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Abstract: A simplified method for determining settling 

time of electrical system is presented. Unlike in the method 

presented by Yildiz, we have not involved the clumsy 

matrix relations to obtain the CE. 
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I. INTRODUCTION 

The time-constants (TCs) are important parameters in 
evaluating transient response and determining the duration 

of the transient-state. They are obtained from the 

eigenvalues or poles of the transfer function (TF) of the 

circuits. They are particularly useful in the design of 

feedback systems in which relative stability, dynamics and 

other response characteristics are important functions [1]-

[6].  

 In general, TCs of a circuit are obtained from the state 

space formulation in the form of differential equations [7]-

[10], but it has some restrictions in obtaining these 

equations. TCs can also be computed from nodal and mesh 
methods in which the system equations are algebraic in 

nature and are easily obtained. These methods provide a 

systematic framework in terms of algebraic equations. The 

TCs are related to the eigenvalues in time-domain and the 

poles of TFs in s-domain. Alternative method used to 

determine the TCs is based on obtaining the poles of TFs of 

the circuit.  

 Cochran and Grabel [11] calculated TCs associated 

with each reactive element under different combinations of 

shorting and opening of other reactive elements. A method 

for determination of TFs of RC circuits using a 

combination of the TCs and low frequency TFs under 
different combinations of shorting and opening of the 

capacitors is developed in [12]. The TF of a first-order 

system is determined using the extra element theorem 

Middlebrook [13].  

 

The approach was generalized to N extra elements by 

Middlebrook, Vorperian and Lindal [14]. Haley [15] 

introduced a modification-decomposition (MD) method to 

compute poles and zeros of TF. A method for determining 

poles and zeroes of TFs of linear active circuit is described 

by Haley and Hurst [16]. Hauksdottir and Hjaltadottir [17] 
gave closed-form expressions, for real and/or complex 

eigenvalues of TFs responses. Hagiwara [18] used the 

eigenvalue approach to calculate the zeros of the system. In 

Hajimiri [19], the TFs of circuits are expressed in terms of 

time and TCs calculated under different combinations of 

shorted and opened inductors and capacitors. 

 A systematic and generalized method to compute the 

TCs of linear circuits from nodal and mesh analysis was 
given by Yildiz [20]. In [21][22], nodal and mesh analysis 

methods with virtual sources for some special cases in 

circuit analysis are used. However, it is shown in [23][24], 

that these virtual sources are not necessary at all.  

 Students and teachers are very much familiar to solve 

the electrical circuits by loop and node methods of analysis. 

However, it is not commonly known that the TCs of the 

system can be determined from the determinant A of the 

circuit [20].  

 

II. METHODS OF ANALYSIS 

A. Method of Loop Analysis 

In an N-loop circuit, loop equations can be expressed as 

where  

ᵶ𝑖𝑖 = self impedance of loop 𝑖  
ᵶ𝑖𝑗 = mutual loop impedance betweeen the   

loops 𝑖 and 𝑗 
𝐼𝑖 = Loop current in loop 𝑖 

𝑉𝑖 = Sum of all the Loop voltages (dependent   
and independent) in loop 𝑖. 

If there are dependent current sources, they all should be 

converted into dependent voltage sources before writing 

(1). All these dependent sources should be expressed in 

terms of the loop currents. Now separating the right-hand 

side into dependent and independent sources as follows. 

 

 

 

[

ᵶ11 ᵶ12 ⋯ ᵶ1𝑁

ᵶ21
⋮

ᵶ22 ⋯
⋮

ᵶ2𝑁
⋮

ᵶ𝑁1 ᵶ𝑁2 ⋯ ᵶ𝑁𝑁

] [

𝐼1
𝐼2
⋮

𝐼𝑁

] = [

𝑉1

𝑉2
⋮

𝑉𝑁

] (1)  
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[

𝑉1

𝑉2
⋮

𝑉𝑁

] = [

𝐸1

𝐸2

⋮
𝐸𝑁

] + [

𝑧11 𝑧12 ⋯ 𝑧1𝑁

𝑧21 𝑧22 ⋯ 𝑧2𝑁

⋮
𝑧𝑁1

⋮
𝑧𝑁2

 ⋯
⋮
𝑧𝑁𝑁

] [

𝐼1
𝐼2
⋮
𝐼𝑁

] (2)  

