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Abstract - Jitendra Mohan has proposed a new first order 

all-pass filter with its application in realizing an oscillator. 

The fitler consists of one single active device (MO-

DXCCII), and (grounded) 1 resistor and 1 capacitor. In this 

paper, we present a systematic procedure to realize a wider 

range of functions where the all-pass filter realization is a 

special case.    
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I. INTRODUCTION 
There has been a lot of interest in realizing all-pass 

functions since long [1]-[20]. While Rathore [1] deals with 

an nth order all-pass functions, others first or second order 

only. Some realizations focus on a minimum number of 

active and passive components, while some have all 

grounded passive elements. Some of them are voltage mode 

(VM), while others are current-mode realizations. 

 Current-mode (CM) circuits are attractive because of 

their wider bandwidth, wider dynamic range, and lower 

power consumption than VM counterparts [19]. A current 

differencing buffered amplifier (CDBA) [14] and a current 

operational amplifier (COA) [15] based first-order CM all-

pass filter (APF) configurations have been proposed. Kacar 

and Mahmut [19] have presented a CM circuit using one 

DVCC for first-order APF only.  

 Jitendra Mohan [20] has proposed a CM APF 

employing one multi-output dual-X second-generation 

current conveyor (MO-DXCCII), a grounded resistor and a 

grounded capacitor. The symbol for the MO-DXCCII is 

shown in Fig. 1. Its termincl characteristics are given as  

 

 

(1)  

 
Fig. 1 Symbol of MO-DXCCII 

 

 
Fig. 2 Circuit configuration 

 

 The circuit is ideal for CM cascading due to its low-

input and high-output impedances. The use of grounded 

passive components makes the circuit, ideal for IC 

implementation. The theoretical results have been validated 

through PSPICE simulation program using 0.35μm CMOS 

process parameters.  

In this paper, the same configuration, shown in Fig. 2  

with admittances Y1 and Y2, is exploited to syntheisze  a 

more general class of CM transfer functions. We present 

two synthesis methods. 

 

II. SYNTHESIS 

A. Partial fraction expansion method   

Analysis of the circuit shown in Fif. 2 gives  

𝑇(𝑠) =
𝐼𝑜

𝐼𝑖

= 𝐾
𝑁(𝑠)

𝐷(𝑠)
=

𝑌1 − 𝑌2

𝑌1 + 𝑌2

 (2)  

where K is a gain constant, No ≤ Do 
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𝑌1 − 𝑌2

𝑌1 + 𝑌2

= 𝐾
∏ (𝑠 + 𝑧𝑗)𝑚

𝑗=1

∏ (𝑠 + 𝑦𝑖)𝑛
𝑖=1

= 𝐾

𝑁(𝑠)
𝑄(𝑠)

𝐷(𝑠)
𝑄(𝑠)

 (3)  

where Q(s) is defined in (5) and 𝑚 ≤ 𝑛. In  eqn. (2), let 

𝑌1 + 𝑌2 =
𝐷(𝑠)

𝑄(𝑠)
 and  𝑌1 − 𝑌2 = 𝐾

𝑁(𝑠)

𝑄(𝑠)
. (4)  

Since Y1 + Y2, being the sum of two RC DPAs, is also an 

RC DPA, it must have poles and zeros on the negative real 

axis, interlaced and the lowest (highest) critical frequency a 

zero (pole). With these restrictions, 

𝑄(𝑠) = ∏(𝑠 + 𝑝𝑘)

𝑛−1

𝑘=1

 (5)  

where Yk+1 > pk > yk, k = 1, 2, …, n-1. 

A factor (s + pn) such that pn > yn could be added in Q(s), 

but the above choice is made to have a smaller number of 

elements in Y1 and Y2.  Equation (4) can be expressed as, by 

partial fraction expansions,   

𝑌1 + 𝑌2 = [𝐴∞𝑠 + 𝐴𝑜 + ∑
𝐴𝑘𝑠

(𝑠 + 𝑝𝑘)

𝑛−1

𝑘=1

] (6)  

and  

𝑌1 − 𝑌2 = [𝐾𝐵∞𝑠 + 𝐾𝐵𝑜 + 𝐾 ∑
𝐵𝑘𝑠

(𝑠 + 𝑝𝑘)

𝑛−1

𝑘=1

] (7)  

where 

𝐴∞ = {

0,                    𝑚 < 𝑛
𝐷(𝑠)

