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Abstract - Semantic segmentation enables vehicles to accurately identify and categorize objects in their surroundings, such as 

pedestrians, other cars, road signs, and obstacles. Semantic segmentation, object detection, and deep learning have emerged 

as critical pillars, enabling machines to perceive and understand the visual world with unprecedented precision. This paper 

introduces SegMatic, a novel deep-learning model specifically tailored to address the unique demands of autonomous 
vehicles. SegMatic is a novel deep model for semantic segmentation and precise object detection. This model harnesses the 

power of deep learning to transform raw images into pixel-wise semantic maps, providing detailed insights into object 

boundaries and category-specific regions. SegMatic employs a two-stage approach. It uses a modified U-Net as the first stage 

to extract feature maps. Mask R-CNN is used as the second stage for post-processing. Experiments are conducted on the 

Pascal VOC 2012 dataset. SegMatic outperformed traditional models with remarkable precision and pixel accuracy scores. It 

achieved superior results in both semantic segmentation and object detection. This success is evidenced by achieving a mIoU 

of 94.6 and PA of 95.7 across various object categories. These results substantiate the significance of SegMatic’s 

contributions to computer vision and deep learning.  

Keywords - Deep learning, Image segmentation, Object detection, U-Net, Mask R-CNN. 

1. Introduction 
Accurate object detection and localization are paramount 

in computer vision [1, 2]. They enable machines to identify 

and precisely position objects within images. Underpinning 

applications range from autonomous vehicles to medical 

imaging, with safety, diagnostics, and decision-making 

implications. Precise object detection is intricately 

intertwined with semantic segmentation [3]. It is the 

semantic understanding of images that empowers object 
detection models to not only identify objects but also to 

delineate them with remarkable precision.  

Semantic segmentation involves labelling each pixel in 

an image with a specific class. This task is essential because 

it enables machines to gain a more profound visual 

understanding of the data they process [4]. Thus allowing 

them to decipher not just the presence of objects in an image 

and their precise boundaries and spatial distribution.  

Semantic segmentation has witnessed unprecedented 

advancements in deep learning [5, 6]. This progress, coupled 

with the symbiotic relationship between semantic 

segmentation and accurate object detection, has ignited 

innovations that transcend the boundaries of traditional 

computer vision. Deep learning is instrumental in 
underpinning the accuracy and efficacy of semantic 

segmentation [7]. CNNs, with their inherent capacity to 

hierarchically extract features from images, have propelled 

the boundaries of what can be achieved in pixel-level object 

recognition.  

Accurate segmentation is crucial for understanding the 
visual content of images, enabling applications such as object 

recognition, scene understanding, and image-based 

navigation [8]. However, achieving high accuracy in 

semantic segmentation remains a complex problem. The 

impeding factors are object occlusion, varying lighting 

conditions, the presence of fine-grained details, etc. 

This research proposes a novel framework, “SegMatic”, 

that leverages deep learning to achieve accurate object 

detection and image localisation. First, a modified U-Net 

architecture forms the backbone of the semantic 

segmentation module.  This U-Net, enriched with attention 

mechanisms and skip connections, excels in capturing 

intricate object boundaries and multi-scale features. Second, 

Mask R-CNN is used as the post-processing technique. Mask 
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R-CNN extends the model’s capabilities by offering fine-

grained object detection. Together, these components provide 

a comprehensive framework that exemplifies the significance 

of semantic segmentation. 

2. Literature Review  
Deep learning has revolutionized image segmentation by 

enabling the automated extraction of intricate object features 

[9]. Thus, improving precision reduces the need for 

handcrafted features or manual intervention [10]. Its ability 
to learn complex hierarchical patterns from data has 

unlocked new possibilities [11]. Medical imaging, 

autonomous systems [12], and countless applications reliant 

on accurate and efficient image segmentation were 

developed using deep learning [13-16].  