Now (1) can be expressed as  

𝐴(𝑠) [

𝐼1
𝐼2
⋮
𝐼𝑁

] = [

𝐸1

𝐸2

⋮
𝐸𝑁

] (3)  

where 

𝐴(𝑠) = [

𝑍11 𝑍12 ⋯ 𝑍1𝑁

𝑍21 𝑍22 ⋯ 𝑍2𝑁

⋮
𝑍𝑁1

⋮
𝑍𝑁2

 ⋯
⋮
𝑍𝑁𝑁

] = ∆𝑛 (4)  

and Zij = ᵶ𝑖𝑗-zij. 

Equation (3) can be solved for various loop currents. This 

is illustrated with Example 1.  

Example 1: Consider the circuit shown in Figure 1(a) 

where loop currents are marked. Find Io.  

 The equivalent circuit after removing the coupling is 

shown in Fig. 1(b). Note that there are two dependent 

voltage sources. The loop equations can be written as  

[
 
 
 
 𝑅1 +

1

𝑠𝐶
−𝑅1 −

1

𝑠𝐶
−𝑅1 𝑅1 + 𝑅2 + 𝑠𝐿1 −𝑠𝐿1

−
1

𝑠𝐶
−𝑠𝐿1 𝑠𝐿1 + 𝑠𝐿2 +

1

𝑠𝐶]
 
 
 
 

[
 
 
 
 
 
𝐼1

𝐼2

𝐼3]
 
 
 
 
 

                   

= [
𝐸1

𝐸2 − 𝑠𝑀𝐼3
−𝑠𝑀𝐼2 + 2𝑠𝑀𝐼3

] = [
𝐸1

𝐸2

0

] + [
0 0 0
0 0 −𝑠𝑀
0 −𝑠𝑀 2𝑠𝑀

] [
𝐼1
𝐼2
𝐼3

] 

→ 𝐴(𝑠) [
𝐼1
𝐼2
𝐼3

] = [
𝐸1

𝐸2

0

] (5)  

where 

A(s) 

= 

[
 
 
 
 𝑅1 +

1

𝑠𝐶
−𝑅1 −

1

𝑠𝐶
−𝑅1 𝑅1 + 𝑅2 + 𝑠𝐿1 −𝑠𝐿1 + 𝑠𝑀

−
1

𝑠𝐶
−𝑠𝐿1 + 𝑠𝑀 𝑠𝐿1 + 𝑠𝐿2 +

1

𝑠𝐶
− 2𝑠𝑀]

 
 
 
 

 
(6)  

Substituting the values of components in (5),  

 

 
(a) 

 
(b) 

Figure 1. (a) Circuit for Example 1, R1 = 4 Ω, R2 = 5 Ω, 

L1 = 1 H, L2 = 2 H, M = 0.5 H, C = 0.1 F, e1 = 5 sin 𝝎t, e2 

= 0 V, (b) Equivalent circuit 

[
 
 
 
 
 4 +

10

𝑠
−4 −

10

𝑠

−4 9 + 𝑠 −
1

2
𝑠

−
10

𝑠
−

1

2
𝑠 2𝑠 +

10

𝑠 ]
 
 
 
 
 

[
𝐼1
𝐼2
𝐼3

] = [
𝐸1(𝑠)

0
0

] (7)  

where 𝐸1(𝑠) is the Laplace transform of 5 sin 𝜔t 

𝐼𝑜 = 𝐼3 =
[
 
 
 4 +

10
𝑠 −4

5𝜔
𝑠2 + 𝜔2

−4 9 + 𝑠 0

−
10
𝑠 −

1
2 𝑠 0 ]

 
 
 

 

[
 
 
 
 4 +

10
𝑠 −4 −

10
𝑠

−4 9 + 𝑠 −
1
2 𝑠

−
10
𝑠 −

1
2 𝑠 2𝑠 +

10
𝑠 ]

 
 
 
 

.  