𝑠𝑄(𝑠)
|𝑠 → ∞,    𝑚 = 𝑛,     

 

𝐵∞ = {

0,                    𝑚 < 𝑛
𝑁(𝑠)

𝑠𝑄(𝑠)
|𝑠 → ∞,    𝑚 = 𝑛,

 

𝐴𝑜 =
𝐷(𝑠)

𝑄(𝑠)
|𝑠 = 0 

𝐵𝑜 =
𝐾𝑁(𝑠)

𝑄(𝑠)
|𝑠 = 0 

𝐴𝑘 =
(𝑠 + 𝑝𝑘)𝐷(𝑠)

𝑠𝑄(𝑠)
|𝑠 = −𝑝𝑘 

𝐵𝑘 =
(𝑠 + 𝑝𝑘) 𝑁(𝑠)

𝑠𝑄(𝑆)
|𝑠 = −𝑝𝑘 

Ak, being the residues at the poles of an RC DPA, will be 

positive real. Thus, 

Ak > 0. 

From eqns. (6) and (7).  

𝑌1 = (
1

2
) [

𝑠(𝐴∞ + 𝐾𝐵∞) + (𝐴𝑜 + 𝐾𝐵𝑜)

+ ∑
(𝐴𝑘 + 𝐾𝐵𝑘)𝑠

𝑠 + 𝑝𝑘

𝑛−1

𝑘=1

] (8)  

and 

𝑌2 = (
1

2
) [

𝑠(𝐴∞ − 𝐾𝐵∞) + (𝐴𝑜 − 𝐾𝐵𝑜)

+ ∑
(𝐴𝑘 − 𝐾𝐵𝑘)𝑠

𝑠 + 𝑝𝑘

𝑛−1

𝑘=1

] (9)  

For Y1 and Y2 to be RC DPAs, the residues at the poles must 

be positive real, i.e., 

𝐴𝑘 + 𝐾𝐵𝑘 ≥ 0,    𝑘 = 0, 1, 2, . . . 𝑛 − 1, ∞ (10)  

and 

𝐴𝑘 − 𝐾𝐵𝑘 ≥ 0,    𝑘 = 0, 1, 2, . . . 𝑛 − 1, ∞ (11)  

Thus, K must be chosen such that eqns. (10) and (11) satisfy 

for both Y1 and Y2 to be RC realizable, that is, 

𝐾 ≤  min [
𝐴𝑘

𝐵𝑘
− ,

𝐴𝑘

𝐵𝑘
+]  , 𝑘 = 0, 1, 2, . . . 𝑛 − 1, ∞ (12)  

where Bk
- is -Bk and Bk

+ is Bk. Note from eqn. (2) that the 

poles of T(s) are the zeros of the RC DPA (Y1 + Y2). Hence, 

the method can realize the current transfer functions with 

distinct negative real poles only.  

 

Realization of biquadratic functions 

Consider  

𝑇(𝑠) =
𝐾[𝑠2 + 𝑎1𝑠 + 𝑎𝑜]

[𝑠2 + 𝑏1𝑠 + 𝑏𝑜]
 (13)  

where as and bs are constants. Choosing as per eqn. (5), 

Q(s) = (s+α),  p1 ≤ α ≤ p2, 
we identify  
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From these relations,  

𝑌1

=  
(1 + 𝐾)

2
𝑠 +

𝑏𝑜 − 𝐾𝑎𝑜

2𝛼

+
[(𝑏1𝛼 − 𝛼2 − 𝑏𝑜) + 𝐾(𝑎1𝛼 − 𝛼2 − 𝑎𝑜)]𝑠

2𝛼(𝑠 + 𝛼)
 

(14)  

 𝑌2

=  
(1 − 𝐾)

2
𝑠 +

𝑏𝑜 + 𝐾𝑎𝑜

2𝛼

+
[(𝑏1𝛼 − 𝛼2 − 𝑏𝑜) − 𝐾(𝑎1𝛼 − 𝛼2 − 𝑎𝑜)]𝑠

2𝛼(𝑠 + 𝛼)
 

(15)  

Both Y1,2 to be RCDPAs, all the terms in Y1,2 ≥ 0. Hence  

𝐾 ≤ 1,   
𝑏1𝛼 − 𝛼2 − 𝑏𝑜

𝛼2 + 𝑎𝑜 − 𝑎1𝛼
,   

𝑏1𝛼 − 𝛼2 − 𝑏𝑜

𝑎1𝛼 − 𝛼2 − 𝑎𝑜

 
(16)  