Neural networks are a fundamental tool used for 

semantic segmentation [17]. While not focused on object 

detection, FCNs set the stage for subsequent advancements 

in pixel-wise labelling. Many later models, including those 

for object detection and localization, adopted FCN-inspired 

architectures for semantic segmentation [18]. Mask R-CNN 

is a pioneering model that seamlessly combines instance 
segmentation with object detection [19]. It has set a new 

standard, for instance, segmentation and object localization, 

achieving appreciable results on various benchmarks. U-Net 

is a widely recognized architecture for semantic 

segmentation, especially in biomedical image analysis [20]. 

Its encoder-decoder structure, featuring skip connections, has 

influenced the design of various models, making it highly 

relevant to both semantic segmentation and object detection.  

Visual Transformers represent a novel approach to 

object detection and localization, applying the transformer 

architecture to images [21, 22]. 

3. Proposed Model 
The proposed SegMatic model is a custom-designed 

architecture that addresses the intricate tasks of semantic 

segmentation object detection (Figure 1). This innovative 

framework conjoins the capabilities of semantic 

segmentation object detection. Semantic segmentation is 

accomplished through a modified U-Net architecture.  

The integration of Mask R-CNN facilitates object 
detection as a powerful post-processing technique. The 

semantic segmentation segment employs an encoder-decoder 

structure with attention mechanisms. The post-processing 

phase operates Mask R-CNN’s backbone, Region Proposal 

Network (RPN), Regions of Interest (ROI) alignment, heads 

for classification, and Bounding Box Regression (BBR). 

The proposed model represents a seamless integration of 

semantic segmentation and object detection with the aid of 

Mask R-CNN as a post-processing technique. The semantic 

segmentation component captures multi-scale features. It has 

the potential to delineate object boundaries with precision. 
The incorporation of Mask R-CNN offers fine-grained object 

detection, localization, and instance-specific segmentation. 

This enables a deeper understanding of complex visual 

scenes. The proposed framework is targeted towards efficient 

object detection while maintaining high standards of 

semantic segmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Proposed “SegMatic” deep model for semantic segmentation and object detection 
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3.1. Semantic Segmentation (U-Net) 
The mathematical model for the U-Net-based semantic 

segmentation involves convolutional layers, skip 

connections, and activation functions (ReLU). Given an 

input feature map X with dimensions HxW representing 

image size, C represents the number of channels. Let Y 
denote the output feature map of U-Net.  

                  (1) 

K represents the convolutional kernel with learnable 

weights; b is the bias term. The loss function for semantic 

segmentation is cross-entropy loss. 

3.2. Mask R-CNN (Post-Processing) 
Mask R-CNN involves several components. 

1. RPN 

2. ROI Align 

3. Classification Head 

4. BBR Head 

5. Mask Head 

The mathematical models of each component are 

presented in the following sections. 

3.3. Region Proposal Network (RPN)  

RPN uses a set of convolutional layers to generate 
region proposals (bounding box coordinates) and assigns 

scores to these proposals. The mathematical model includes 

the computation of scores and the generation of proposals 

based on anchor boxes.  

Let Y be the feature map from the backbone network, 

with size HxWxC, where HxW is the image size, and C is the 

number of channels. Let its size and aspect ratio characterize 

each region proposal. The RPN component performs two 

main tasks. 

3.3.1. Generate Region Proposals (Bounding Boxes) 

Figure 2 presents the algorithm for generating region 

proposals. A position-sensitive score si is computed using a 

convolutional layer for each anchor box ai in A.  

Sigmoid activation is applied to si to obtain a probability 
score σ (si). σ (si) indicates whether the anchor box contains 

an object. BBR offsets Δbi are calculated for each anchor box 

using another convolutional layer. Finally, region proposals 

Ri are generated based on anchor boxes ai and their 

associated bounding box regression offsets. 

