
SSRG International Journal of Electronics and Communication Engineering Volume 9 Issue 5, 1-7, May 2022

ISSN: 2348 – 8549 / https://doi.org/10.14445/23488549/IJECE-V9I5P101 ©2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Comparison of Nano Q Plus Operating System with

other Operating Systems in Wireless Sensor

Networks

Rajshree
1
, Abhiruchi Passi

2

1,2
Department- FET, Manav Rachna International Institute of Research and Studies, India

Received: 03 March 2022 Revised: 25 April 2022 Accepted: 06 May 2022 Published: 29 May 2022

Abstract - Wireless sensor network epitomizes a new generation of real-time embedded systems with considerably different

communication constraints from the traditional network system. Basically, the wireless sensor network comprises

computing, communication, and sensing elements, allowing the administrator to sense an object in the events in a specified

environment. In wireless sensor networks, sensor nodes are specially constructed to collect and deliver information from

the base station to the receiver. These sensor nodes are hardware devices with small embedded systems to communicate

wirelessly amongst the networks. To keep up with the specific application for which the WSN is designed, the hardware

components should be assembled to make the WSN work effectively and correctly without any hardware constraints. Each

node needs an operating system to fill the gap between hardware and the corresponding applications. In this paper, we

establish the Nano Q plus operating system and represent its performance using various parameters such as energy

consumption, routing formation, latency, and propagation delay and compare these performance parameters with other

operating systems like Tiny OS MANTIS, etc. on behalf of other operating systems, the Nano Q plus operating system is

very easy to manage by the application programmer, can build a large-scale sensor, is flexible, lightweight, dynamic, and

has a low power sensor network operating system.

Keywords - Wireless Sensor Network (WSN), Operating systems, Nano Q plus operating system, The performance of

operating systems, Comparison.

1. Introduction
 Wireless sensor networks recently attained a

technology that enables it to develop a low-cost sensor

network for various applications such as tracking

endangered species across significant remote habitats,

tagging small animals, health, home, robots, etc., [5].

ETRI, Korea's largest government-funded research

facility in information technology and communications,

has developed Nano Q plus operating system, which has

a tiny embedded operating system and reconfigurable

and scalable properties to fulfill the need for sensor

networking application programmers in wireless sensor

networks. On behalf of other operating systems, the Nano

Q plus operating system is very easy to manage by the

application programmer, can build a large-scale sensor, is

flexible, lightweight, and dynamic, and has a low-power

sensor network operating system [6].

In this paper, we establish the Nano Q plus operating

system and represent its performance in various parameters

such as energy consumption, routing formation, latency,

and propagation delay. We compare these performances

and features with other operating systems like Tiny OS

MANTIS.

2. Key Elements
 There are some vital elements for designing the Nano

Q plus operating systems.

Operating system: Compared to available operating

systems, the wireless sensor network's operating system

should be less complex. Sensor networking application

programmers should be concerned about application logic

rather than low-level hardware issues such as networking,

scheduling, and preempting. Many operating systems have

been developed for WSN, like Tiny OS, MANTIS, and

Nano Q plus [1-4].

2.1. Performance

 Performance is the primary concern for WSN to

achieve regard in many applications. The performance of

WSN may be affected by the hardware constraints like

battery power, small memory, and communication between

the networks. The AA battery used in WSN must be

operated for up to a few months for efficient power

management. Transferring data between the networks must

be done as fast as possible. Furthermore, the size of the

program image should be small, i.e., less than 10KB.

2.2. MAC layer issues

 The WSNs are deployed and work in an unknown

environment, so MAC protocols must watch node density,

topology, and network size. MAC protocols should

minimize the amount of data transferred from one node to

another. the latency of the network depends upon the

single-hop and multi-hop routing transmission. It tends to

delay data from receiver to sender, so MAC protocols

should minimize latency. MAC protocols should ensure

better usage of bandwidth or capacity.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Rajshree & Abhiruchi Passi / IJECE, 9(5), 1-7, 2022

2

2.3. Energy efficiency

 To ensure the long life and lifetime of the sensor

nodes, kernel schedulers and wireless communications

modules should manage energy consumption even with

less durable energy resources. So, the information on the

amount of energy must be provided by the operating

system.