→≤ 𝑚𝑖𝑛 {1,   
𝑏1𝛼 − 𝛼2 − 𝑏𝑜

𝛼2 + 𝑎𝑜 − 𝑎1𝛼
} . (17)  

Since, there are several possible locations of two zeros, to 

demonstrate the method, we take the case of an APF for 

which a1 = -b1, ao = bo. Then eqns. (14) and (15)     become, 

respectively, 

 𝑌1

=  
(1 + 𝐾)

2
𝑠 +

(1 + 𝐾)𝑏𝑜

2𝛼

+
[(𝑏1𝛼 − 𝛼2 − 𝑏𝑜) − 𝐾(𝛼2 + 𝑏𝑜 + 𝑏1𝛼)]𝑠

2𝛼(𝑠 + 𝛼)
 

(18)  
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 𝑌2

=
(1 − 𝐾)

2
𝑠 +

(1 − 𝐾)𝑏𝑜

2𝛼

+
[(𝑏1𝛼 − 𝛼2 − 𝑏𝑜) + 𝐾(𝑏1𝛼 + 𝛼2 + 𝑏𝑜)]𝑠

2𝛼(𝑠 + 𝛼)
 

(19)  

Example 1  
 

Realize the APF 

𝑇(𝑠) = 𝐾
(𝑠 − 1) (𝑠 − 3)

(𝑠 + 1) (𝑠 + 3)
 (20)  

Let α = 2. Then from eqn. (16), we get 

𝐾 ≤ (
1

15
, 1) 

Choosing K = 1/15, we get from eqns. (18) and (19),   

 𝑌1 =
8

15
 𝑠 +

4

5
 

and  

𝑌2 =
7

15
 𝑠 +

3.5

5
+

0.5𝑠

𝑠 + 2
. 

Although the method yields a realization that uses only one 

active device, and all the capacitors grounded, no matching 

of the componenets; it requires too many components.  

 

Realiation of bilinear functions 

Let the function be expressed as 

𝑇(𝑠) = 𝐾
(𝑠 − 𝑧)

(𝑠 + 𝑝)
. (21)  

Choosing Q(s) = 1 (there is only one pole on the negative 

real axis, we don’t need Q(s) at all),  we 

 

 
Fig. 3 Realization of T(s) given by eqn. (20) 

 
Fig. 4 Realization of function given in (20). 

 

(𝑌1 − 𝑌2) = 𝐾(𝑠 − 𝑧),    and     (𝑌1 + 𝑌2)
= (𝑠 + 𝑝). 

(22)  

Solving we get 

𝑌1 =
1

2
[(1 + 𝐾)𝑠 + (𝑝 − 𝐾𝑧)],       (23)  

  𝑌2 =
1

2
[(1 − 𝐾)𝑠 + (𝑝 + 𝐾𝑧)]. (24)  

In general, 2C and 2R elements will be required. The 

number can be reduced by choosing suitable value for K.  

Case 1: z > p  

Obviously, for Y1,2 to be RCDPAs, K ≤ 1. Chooswing  

K = 1 (this redeuces 1C in Y2). Equation (23)-(24) give 

𝑌1 = 𝑠 +
𝑝 − 𝑧

2
,      𝑌2 =

𝑝 + 𝑧

2
. (25)  

Case 2: z < p  

Obviously, for Y1,2 to be RCDPAs, K ≤ p/z. Choosing 

K = p/z (this redeuces 1R in Y1), (23)-(24) give.  

 𝑌1 =
1

2
(1 +

𝑝

𝑧
) 𝑠,      𝑌2 =

1

2
(1 −

𝑝

𝑧
) 𝑠 + 𝑝. (26)  

Case 3: z = p 

Equation (25) or (26) give 

𝑌1 = 𝑠,      𝑌2 = 𝑝. 
It is interesting to note that, in this case, we require only 1C 

and 1R. The complete realization of T(s) of eqn. (21) for this 

case is shown in Fig. 4.  