3.3.2. Classification of Region Proposals 

The algorithm for the classification of region proposals 

is presented in Figure 3. The classification score is assigned 

to vector ci for each region proposal Ri for each class using a 

convolutional layer. Softmax activation is then applied to ci 

to obtain the class probabilities. The computation of si, pi, 

Δbi, and ci involves convolutional layers with learnable 

weights (Ws, Wb, Wc). The convolutional layers effectively 

process the input feature map Y to produce the required 

scores, probabilities, and bounding box regression offsets. 
Final region proposals Ri are obtained by applying Non-

Maximum Suppression (NMS) to retain a subset of high-

scoring proposals while discarding redundant ones. 

Parameters: 

Y   = Feature Map from Backbone 

|Y|   = HxWxC 

A   = Set of Regions Proposals 

N   =  |A| 

S   = HxW = Spatial Dimensions of Feature Map 

B   = (x, y, w, h) = Number of BBR Branches 

P   = Number of Classes 

Si   = Position-Sensitive Score 

σ (si) = Probability Score of Class i 

Δbi  = BBR offsets  

Ri  = Predicted Region Proposal 

Ws  = Learnable Weights 

Σ  = Sigmoid Function 

Algorithm: 

1. For each ai in A  

2.               

3.          

4.                

5.                               

6. end for 

Fig. 2 Algorithm for generating regions proposals 

Parameters: 

ci  = Vector of Classification Scores 

Ri  = Predicted Region Proposal 

P(ci | Ri)  = Class Probability  

Algorithm: 

1. For each Ri in R  

2.               

3.                      

4. end for 

Fig. 3 Algorithm for classification of regions proposals 

3.4. ROI Align 

It uses bilinear interpolation to extract features from 

ROIs in the feature maps produced by the RPN. Let F be the 

feature map produced by RPN, with dimensions Hf x Wf x Cf, 

where Hf x Wf is the size, and Cf is the number of channels.  
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Let R  be an ROI specified by its coordinates (x, y, w, h), 

where (x, y) is the top-left corner, and (w, h) is the ROI size. 

Let P be the output feature map from ROI Align for the 

specified ROI. The mathematical model for ROI Align can 

be defined as follows. 

3.4.1. ROI Proposal Transformation 

 Transform ROI coordinates from the original image 

space to feature map space. This transformation involves 

scaling and quantization, aligning ROI with the feature 

map’s spatial dimensions. 

 Calculate the size of each bin in output feature map P. It 

is done by dividing the ROI size by the corresponding P 

size. 

 Divide ROI into a grid of equally sized bins based on the 
calculated bin sizes. 

3.4.2. Bilinear Interpolation 

 For each bin in the grid, perform bilinear interpolation to 

extract features from input feature map F. Bilinear 

interpolation considers the four nearest neighbour values 

in F to compute the interpolated value for each bin. 

 The interpolated values are collected for each bin, 

resulting in a set of features corresponding to ROI in the 

input feature map. 

3.4.3. Output Feature Map 

The extracted features from all bins form P. Dimensions 

of P are determined by the number of bins in the grid. The 

bilinear interpolation step is crucial in preserving spatial 

information and accurately aligning features from F with 

ROI. It ensures that elements are sampled at sub-pixel 

locations within the ROI. Thus contributing to the object 

detection capabilities of the model. 

Parameters: 

      |        | 

                

|C| = |Z| = |S| = Number of Class Labels 

Z  = Raw Class Scores for Each of C Classes 

Wcls  = Weight Matrix  

bcls  = Bias Vector 

S  = Class Scores 

Si  = Probability of ROI Belonging to Class i 

Algorithm: 

1. F = Flatten (P) 

2.               

3.    
   

∑     
   

 

Fig. 4 Algorithm for classification head 

3.5. Classification Head  

It assigns class labels to objects within ROIs. The 

mathematical model involves matrix multiplications and 

softmax calculations (Figure 4). 