2.4. Hardware/software issues

 In wireless sensor networks, sensor nodes are specially

constructed to collect and deliver information from the

base station to the receiver. These sensor nodes are

hardware devices with a small embedded system to

communicate wirelessly amongst the networks. To keep up

with the specific application for which the WSN is

designed, the hardware components should be assembled

to make the WSN work effectively and correctly without

any hardware constraints. Each node needs an operating

system to fill the gap between hardware and applications.

2.5. Limited energy

 The energy source in wireless sensor networks is a

battery. The life of a wireless sensor network entirely

depends on the battery, which has a limitation of energy.

3. Operating System
 In wireless sensor networks, the data is forwarded

through the number of nodes from the base station. These

nodes are also known as motes. Motes are wireless devices

that are multifunctional and energy-efficient. In other

words, motes are tiny computers that work collectively to

form a network. Motes are the key to environmental

applications of wireless sensor networks. A group of motes

gathers the signal from the environment to execute a

particular target.

Fig. 1 Block diagram of Operating System

The wireless sensor network has hundreds or even

thousands of sensor nodes. These nodes have four essential

hardware components: microprocessor/microcontroller,

battery, radio transceiver, and physical sensors. So, the

hardware components of sensor nodes should be arranged

to make WSNs work effectively and correctly. Each node

needs an operating system to fill the gap between hardware

and applications [8-12]. There are various operating

systems, such as Tiny OS, Magnet OS, Mate, Mantis,

OSPM, Eyes OS, Sen OS, and Emeralds.

3.1. Tiny OS

 A tiny OS is a tiny micro-threaded operating system

that allows application software to access hardware

directly when needed. It provides modularized components

with small storage overhead and processing and guarantees

concurrent data flow amongst the hardware devices. Tiny

OS is designed with three essential components, i.e.,

synthetic hardware, hardware abstraction, and high-level

components. These components are mapped to specific

hardware abstractions.

3.2. Mate

 The primary function of mate is to make Tiny OS

attainable to nonexpert programmers and provide efficient

and quick programming to the entire sensor network. It is

designed to work on top of Tiny OS as one of its

components. Inmate, a program code is fabricated as a

capsule, and these capsules have 24 instructions, and the

length of each instruction is 1 byte. Each capsule has

version and type information that can quickly deploy into

the network to make code injection easy.

3.3. MANTIS

 MANTIS is general single-based hardware and

enables a flexible environment with a multithread

operating system for fast deployment of applications.

MANTIS contains a classical layered multi-threaded

structure with a network protocol stack and device drivers.

It uses preemptive scheduling with time slicing, standard

programming language, and I/O synchronization via

mutual exclusion. Furthermore, it uses standard C to

manufacture the kernel and API.

3.4. Magnet OS

 Magnet OS is specially designed for energy

conversion and adaption for wireless sensor network

applications. It is a distributed adaptive operating system

that provides a general abstraction for applications to adapt

independent resources, is scalable for an extensive

network, changes in a stable manner, and is efficient

concerning energy conversion.

3.5. OSPM

 OSPM is also known as dynamic power management

(DPM), based on a greedy algorithm designed by power

management techniques. The primary function of OSPM is

to switch the system to sleep mode as soon as it is idle. The

deeper the sleep state, the less power consumption and the

longer the wake-up time.

3.6. EYES OS

 EYES OS works in a simple sequence, like returning a

value, entering the sleep mode, and performing a

computation. It is specially designed for small memory

requirements and coding, where it is capable of distribution

and reconfiguration. EYES OS has two main components:

the local information component and the network

component. the function of the network component is to

provide information and retrieve the same from the

network and transmit and receive information from other

Battery

Transceiver Sensing unit

ADC Microcontroller

External battery

Rajshree & Abhiruchi Passi / IJECE, 9(5), 1-7, 2022

3

networks. On the other hand, the function of the local

information component is to provide a setting of

parameters or variables in sensor nodes and the availability

of resources and their status.

3.7. Sen OS

 Sen OS is based on a finite state machine (FSM) and

quickly realizes concurrency and reconfiguration. It

consists of a call-back library of call functions, a state

transition table, and a kernel. The state transition table is

application-dependent and can be modified or reloaded at

the runtime sensor node. A call function and kernel are

stored in flash ROM and are statically built-in sensor

nodes.