 =
(

5𝜔
𝑠2 + 𝜔2)

(4𝑠2 + 20𝑠 + 180)
2𝑠

(14𝑠3 + 115𝑠2 + 360𝑠 + 400)
2𝑠

 (8)  

Note that the denominator does not depend on any of the 

voltage sources present in the circuit. Now let us take the 
determination of TF H(s) of the system. In such a case there 

will be one input source and one output response. Without 

any loss of generality, let us assume that the single input 

source (E1) belongs exclusively to loop 1, and the response 

current Io is the current of N-th loop. Then 

𝐼𝑜 = 𝐼𝑁 =

[

𝑧11 𝑧12 ⋯ 𝐸1(𝑠)
𝑧21

⋮
𝑧22 ⋯

⋮
0

𝑧𝑁1 𝑧𝑁2 ⋯ 0

]

𝐴(𝑠)
 

𝐼𝑜
𝐸1

= 𝐻(𝑠) =

[
𝑍21⋯ 𝑍2,𝑁−1

⋮
𝑍𝑁1

⋯
⋮
𝑍𝑁,𝑁−1

]

𝐴(𝑠)
=

∆𝑛−1

∆𝑛

. 
(9)  

𝑍𝑖𝑗(s) can be expressed in general terms 

𝑍𝑖𝑗 = (𝑅𝑖𝑗 + 𝑠𝐿𝑖𝑗 +
1

𝑠𝐶𝑖𝑗

). (10)  

Therefore, each term in ∆𝑛 will be product of such N terms. 

Hence  

∆𝑛=
𝑁(𝑠)

𝐷(𝑠)
=

∑𝑎𝑘𝑠𝑘

𝑚𝑠𝑙
 (11)  
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where k and l are positive integers and 𝑎𝑘 and m are 

positive numbers. Similar expression will be for ∆𝑛−1. 
The location of the poles of H(s) decides the Ts, i.e., the 

roots of N(s) = ∑𝑎𝑘𝑠𝑘 = 0 (called the characteristic 

equation (CE) of the system).  
 

Example 2: Consider again Example 1 and find the settling 

time (Ts) of the system.  

Taking the value of L1 = 4 H as given in [1], we do not get 

the same CE as given in therein However, if we take L1 = 1 

H, we get the same CE as shown below.  

Here,  

∆3=
𝑁𝐴

𝐷𝐴

=
(14𝑠3 + 115𝑠2 + 360𝑠 + 400)

2𝑠
  (12)  

CE is 

14𝑠3 + 115𝑠2 + 360𝑠 + 400 = 0, (13)  

roots of which are  
-2.85 ± j1.8, -2.5 (14)  

TCs are  

𝜏1,2 = |
1

−2.85
| =  0.35 s,   𝜏3 = |

1

−2.5
| = 0.4  s 

Ts = 5𝜏max = 5 × 0.4 = 2 s. 
 

B. Method of Node analysis 

Similar to the method of loop analysis, one can develop the 

same for the node analysis. This is demonstrated with an 

example.  

Example 3: Consider the circuit shown in Figure 2 with all 

the nodes identified.  

Assuming ideal Op Amp, i.e.,  

𝐼𝑝 = 𝐼𝑛 = 0,𝑉2 − 𝑉3 = 0, (15)  

 

node equations can be written as  

⌈
𝐺1 + 𝐺2 + 𝑠𝐶2 −𝐺2 0

−𝐺2 𝐺2 + 𝑠𝐶1 0
0 0 𝐺3 + 𝐺4

⌉ [
𝑉1

𝑉2

𝑉3

] 

= [
𝑉𝑖𝐺1 + 𝑉4𝑠𝐶2

0
𝑉4𝐺3

] (16)  

Using the constrained relation of (15), we can modify (16) 

as  

[

𝐺1 + 𝐺2 + 𝑠𝐶2 −𝐺2

−𝐺2 𝐺2 + 𝑠𝐶1

   0           0
   0             0

      0                   0
      0                     1

𝐺3 + 𝐺4    0
−1     0

] [

𝑉1

𝑉2

𝑉3

𝑉4

] 