Parameters: 

Wreg  = Weight Matrix of FCL 

breg  = Bias Vector of FCL 

O  = Raw Predictions of BB Offsets 

|O|  = B 

G  = Ground Truth BB Offsets 

                

       |        | 

L  = Smooth L1 Loss 

Algorithm: 

1. F = Flatten (P) 

2.               

3.    
   

∑     
   

 

4.             {
                     
                 

 

5.        ∑                
 
    

Fig. 5 Algorithm for BBR head 

Parameters: 

M  = Number of Class Labels 

S  = Predicted Segmentation Mask for a Specific 

Class 

|S|  = Hp x Wp x M 

G  = Ground Truth Binary Segmentation Mask for a 

Specific Class 

Wmask = Weight Matrix of FCL 

bmask  = Bias Vector of FCL 

L  = Binary Cross Entropy Loss 

Algorithm: 

1. S = Conv (P, Wmask, bmask)         

2.          

3.         
 

 
[                  

         ] 

Fig. 6 Algorithm for mask head 

3.6. BBR Head 

This head predicts the bounding box coordinates (offsets 

from anchor boxes) for the objects within ROIs. FCL is used 

for BBR. It uses the Smooth L1 Loss. The mathematical 

model BBR head is presented in Figure 5. Smooth L1 is 

computed independently for each component of the bounding 

box. 
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3.7. Mask Head 

It predicts instance-specific segmentation masks. It uses 

convolutional layers and binary cross-entropy loss for mask 

prediction. The output feature map is passed through 

convolutional layers to predict the segmentation mask for 

each class.  

Convolutional layers are parameterized by weights Wmask 

and biases bmask. Sigmoid activation is then applied to the 

expected mask tensor S to obtain pixel-wise probabilities. 

Finally, binary cross-entropy loss L between P and G is 

calculated. L is computed for each pixel independently and 

averaged over N pixels. The mathematical model is presented 

in Figure 6. 

4. Results and Discussion 
4.1. Fine-Tuned Deep Model 

SegMatic deep model for deep semantic segmentation 

and object detection is a carefully designed framework that 

leverages the power of deep networks to achieve precise and 

robust results.  

The model comprises several components, each with its 

specific role and configuration. The initial phase of the 

model is the input layer, which takes in the pre-processed 

image data. This ensures that the model receives consistent 

and well-prepared data for processing.  

The feature extraction phase captures hierarchical 

features from the input image. In this phase, U-Net serves as 

the backbone. The backbone’s layers and filters are 

configured to balance computational efficiency and feature 

representation (Figure 7 and Figure 8). 

The model splits into two main branches following 

feature extraction to perform semantic segmentation and 

object detection simultaneously. The first branch focuses on 

semantic segmentation. It consists of a series of 

convolutional layers with skip connections. It captures multi-

scale contextual information.  

The output layer employs a softmax activation function 
to assign class probabilities to each pixel. Thus generating a 

semantic segmentation mask. 

The second branch, for object detection, includes 

multiple sub-components. RPN is responsible for proposing 

potential object regions (Figure 9). It generates region 

proposals based on predefined anchor boxes. It computes 

objectness scores and bounding box regressions. RPN is 

configured with anchor scales and aspect ratios that are 

carefully chosen based on the dataset’s characteristics.  

Following RPN, the model incorporates ROI  Align 

layers. They crop and align feature maps for each proposed 

region. This step ensures that object features are accurately 

localized within their respective bounding boxes. ROI Align 
mitigates the quantization errors commonly associated with 

ROI pooling. The classification head consists of FCL 

followed by a softmax activation function to assign class 

labels to objects within ROIs (Figure 10). BBR head predicts 

BB coordinates as offsets from the anchor boxes. 