3.8. Contiki

 Contiki is a hybrid system that separates essential

system support from reprogrammable and dynamically

loaded services. These services are called processes that

communicate with each other through kernel by posting

events. The kernel allows applications and device drivers

to communicate with the hardware directly. The kernel

does not provide any hardware abstraction that makes it

easy to program and replace services.

4. Nano Q plus Operating System
 ETRI is Korea's largest government-funded research

facility in information technology and communication. It has

developed the Nano Q plus operating system, a tiny

embedded operating system with reconfigurable and scalable

properties to fulfill the need for sensor networking

application programmers in wireless sensor networks. On

behalf of other operating systems, the Nano Q plus operating

system is very easy to manage by the application programmer,

can build a large-scale sensor, is flexible, lightweight, and

dynamic, and has a low-power sensor network operating

system [13].

Two main concepts design Nano Q plus first is a layered

design concept, and the second is a modular concept.

4.1. Modular Concept

 The architecture of the modular concept consists of three

components and four key modules. the three components are

Nano Q plus operating system, hardware, and application. The

Nano Q plus part represents a platform for sensor networking

programmers by offering APIs to develop convenient wireless

sensor applications. The application part consists of more than

one module interacting with the systems API with the Nano Q

plus part. For wireless communication, the hardware part

consists of a sensor/actuator, RF modules, and MCU using

ATMEGA 128.

Fig. 2 Shows Nano Q plus operating system technology

System APIs

Target

Management

Power

Management
Handline

RF message

‘Sensing &

actuating

Time

synchronization

LED CLOCK POWER RFM UART ADC

MCU (8bit) RF (Zigbee) Sensor & actuator

Router MAP Router Sensor/actuator

applications

Virtual

machine

Application

Nano

Qplus

Hardware

nHAL (nano hardware abstraction layer)

Rajshree & Abhiruchi Passi / IJECE, 9(5), 1-7, 2022

4

4.2. KTey Modules

 nHAL: nHAL is a device driver module for

abstracting the hardware part and is composed of

various components like ADC, CLOCK, POWER,

LED, and RFM. It also provides hardware

independence.

 Task management: the task management function is

similar to the task scheduler, which is based on a

Linux scheduler and mainly focuses on resource

limitation and energy efficiency. The task scheduler

decides the run order of the task that describes a

piece of the node that needs to be executed. Nano Q

plus adopt a variety of task schedulers, for example,

preemptive round-robin, non-preemptive FIFO,

preemptive round-robin with energy efficiency,

timed FIFO, and preemptive RR scheduler.

 Power management: In power management, each

node in WSN has six operation modes with

ATMEGA 128, and the transceiver turns off/on in

CC2420 to achieve low power consumption. Power

management operates an adaptive operation for a

long time and monitors current capacity. To know

how long the node will survive in WSN, it has three

low, middle, and full levels.

 RF message handling: This part increases the energy

efficiency of wireless communication between

sensor nodes.

4.3. Layer Design Concept

The layer design concept consists of four layers, i.e.,

the application layer, network layer, MAC layer, and

physical layer. The application layer converts the

information into a clear form and gives a large amount of

software for various wireless sensor network applications.

It is also responsible for controlling traffic. The primary

function of the network layer is to provide routing between

the sensor nodes. The physical layer is composed of chip

coin CC2420 radio for IEEE802.15.4. The MAC layer is

responsible for RF channel access with the CSMA-CA

algorithm [14].

5. Comparison
 The Nano Q plus operating system has been compared

with other operating systems such as Tiny OS, MANTIS,

Mate, Eyes OS, Sen OS, Magnet OS, OSPM, and Contiki

based on their performance and features. The comparison

of Nano Qplus and other operating systems based on their

performance is shown in table 1, and their comparison

based on features is shown in table 2.

In this paper, we introduce a graphing mechanism in

figure 5 that shows the variation between the network

lifetime of wireless sensor networks based on scheduling

algorithms. The tiny OS supports a non-preemptive first-in,

first-out (FIFO) scheduling algorithm; therefore, it does not

support real-time applications. The wait time for a task

depends on the task's arrival time. Contiki OS supports a

handler priority scheduling algorithm where events are

fired to the target application as they arrive. MANTIS

supports preemptive priority scheduling where the target

length of time slice configuration is set up to 10

milliseconds, and when there is no thread in the queue, the

system goes to sleep mode. Lite OS supports robin-robin

and priority-based scheduling, which requires an

unavailable task resource; the task enables interrupts and

goes to sleep mode. Nano Q plus supports Linux

scheduling; therefore, it enhances the network's lifetime,

where the thread programming model handles various

issues that arise in sensor network applications.