= [

𝑉𝑖𝐺1 + 𝑉4𝑠𝐶2

0
𝑉4𝐺3

0

] 

= [

𝑉𝑖𝐺1

0
0
0

] + [

0 0
0 0

0 𝑠𝐶2

0  0
0 0
0 0

0   𝐺3

0   0

] [

𝑉1

𝑉2

𝑉3

𝑉4

] 

→ [

2 + 2𝑠 −1
−1 1 + 2𝑠

   0    𝑉𝑖

  0    0
0         0
0          1

2 0
 −1    0

] [

𝑉1

𝑉2

𝑉3

𝑉4

] 

= [

𝑉𝑖𝐺1

0
0
0

] (17)  

Since there are no inductors, we have  

𝑌𝑖𝑗 = (𝐺𝑖𝑗 + 𝑠𝐶𝑖𝑗). 

All the determinants will, therefore, have no denominator 

(i.e., denominator = 1).  

Substituting the values,  

[

2 + 2𝑠 −1
−1 1 + 2𝑠

   0    −2𝑠
   0        0

0         0
0          1

 2   −1
 −1      0

] [

𝑉1

𝑉2

𝑉3

𝑉4

] 

= [

𝑉𝑖(𝑠)
0
0
0

] (18)  

Using Cramer’s rule,  

 
Figure 2 Circuit for example 3,  

R1 = R2 = R3 = R4 = 1 Ω, C1 = C2 = 2 F. 

 

 

𝑉4 =

|

2 + 2𝑠 −1
−1 1 + 2𝑠

   0    𝑉𝑖(𝑠)
  0    0

0         0
0          1

2 0
 −1    0

|

[

2 + 2𝑠 −1
−1 1 + 2𝑠

   0    −2𝑠
   0        0

0         0
0          1

 2   −1
 −1      0

]

 (19)  

𝑉4

𝑉𝑖

= 𝐻(𝑠) =

|
−1 1 + 2𝑠 0
0 0 2
0 1 −1

|

[

2 + 2𝑠 −1
−1 1 + 2𝑠

   0    −2𝑠
   0        0

0         0
0          1

 2   −1
 −1      0

]

         

 =
2

4𝑠2 + 2𝑠 + 1
 (20)  

CE is 

4𝑠2 + 2𝑠 + 1 = 0, (21)  

roots of which are  

-0.25 ± j0.433. (22)  

TCs are  

𝜏1,2 = |
1

−0.25
| = 4 s. (23)  

Ts = 5𝜏max = 20 s. (24)  

 

Example 4: Determine the Ts for the circuit shown in Fig. 

3. 
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Applying KCL, we get 

[

𝐺2 + 𝑠𝐶2 −𝑠𝐶2 −𝐺2

−𝑠𝐶2 𝑠(𝐶1 + 𝐶2) + 𝐺3 0
−𝐺2 0 𝐺1 + 𝐺2 + 𝑠𝐶3

] [
𝑉𝑜
𝑉2

𝑉3

] 

= [
0

𝑠𝐶1𝑉𝑖(𝑠)
𝐺1𝑉𝑖(𝑠)

] (25)  

where Gi = 1/Ri. 

Then  

𝐻(𝑠) =

|
0 −𝑠𝐶2 −𝐺2

𝑠𝐶1 𝑠(𝐶1 + 𝐶2) + 𝐺3 0
𝐺1 0 𝐺1 + 𝐺2 + 𝑠𝐶3

|

|
𝐺2 + 𝑠𝐶2 −𝑠𝐶2 −𝐺2

−𝑠𝐶2 𝑠(𝐶1 + 𝐶2) + 𝐺3 0
−𝐺2 0 𝐺1 + 𝐺2 + 𝑠𝐶3

|

 

 

 
Figure 3. Circuit for Example 4. 