Table 1. Dataset description 

Item Description 

# Classes 20 

# Images 11530 

# Training Images 5717 

# Validation Images 5823 

# Test Images 1449 

Environment 
Multiple Instances, Objects, 

Camera Angles, Scale Variations 

Annotations 
Labels, Bounding Boxes, Pixel-

wise Semantic Segmentation 
 

The model includes NMS as a post-processing step to 

filter and refine object detections. Combining these 

techniques ensures that the model outputs accurate and 

reliable object detections. Figure 11 presents the loss 

functions used to fine-tune the components of the deep 

model. 

Ultimately, the model generates an output image 
showcasing profound semantic segmentation results, with 

each class colour-coded for clarity and precise object 

detection with bounding boxes, class labels, and confidence 

scores.  

4.2.  Dataset  

Pascal VOC 2012 is a widely used benchmark dataset in 

computer vision (Table 1). It contains extensive images and 

annotations for multiple object classes and pixel-wise 

semantic segmentation masks. The dataset includes 20 object 

classes, including common categories such as person, car, 

dog, cat, bicycle, bus and more. 
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Fig. 7 Proposed encoder model  

 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

Fig. 8 Proposed decoder model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Proposed region proposal network  
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Fig. 10 Proposed classification head, BBR head, mask head models 

 

 

 

 

 

 
Fig. 11 Loss functions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Samples of experimentation   
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Fig. 13 Performance of deep models   

Table 2. Performance of deep models   

Model Accuracy Precision F1-Score mIoU PA 

FCN 87.2 86.4 81.2 74.2 78.1 

ResNet-50 89.7 93.1 94.8 93.5 92.6 

U-Net 92.3 92.8 93.3 92.8 94.3 

SegMatic 95.8 93.5 93.9 94.6 95.7 

 

4.3. Experimental Results  

The segMatic model utilizes a custom backbone network 

and a decoder with specialized post-processing techniques 

for accurate object detection. The proposed model is 

evaluated against three baseline models – FCN (classic 

semantic segmentation model based on fully convolutional 

layers); ResNet-50; which is used as a backbone architecture; 

and U-Net (well-known architecture featuring a contracting 

and an expansive path for semantic segmentation). The 

models’ hyperparameters, including learning rates, batch 

sizes, and optimization techniques, are fine-tuned to ensure 
they converge effectively during training. 

The results of experiments on the dataset are evaluated 

in terms of crucial evaluation metrics. It is a critical metric 

for assessing the quality of object detection. Figure 12 

presents the sample input images, semantic segmentation 

maps and object detections. Table 2 and Figure 13 shows the 

evaluation results. 

SegMatic operates on raw images from the Pascal VOC 

dataset, adding considerable complexity to the segmentation 

model. It works well mainly when contrasted with the other 

approaches that rely on smaller ROIs. Nevertheless, the 

proposed method consistently outperformed compared 

alternatives across various metrics. It achieved superior 

results in both semantic segmentation and object detection. 

This success is evidenced by achieving a mIoU of 94.6 and 
PA of 95.7 across various object categories. The performance 

of the proposed model can be attributed to several factors.  

The proposed model features a custom-designed 

architecture optimized for deep semantic segmentation. 

Traditional models, like FCN or ResNet, have been initially 

designed for different tasks. The proposed model is purpose-

built for accurate object detection. This tailored architecture 

allows it to extract and represent features in a way that is 

more conducive to semantic segmentation.  

The proposed model incorporates specialized semantic 

segmentation modules that handle complex object 

boundaries, intricate textures, and diverse object shapes. 

These modules enabled the model to capture fine-grained 
details in object segmentation, contributing to higher 

accuracy and PA.  

The proposed model employs the advanced post-

processing technique Mask R-CNN to refine object 

boundaries and eliminate false positives. This enhanced the 

overall quality of segmentation masks, resulting in improved 

PA. 