Fig. 3 Nano Q plus network stack

Fig. 4 The graph between network lifetime and scheduling of operating

systems

 Chipcoin

CC2420

Application Layer

Network layer

RENO

Mesh based

TENO

tree based

Nano

MAC
IEEE802.15.4

MAC layer

Physical layer

Rajshree & Abhiruchi Passi / IJECE, 9(5), 1-7, 2022

5

6. Conclusion

 In wireless sensor networks, sensor nodes are specially

constructed to collect and deliver information from the

base station to the receiver. These sensor nodes are

hardware components with a small embedded system to

communicate wirelessly amongst the networks. To keep up

with the specific application for which the WSN is

designed, the hardware components should be assembled

to make the WSN work effectively and correctly without

any hardware constraints. Each node needs an operating

system to fill the gap between hardware and applications.

In this paper, Nano Q plus operating system has been

compared with other operating systems such as Tiny OS,

MANTIS, Mate, Eyes OS, Sen OS, Magnet OS, OSPM,

and Contiki based on their performance and features. The

comparison of Nano Qplus and other operating systems

based on their performance is shown in table 1, and their

comparison based on features is shown in table 2.

Compared to other operating systems, the Nano Q plus

operating system is very easy to manage by the application

programmer, can build large-scale sensors, is flexible,

lightweight, and dynamic, and has a low-power sensor

network operating system.

References
[1] John Heidemann et al., “Building Efficient Wireless Sensor Networks with Low-Level Naming,” Proceedings of ACM Symposium

on Operating Systems Principle, pp. 146-159, 2001. Crossref, https://doi.org/10.1145/502034.502049

[2] Hill Jason et al., “The Platforms Enabling Wireless Sensor Networks,” Communications of the ACM, vol. 47, no. 6, pp. 41-46, 2004.

Crossref, https://doi.org/10.1145/990680.990705

[3] Seongsoo Hong, and Tae-Hyung Kim, “Designing a State-Driven Operating System for Dynamically Reconfigurable Sensor

Networks,” Proceedings of the 2003 System on Chip (Soc) Design Conference, pp. 40-42, 2003.

[4] H Abrach et al., “MANTIS: System Support for Multimodal Networks of in-Situ Sensors,” Proceedings of the 2nd Workshop on

Sensor Networks and Applications (WSNA'03), San Diego, CA, pp. 50-59, 2003. Crossref, https://doi.org/10.1145/941350.941358

[5] Niels Reijers, and Koen Langendoen, “Efficient Code Distribution in Wireless Sensor Networks,” Proceedings of the 2nd Workshop

on Sensor Networks and Applications (WSNA'03), San Diego, CA, pp. 60-67, 2003. Crossref,

https://doi.org/10.1145/941350.941359

[6] Young-Sam Shin Kwangyong Lee, Heeseok Choi, and Seungmin Park, “A Design and Implementation of a Multi-Hop Wireless

Sensor Network Based on Nano-Qplus Platform,” In the 20th International Technical Conference on Circuits/Systems, Computers

and Communication, 2005.

[7] D. Ian Chakeres, and M. Elizabeth Belding-Royer, “AODV Routing Protocol Implementation Design,” 24th International

Conference on Distributed Computing Systems Workshop, pp. 698-703, 2004. Crossref,

https://doi.org/10.1109/ICDCSW.2004.1284108

[8] Philip Levis et al., “The Emergence of Networking Abstractions and Techniques in TinyOS,” Proceedings of the First Symposium

on Networked Systems Design and Implementation, USENIX Association, pp. 1-14, 2004.

[9] Chih-Chieh Han et al., “A Dynamic Operating System for Sensor Networks,” Proceedings of the 3rd International Conference on

Mobile Systems, Application, and Services (Mobisys' 05), Seattle, Washington, 2005.