 

 

= 
𝑠3 +

𝐺1 + 𝐺2

𝐶3
𝑠2 +

(𝐶1 + 𝐶2)𝐺1𝐺2

𝐶1𝐶2𝐶3
𝑠 +

𝐺1𝐺2𝐺3

𝐶1𝐶2𝐶3

𝑠3 + {

(𝐶1 + 𝐶2)𝐺2

𝐶1𝐶2
+

𝐺1 + 𝐺2

𝐶3
+

𝐺3

𝐶1

}𝑠2 + {

(𝐶1 + 𝐶2)𝐺1𝐺2

𝐶1𝐶2𝐶3
+

(𝐺1 + 𝐺2)𝐺3

𝐶1𝐶3
+

𝐺2𝐺3

𝐶1𝐶2

}𝑠 +
𝐺1𝐺2𝐺3

𝐶1𝐶2𝐶3

 

 

(26) 

Let us assume 
𝐶1 + 𝐶2

𝐶3

=
𝐺3

𝐺1 + 𝐺2

. (27)  

Under this condition, (28) reduces to 

𝐻(𝑠)

=
(𝑠 +

𝐺1 + 𝐺2

𝐶3
  ) [𝑠2 +

𝐺1𝐺2𝐺3

(𝐺1 + 𝐺2)𝐶1𝐶2
]

(𝑠 +
𝐺1 + 𝐺2

𝐶3
 ) [𝑠2 + {

(𝐶1 + 𝐶2)𝐺2

𝐶1𝐶2
+

𝐺3

𝐶1
} 𝑠 +

𝐺1𝐺2𝐺3

(𝐺1 + 𝐺2)𝐶1𝐶2
]
  

(28)  

Let 

𝑅1 = 𝑅2 = 2𝑅3 = 1;  𝐶1 = 𝐶2 =
1

2
𝐶3 = 1. (29)  

These values satisfy the condition of (27). Sub-stituting the 

values in (28), we get 

𝐻(𝑠) =  
(𝑠 + 1)[𝑠2 + 1]

(𝑠 + 1)[𝑠2 + 4𝑠 + 1]
. (30)  

CE is  

( 𝑠 + 1)[𝑠2 + 4𝑠 + 1] = 0. 
The roots are  

s1,2,3= -0.27, -1, -3.73. 

Therefore  

𝜏𝑚𝑎𝑥 = |
1

−0.27
| =  3.704 s (31)  

 

C. Cancellation of Pole and Zero 

There are two possibilities: (i) Pole and zero of H(s) may 

not cancel as in Examples 1 and 2, and (ii) there may be 
cancellation of only one real pole and real zero under some 

specific condition as in Example 4. Under this condition, 

one has to know which pole has cancelled with 

corresponding zero. This will require the knowledge of the 

numerator of H(s). However, it can be overcome as 

follows. Let this pole be 𝑠𝑘 = −𝜎𝑘 , k increases from right 

to left starting from s = 0. There are two possible cases: (a) 

𝑠𝑘 is not the first pole, (k ≠ 1), (b) 𝑠𝑘 is the first pole 

(k = 1). In case (a), corresponding TC will be less than the 

largest value. Hence this will not decide the Ts and, 
therefore, can be ignored. In case (b), the TC will be the 

largest, and will fix up Ts = 5(1/𝜎1). In practice, the 

condition of pole-zero cancellation may not be satisfied 

exactly, and, therefore, we may assume that there is no pole 

zero cancellation. Now Ts will be greater than that ignoring 

𝜎1 because of cancellation. However, one is assured that 

this will result into a longer Ts, but safer.  

 

III. CONCLUSION 

A simplified method for determining Ts is presented. 
Though we have restricted to the electrical system, it can be 

applied to any one which has a system equation similar as 

(3). Unlike in [1], we have not involved the matrix relations 

to obtain the CE.  

 

REFRENCES 
[1] Z. Shu and C. D. Johnson, Generalization of a frequency domain 

stability criterion for proper linear time-varying systems based on 

eigenvalue and coeigenvalue concepts. Proceedings of the 

IEEEexplorer, (1988). 

[2] S. Paul and K. Huper, An analog circuit for eigenvalue 

calculation and rank filtering. IEEE Trans. on Circuits and Syst. I: 

Fundamental Theory and Applications, 41(11)(1994) 736-740. 

