG 

algorithm is applied to improve multi-directional mobile 

robots' self-learning through trial-and-error interactions with 

an unknown environment. The author has designed the 

expression using and introduced the neural network 

architecture to store and train network training on a large 

scale and generalize performance and learning capabilities 

for action spaces and extended-scale states. Experimental 

studies performed on automated navigation tasks for mobile 

multi-directional robots have yielded better results than 
previous studies. The simulation results show that the 

stability and applicability of the method using the DDPG 

algorithm are very effective; these new studies can 

completely apply to the control and navigation of mobile 

robots in Industrial factories in Vietnam as well as in the 

world, more than before [13, 17, 21, 28], the research results 

of the paper are better. The DDPG algorithm is then simpler, 

making the navigation of the mobile robot possible to be 

monitored through intuitive tools, such as cameras and smart 

sensors for precise control and avoiding obstacles. 



Chau Thanh Phuong / IJECE, 8(1), 18-23, 2021 
 

23 

ACKNOWLEDGMENT  
This study was supported by the Faculty of 

Electronic Engineering Technology, University of 

Economics - Technology for Industries, Viet Nam; No 353 

Tran Hung Dao Road, Ba Trieu District, Nam Dinh City, 
Viet Nam International. http://www.uneti.edu.vn/. 

REFERENCES  
[1] Tran Hoai Linh, Neural network and its application in signal 

processing, Hanoi Polytechnic Publishing House, (2015). 

[2] M.N. Cirstea, A. Dinu, J.G. Khor, M. McCormick, Neural and Fuzzy 

Logic Control of Drives and Power Systems,Linacre House, Jordan 

Hill, Oxford OX2 8DP, First published (2002). 

[3] Nguyen Thanh Tuan, Base Deep learning, The Legrand Orange Book. 

Version 2, last update, (2020). 

[4] Charu C. Aggarwal,Neural Networks and Deep Learning, Springer 

International Publishing AG, part of Springer Nature, (2018). 

[5] Nils J. Nilsson, The quest for artificial intelligence a history of ideas 

and achievements, Web Version Print version published by 

Cambridge University Press, Publishing 13(2010), 

http://www.cambridge.org/us/0521122937. 

[6] Vu Thi Thuy Nga, Ong Xuan Loc, Trinh Hai Nam, Enhanced learning 

in automatic control with Matlab Simulink, Hanoi Polytechnic 

Publishing House, (2020). 

[7] Mohit Sewak, Deep Reinforcement Learning, Springer Nature 

Singapore Pte Ltd.( 2019). 

[8] Latombe, J.C.,Robot Motion Planning, Kluwer Academic Publishers: 

Norwell, MA, USA, (1992). 

[9] Han, J., and Seo, Y.,Mobile robot path planning with surrounding 

point set and path improvement, Appl. Soft Comp. 57(2018) 35–47.  

[10] V. Matt and N. Aran.,Deep reinforcement learning approach to 

autonomous driving, ed: arXiv, (2017). 

[11] Andrea Bacciotti,Stability and Control of Linear Systems,Publishing 

Ltd; Springer Nature Switzerland AG,(2019). 

[12] L. Xin, Q. Wang, J. She, and Y. Li, Robust adaptive tracking control 

of wheeled mobile robot, Robotics and Autonomous Systems, 

78(2016) 36–48. 

[13] Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O., and 

Bouzouia, B.,Optimal path planning and execution for mobile robots 

using genetic algorithm and adaptive fuzzy-logic control, Robot. 

Autonomous Syst. 89(2017)  95–109. 

[14] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, 

“Extending the open-air gym for robotics: A toolkit for 

reinforcement learning using ros and gazebo, arXiv preprint 

arXiv:1608.05742, (2016). 

[15] Gu, S.; Holly, E.; Lillicrap, T.; Levine, S.,Deep reinforcement 

learning for robotic manipulation with asynchronous off-policy 

updates.In Proceedings of the 2017 IEEE International Conference on 

Robotics and Automation, Marina Bay Sands, Singapore,(2017) 

3389–3396, 29 May–2. 