[10] Bhatti Shah et al., “Mantis OS: An Embedded Multi-Threaded Operating System for Wireless Micro Sensor Platforms,” Mobile

Networks and Applications, vol. 10, no. 4, pp. 563-579, 2005. Crossref, https://doi.org/10.1007/S11036-005-1567-8

[11] Han Chih-Chieh et al., “A Dynamic Operating System for Sensor Nodes,” Proceedings of the 3rd International Conference on

Mobile Systems, Applications, and Services–Mobisys, 2005. Crossref, https://doi.org/10.1145/1067170.1067188

[12] Qing Cao et al., “The Liteos Operating System: Towards Unix-Like Abstractions for Wireless Sensor Networks,” IPSN 08,

Proceedings of the 7th International Conference on Information Processing in Sensor Networks, pp. 233–244, 2008. Crossref,

https://doi.org/10.1109/IPSN.2008.54

[13] Dunkels Adam et al., “Protothreads: Simplifying Event-Driven Programming of Memory-Constrained Embedded Systems,”

Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (Sensys), pp. 29-42, 2006. Crossref,

https://doi.org/10.1145/1182807.1182811

[14] Gay David, Philip Levis, and David Culler, “Software Design Patterns for Tinyos,” ACM Transactions on Embedded Computing

Systems, vol. 6, no. 4, pp. 22, 2007. Crossref, https://doi.org/10.1145/1274858.1274860

Rajshree & Abhiruchi Passi / IJECE, 9(5), 1-7, 2022

6

Annexure

Table 1. Comparison of Nano Qplus and other operating systems based on their performance

Performance Nano

Qplus

Tiny OS Mate Magnet

OS

MANTIS OSPM Eyes OS Sen OS Contiki

Design Modular

and layer

concept

Tiny micro-

threaded

operating

system

Virtual

machine

Adaption

mechanism

Multi-

threaded

operating

system

Dynamic

power

managem

ent

Efficient code

distribution

management

Finite

state

machine

Hybrid

operating

system

Components Nano hall,

task

scheduler,

power

managem

ent, and

RF

handler

Hardware

abstraction,

synthetic

hardware,

and high-

level

software

components

Subroutine

and

message

send and

receive

timer

Both static

and

dynamic

components

Kernel,

scheduler,

and network

stack

Computer

specificati

on and

power

managem

ent

Local

information

and network

component

A kernel,

a state

transition

, and call

back

library

Core

services

and

dynamicall

y loadable

services

Scheduling Linux

based

Simple

FIFO

 Robin robin Preemptive

scheduling

 FIFO FIFO FIFO poll

handler

with

priority

scheduling

Protocol MAC

protocol

Unreliable

data link

protocol

Beacon

less ad hoc

protocol

Fixed ad

hoc routing

protocol

Network

stack and

MAC

protocol

 Power

manage

ment

protocol

Network

architecture

Cluster-

based

Stack-based

threaded

Stack-

based

Distributed

adaptive

operating

system

Single-

board

hardware

architecture

Based on

a greedy

algorithm

Cluster-based Monolithic

binary

image

Routing Ad hoc

multiple

routing

Single hop

routing

Hop by hp

injection

Fixed ad

hoc routing

Flooding

routing

Execution model Multi-

threaded

Event-based Event-

based

VM based Layered

multi-

threaded

based

Event-

based

Event-driven

model

Event-

based

Multi

thread-

based

Building blocks Component

interference

and task

Byte-code

interpreter

 Comprehens

ive system

APIs and

system

interaction

 Application

programming

interface

 Service

layer and

service

interference

Memory

allocation

Dynamic Static Dynamic Dynamic Dynamic Dynamic EEPROM Dynamic

Rajshree & Abhiruchi Passi / IJECE, 9(5), 1-7, 2022

7

Table 2. Comparison of Nano Qplus and other operating systems based on their features

Features

Low power

mode

Multimodal

testing

Real-time

guarantee

Dynamic module

support

Memory

management

Nano Qplus

Yes Yes Yes No No

Tiny OS

Yes - No No No

Mate

Yes - No No No

Magnet OS

- - No No No

MANTIS

No - No Yes No

OSPM

- - - - -

Eyes OS

- - No No Yes

Sen OS

Yes - No Yes No

Contiki

- Yes No Yes No