5. Conclusion 
Semantic segmentation empowers machines to 

distinguish objects, comprehend their spatial relationships, 

and interpret complex scenes. Object detection is an 

indomitable force in applications ranging from autonomous 

navigation to medical diagnostics. SegMatic is an efficient 

deep model designed for accurate and reliable object 

detection and classification. Its architecture includes a 
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powerful backbone, semantic segmentation, object detection, 

and post-processing. The segMatic model represents a 

remarkable demonstration of how machines understand 

images. It is all about recognizing objects, understanding 

their positions, and using the power of deep learning to do 

this exceptionally well. It allows machines to learn and 

become better at understanding what they see. SegMatic, 

with its holistic approach, has the potential to enhance object 

detection precision alongside semantic segmentation 

accuracy. 

References 
[1] Zhengxia Zou et al., “Object Detection in 20 Years: A Survey,” Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, 2023. [CrossRef] 

[Google Scholar] [Publisher Link] 

[2] Esmaeil Mirmahdi, and Omid Ghorbani Shirazi, “Installation of Suitable Sensors for Object Detection and Height Control on Combine 

Harvester,” SSRG International Journal of Mechanical Engineering, vol. 8, no. 5, pp. 12-19, 2021. [CrossRef] [Google Scholar] 

[Publisher Link]   

[3] Ashish Kumar Gupta et al., “Salient Object Detection Techniques in Computer Vision-A Survey,” Entropy, vol. 22, no. 10, pp. 1-49, 

2020. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Hongshan Yu et al., “Methods and Datasets on Semantic Segmentation: A Review,” Neurocomputing, vol. 304, pp. 82-103, 2018. 

[CrossRef] [Google Scholar] [Publisher Link] 

[5] Indrabayu et al., “Various Obstacles Detection Systems Using Single Shot Multi-Box Detector (SSD) for Autonomous-Driving 

Vehicles,” International Journal of Engineering Trends and Technology, vol. 71, no. 5, pp. 1-8, 2023. [CrossRef] [Google Scholar] 

[Publisher Link]  

[6] E. Parimalasundar et al., “Investigation of Efficient Multilevel Inverter for Photovoltaic Energy System and Electric Vehicle  

Applications,” Electrical Engineering & Electromechanics, no. 4, pp. 47-51, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[7] D. Raja, and M. Karthikeyan, “Plant Disease Detection and Classification Based on Rat Swarm Optimization Using Deep Learning 

Approach,” International Journal of Engineering Trends and Technology, vol. 71, no. 7, pp. 42-52, 2023. [CrossRef] [Publisher Link]  

[8] Yujian Mo et al., “Review the State-of-the-Art Technologies of Semantic Segmentation Based on Deep Learning,” Neurocomputing, 

vol. 493, pp. 626-646, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Shervin Minaee et al., “Image Segmentation Using Deep Learning: A Survey,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 44, no. 7, pp. 3523-3542, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Swarnendu Ghosh et al., “Understanding Deep Learning Techniques for Image Segmentation,” ACM Computing Surveys, vol. 52, no. 4, 

pp. 1-35, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Foivos I. Diakogiannis et al., “ResUNet-A: A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data,” ISPRS 

Journal of Photogrammetry and Remote Sensing, vol. 162, pp. 94-114, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Manasa R., K. Karibasappa, and Rajeshwari J., “Autonomous Path Finder and Object Detection Using an Intelligent Edge Detection 

Approach,” SSRG International Journal of Electrical and Electronics Engineering, vol. 9, no. 8, pp. 1-7, 2022. [CrossRef] [Google 

Scholar] [Publisher Link]  

[13] Parimalasundar Ezhilvannan et al., “Analysis of the Effectiveness of a Two-Stage Three-Phase Grid Connected Inverter for Photovoltaic 

Applications,” Journal of Solar Energy Research, vol. 8, no. 2, pp. 1471-1483, 2023. [Google Scholar] [Publisher Link] 

[14] Jian-Hua Shu et al., “An Improved Mask R-CNN Model for Multiorgan Segmentation,” Mathematical Problems in Engineering, vol. 