[16] A. D. Pambudi, T. Agustinah, and R. Effendi.,Reinforcement Point 

and Fuzzy Input Design of Fuzzy Q-Learning for Mobile Robot 

Navigation System,International Conference of Artificial Intelligence 

and Information Technology, (2019). 

[17] Do Quang Hiep, Ngo Manh Tien, Nguyen Manh Cuong, Pham Tien 

Dung, Tran Van Manh, Nguyen Tien Kiem, Nguyen Duc Duy,An 

Approach to Design Navigation System for Omnidirectional Mobile 

Robot Based on ROS, (IJMERR);11(9)(2020) 1502-1508. 

[18] X. Ruan, D. Ren, X. Zhu, and J. Huang,Mobile Robot Navigation 

based on Deep Reinforcement Learning, 2019 Chinese Control And 

Decision Conference (CCDC),(2019). 

[19] N. Navarro-Guerrero, C. Weber, P. Schroeter, and S. Wermter,Real-

world reinforcement learning for an autonomous humanoid robot, 

Robotics and Autonomous Systems,(2012). 

[20] Saleem, Y.; Yau, K.L.A.; Mohamad, H.; Ramli, N.; Rehmani, M.H.; 

Ni, Q.,Clustering and Reinforcement Learning-Based Routing for 

Cognitive Radio Networks.,IEEE Wirel. Commun.(2017). 

[21] Z. Miljković, M. Mitić, M. Lazarević, and B. Babić.,Neural network 

reinforcement learning for visual control of robot manipulators, 

Expert Systems with Applications,40(2013) 1721–1736. 

[22] Pham Ngoc Sam, Tran Duc Chuyen,Research and Designing a 

Positioning System, Timeline Chemical Mapping for Multi-Direction 

Mobile Robot,7(11)(2020) 7-12,  Publishing by SSRG - IJECE 
Journal,. 

[23] Fu X, Du J, Guo Y, Liu M, Dong T, et al.,A machine learning 

framework for stock selection., arXiv, cited (2018). 

[24] Shota Ohnishi, Eiji Uchibe, Yotaro Yamaguchi, Kosuke Nakanishi, 

Yuji Yasui, and Shin Ishii,constrained Deep Q-Learning Gradually 

Approaching Ordinary Q-Learning,13(2019) 7-12,  Publishing by 

Frontiers in Neurorobotics Journal,. 

[25] https://www.mathworks.com/help/reinfocerment-learning/ug/ddpg-

Agent.html, (2020). 

[26] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; 

Bellemare, M.G., Graves, A.; Riedmiller, M.; Fidjeland, A.K.; 

Ostrovski, G.; et al.,Human-level control through deep reinforcement 

learning., Nature(2015). 

[27] Ganggang Guo, Yulei Rao, Feida Zhu, Fang Xu.,Innovative deep 

matching algorithm for stock portfolio selection using deep stock 

profiles,PLoS One. 15(11)(2020) Published online 2020 November. 

[28] Wang, C.; Zhang, Q.; Tian, Q.; Li, S.; Wang, X.; Lane, D.; Petillot, 

Y.; Wang, S.,Learning Mobile Manipulation through Deep 

Reinforcement Learning., Sensors (2020).  

[29] Evan Prianto, MyeongSeop Kim, Jae-Han Park,  Ji-Hun Bae, and 

Jung-Su Kim,Path Planning for Multi-Arm Manipulators Using Deep 

Reinforcement Learning: Soft Actor-Critic with Hindsight 

Experience Replay,Sensors, Published: 19(2020). 

 

 

 

 

 

 

 

 

 

 

https://www.mathworks.com/help/reinfocerment-learning/ug/ddpg-Agent.html
https://www.mathworks.com/help/reinfocerment-learning/ug/ddpg-Agent.html



