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I. INTRODUCTION 
Several all-pass filters have been proposed in the past [1]-

[37]. Like many other all-pass filters, in [23], the 

configuration shown in Fig. 1 was chosen as a priory, and the 

values of the various passive elements are chosen to yield all-

pass filters.  

 A systematic synthesis procedure [24] was given for the 

same configuration to realize a wider class of voltage transfer 

functions. The terminal characteristic of the OTRA is given 

as: 

 
Fig. 1. Configuration used in [23]. 
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For ideal operation, the trans-resistance gain approaches 

infinity, forcing the input currents to be equal. Thus, the 

OTRA can be used in a feedback configuration in a way 

similar to the op-amp. 

 In [23], the authors used the inverting and non-inverting 

all-pass filters to realize a quadrature oscillator shown in Fig. 

2. We have simulated their designed circuit and obtained the 

results as shown in Fig. 3. The circuit has several 

disadvantages, as discussed below.  

Analysis of the circuit leads to the following loop gain: 
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Here, 𝜏1 = 𝑅1𝐶1, 𝜏2 = 𝑅2𝐶2 
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Therefore, 
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Thus, 
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1

𝜏1𝜏2
=𝑤𝑜

= 1 0 (5) 

According to Barkhausen Criteria for sinusoidal oscillators: 

𝐴 ≅
1

𝛽|𝑤=𝑤𝑜

≅ 1 0 (6) 
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Fig. 2. Quadrature oscillator proposed in [22]. 

 

 
(a) 

 
(b)  

Fig. 3. Output waveforms of the oscillator with buffers 

and A equal to (a) 6 and (b) 1.29. 

 

The authors of [23] have chosen A = 6, a much higher 

value than given by (6). This results in distortion, as shown 

in Fig. 3(a).  

 The unity-gain voltage amplifiers used as buffers have to 

be realized with a device compatible with the high-frequency 

range of OTRA. Since a conventional amplifier circuit using 

OTRA has finite input impedance, it cannot be used as a 

buffer.  

 Their designed circuit is shown in Fig. 2, the amplitudes 

of the two outputs 𝑉𝑜1and 𝑉𝑜2 should be equal, but they are 

observed unequal, as shown in Fig. 8 [23]. Such unequal 

amplitude quadrature oscillators will have very limited 

practical utility.  
In this short paper, we propose a better design of the 

quadrature oscillator, which has a less complex circuit and 

shows improved results. 

II. BETTER DESIGN OF QUADRATURE 

OSCILLATURE 

The better-designed circuit is shown in Fig. 4(a). Note 

that we have done away with the buffers. The values of the 

resistances are chosen much higher to avoid loading. 

III. SIMULATION RESULTS 

The oscillator is designed for 𝑓𝑜 = 159 kHz. The 

simulation was carried on ORCAD PSPICE. The OTRA has 

been realized using two current feedback amplifiers (AD844) 

[38], and the unity gain voltage amplifiers are realized 

similar to the gain stage (A-network). The circuit exhibits 

highly distorted waveforms, as shown in Fig. 3(a). 
 

(a) 

 
(b) 

Fig. 4 (a) Quadrature sinusoidal oscillator circuit without 

buffers (b) Waveforms 

 

However, sinusoidal outputs obtained by adjusting  

𝑅3 = 4.65 kΩ (corresponding to gain 𝐴 = 1.29), are of equal 

amplitudes and 90o out of phase but with 𝑓𝑜 = 125 kHz as 
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shown in Fig. 3(b).  

We have simulated the same oscillator circuit without 

buffers. Choosing 𝑅3 (13.61 kΩ) and 𝑅4 (40 kΩ) of high 

values to reduce the loading effect. The waveforms 𝑉𝑜1 and 

𝑉𝑜2observed are almost sinusoidal and of equal amplitudes, 

as shown in Fig. 4(b).  The simulated 𝑓𝑜 = 152 kHz is in 

close agreement with the designed value of 159 kHz. 

Moreover, the circuit uses only 3 OTRAs and no buffers. 

 

IV. CONCLUSION 

A better design of quadrature oscillators using OTRAs is 

suggested. This has reduced the circuit complexity and 

improved performance. The simulated results are in close 

agreement with the theoretical ones.  
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