 

B. ZY method 

Equation (2) can be expressed as  

 
Fig. 5 Admissible pole-zero patterns 

 

𝐾
𝑁(𝑠)

𝐷(𝑠)
=

1 − 𝑍1𝑌2

1 + 𝑍1𝑌2

. (27)  

Solving, we get  

𝑍1𝑌2 =
𝐷(s) − 𝐾𝑁(𝑠)

𝐷(s) + 𝐾𝑁(𝑠)
. (28)  

If poles and zeros of 𝑍1𝑌2follows any of the patterns shown 

in Fig. 5, 𝑍1 and 𝑍2 can be identified as RC DPIs. 

 

Example 3 

 

Consider the transfer function given by eqn. (20).  

In this case,  

𝑍1𝑌2 =
(1 − 𝐾)𝑠2 + 4𝑠(1 + 𝐾) + 3(1 − 𝐾)

(1 + 𝐾)𝑠2 + 4𝑠(1 − 𝐾) + 3(1 + 𝐾)
 (29)  

 

To fit into any one pole-zero pattern of Fig. 5, both the 

zeros and poles must be negative real. This requires 
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𝐾 {

≤ 1
16(1 + 𝐾)2 ≥ 12(1 − 𝐾)2

16(1 − 𝐾)2 ≥ 12(1 + 𝐾)2
 

(30)  

 

(1)  

These relations require (considering the positive value) 

−
1 − 𝑎

1 + 𝑎
≤ 𝐾 ≤

1 − 𝑎

1 + 𝑎
= 0.0718. 

(31)  

where a = 
√3

2
. 

Choosing  

𝐾 = 0.0718, 
we get from (28) 

𝑍1𝑌2 ==
{𝑠 + 1.73}2

{(𝑠 + 0.78) + (𝑠 + 3.84)}
. (32)  

Thus, the poles and zeros satisfy the pattern (d) in Fig. 5. 

Identifying  

𝑍1 =
𝑠 + 1.73

𝑠 + 0.78
 and 𝑌2 =

𝑠 + 1.73

𝑠 + 3.84
. 

The dcomplete realization of trtanfer function is shown in 

Fig. 6. Minimum 6 elements (2C, 4R)  are required. 

 

Synthesis of bilinear functions 

 
Fig. 6 . Realization of transfer function given by  

eqn. (12). 

 

Let the function be expressed as 

𝑇(𝑠) = 𝐾
(𝑠 − 𝑧)

(𝑠 + 𝑝)
. (33)  

From eqn. (28) 

𝑍1𝑌2 =
(𝑠 + 𝑝) − 𝐾(𝑠 − 𝑧)

(𝑠 + 𝑝) + 𝐾(𝑠 − 𝑧)
 (34)  

=
(1 − 𝐾)𝑠 + (𝑝 + 𝐾𝑧)

(1 + 𝐾)𝑠 + (𝑝 − 𝐾𝑧)
. (35)  

For pole and zero to be negativfe real,  

𝐾 ≤ {
1
𝑝

𝑧
. 

Case 1: z < p 

In this case, choose  K = 1. Then 

𝑍1 =
(𝑝 + 𝑧)

2𝑠 + (𝑝 − 𝑧)
,   𝑌2 = 1. (36)  

Case 2: z > p 

In this case, choose  K = p/z. Then 

𝑍1 =
(𝑧 − 𝑝)𝑠 + 2𝑝

(𝑧 + 𝑝)𝑠
,   𝑌2 = 1. (37)  

Case 1: z = p 

In this case, choose  K = 1. Then 

𝑍1 =
𝑝

𝑠
,   𝑌2 = 1. (38)  

Complete realization of transfer function is the same as 

given in Fig. 4. Thus, the APF requires (i) only one active 

device, (ii) 1C and 1R, (iii) both R and C are grounded, (iv) 

gain constant K = 1, (v) no matchg of compoenets, by both 

the methods. Therefore, this realization is the best amonst 

all those reported in the past, except that given by Jitedra 

Mohan. 

 

III. CONCLUSION 

The circuit configuration suggested by Jitendra Mohan has 

been exploited to realize a wider range of functions. Two 

synthesis methods are given. Both yield the same relaizaiton 

for the first order APF. This filter is novel in the sense that 

it uses only one active device  and minimum number of 

passive elements (1C and 1R) and both are grounded. No 

matching of components is required. Moreover, the gain 

constant is also 1. To the best of author’s knowledge, this 

was not reported earlier except the one by Jitendra Mohan 

which has been systematicfally derived in this paper.  
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