[3] J. L. Lee and S. I. Liu, Integrator and differentiator with time 

constant multiplication using current feedback amplifier. 

Electronics Letters, 37(6) (2001) 331-333. 

[4] A. M. Sodagar, Fully-integrated implementa-tion of large time 

constant Gm-C integrators. Electronics Letters, 43(1) (2007) 23-

24. 

[5] E. Lindberg, K. Murali, A. Tamasevicius and L. V. Wangenheim, 

An eigenvalue study of a double integrator oscillator. Proc. IEEE, 

978-1-4244-3896-9/09/$25.00 ©2009, 217-220.  

[6] S. Gao, M. Zhihong and Y. Xinghuo, Feedback control of T-S 

fuzzy systems based on LTV system theory. Int. J. Electrical 

Engineering Education, 46(1) (2009) 47-58. 

[7] R. E. Thomas, A. J. Rosa, The analysis and design of linear 

circuits. John Wiley & Sons, 5th Ed., (2006).  

[8] J. W. Nilsson and S. A. Riedel, Electric circuits, Prentice Hall, 

6th Ed., (2000). 

[9] J. Vlach and K. Singhal, Computer methods for circuit analysis 

and design. Van Nostrand Reinhold Com., (1983). 

[10] A. B. Yildiz, Electric Circuits, Theory and Outline Problems, Part 

II, Kocaeli University Press, (2006). 

[11] B. L. Cochran and A. Grabel, A method for the determination of 

the TF of electronic circuits. IEEE Trans. Circuit Theory, CT-

20(1) (1973). 

[12] A. M. Davis and E. A. Moustakas, Analyze of active RC 

networks by decomposition. IEEE Trans. Circuits Syst., CAS-

27(5) (1980). 

[13] R. D. Middlebrook, Null double injection and the extra element 

theorem. IEEE Trans. Education, 32(3) (1989).  

[14] R. D. Middlebrook, V. J. Vorperian, The N extra element 

theorem. IEEE Trans. Circuits Syst. I, (9) (1998). 

[15] S. B. Haley., The generalized eigenproblem: pole-zero 

computation. Proceedings of the IEEE.  

https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Gao%2C+Shiyu
https://journals.sagepub.com/doi/abs/10.7227/IJEEE.46.1.4?journalCode=ijea
https://journals.sagepub.com/doi/abs/10.7227/IJEEE.46.1.4?journalCode=ijea


T. S. Rathore & J. L. Rathore / IJECE, 8(7), 14-18, 2021 

 

18 

[16] B. Haley and P. J. Hurst, Pole and Zero estimation in linear 

circuits. IEEE Trans. Circuits and Systems, 36(6) (1989). 

[17] A. S. Hauksdottir, H. Hjaltadottir, Closed-form expressions of 

transfer functions responses. Proceedings of the IEEE, (2003). 

[18] T. Hagiwara, Eigenvalue approach to the calculation of the zeros 

of a scalar system. Electronics Letters, 28(23) (1992). 

[19] Hajimiri, A., Generalized time- and transfer-constant circuit 

analysis. IEEE Trans. on Circuits and Systems I, 57(6) (2010) 

1105-1121. 

[20] Ali Bekir Yildiz, Generalized method based on nodal and mesh 

analysis for computation of time constants of linear circuits, 

Computer Modelling in Engineering and Sciences, 75(1) (2011) 

33-42.  

[21] G. E. Chatzarakis, M. D. Tortoreli and A. D. Tziolas, 

Fundamental loop-current method using virtual voltage sources 

technique for special cases. Int. J. of Electrical Engineering 

Education, 40(3) (2003) 188-207. 

[22] G. E. Chatzarakis and M. D. Tortoreli, Node-voltage method 

using ‘virtual current sources’ technique for special cases, Int. J. 

of Electrical Engineering Education, 41(3) (2004)  

[23] T. S. Rathore, Easier node analysis of circuits with non-

converting voltage sources, under review, unpublished, (2021).  

[24] T. S. Rathore, Loop analysis of circuits with non-convertible 

current sources, IETE J Education, (2021). 

 