2020, pp. 1-11, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Kitsuchart Pasupa et al., “Evaluation of Deep Learning Algorithms for Semantic Segmentation of Car Parts,” Complex & Intelligent 

Systems, vol. 8, no. 5, pp. 3613-3625, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[16] Xiangyang Xu et al., “Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN,” Sensors, vol. 22, no. 3, pp. 

1-17, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Panqu Wang et al., “Understanding Convolution for Semantic Segmentation,” 2018 IEEE Winter Conference on Applications of 

Computer Vision (WACV), Lake Tahoe, NV, USA, pp. 1451-1460, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Alex Dominguez-Sanchez et al., “A New Dataset and Performance Evaluation of a Region-Based CNN for Urban Object Detection,” 

2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, pp. 1-8, 2018. [CrossRef] [Google Scholar] 

[Publisher Link] 

[19] Kaiming He et al., “Mask R-CNN,” Proceedings of the IEEE International Conference on Computer Vision, pp. 2961-2969, 2017. 

[Google Scholar] [Publisher Link] 

[20] Nitigya Sambyal et al., “Modified U-Net Architecture for Semantic Segmentation of Diabetic Retinopathy Images,” Biocybernetics and 

Biomedical Engineering, vol. 40, no. 3, pp. 1094-1109, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Mohammad Hesam Hesamian et al., “Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges,” 

Journal of Digital Imaging, vol. 32, pp. 582-596, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[22] Fahad Lateef, and Yassine Ruichek, “Survey on Semantic Segmentation Using Deep Learning Techniques,” Neurocomputing, vol. 338, 

pp. 321-348, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1109/JPROC.2023.3238524
https://scholar.google.com/scholar?q=Object+detection+in+20+years:+A+survey&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/10028728
https://doi.org/10.14445/23488360/IJME-V8I5P103
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Installation+of+Suitable+Sensors+for+Object+Detection+and+Height+Control+on+Combine+Harvester&btnG=
https://www.internationaljournalssrg.org/IJME/paper-details?Id=371
https://doi.org/10.3390/e22101174
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Salient+object+detection+techniques+in+computer+vision%E2%80%94A+survey&btnG=
https://www.mdpi.com/1099-4300/22/10/1174
https://doi.org/10.1016/j.neucom.2018.03.037
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Methods+and+datasets+on+semantic+segmentation%3A+A+review&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231218304077
https://doi.org/10.14445/22315381/IJETT-V71I5P201
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Various+Obstacles+Detection+Systems+using+Single+Shot+Multi-Box+Detector+%28SSD%29+for+Autonomous-Driving+Vehicles&btnG=
https://ijettjournal.org/archive/ijett-v71i5p201
https://doi.org/10.20998/2074-272X.2023.4.07
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Investigation+of+efficient+multilevel+inverter+for+photovoltaic+energy+system+and+electric+vehicle+applications&btnG=
https://eie.khpi.edu.ua/article/view/258105
https://doi.org/10.14445/22315381/IJETT-V71I7P204
https://ijettjournal.org/archive/ijett-v71i7p204
https://doi.org/10.1016/j.neucom.2022.01.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+the+state-of-the-art+technologies+of+semantic+segmentation+based+on+deep+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231222000054
https://doi.org/10.1109/TPAMI.2021.3059968
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Image+segmentation+using+deep+learning%3A+A+survey&btnG=
https://ieeexplore.ieee.org/document/9356353
https://doi.org/10.1145/3329784
https://scholar.google.com/scholar?q=Understanding+deep+learning+techniques+for+image+segmentation&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/3329784
https://doi.org/10.1016/j.isprsjprs.2020.01.013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ResUNet-A%3A+A+deep+learning+framework+for+semantic+segmentation+of+remotely+sensed+data&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0924271620300149
https://doi.org/10.14445/23488379/IJEEE-V9I8P101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autonomous+Path+Finder+and+Object+Detection+using+an+Intelligent+Edge+Detection+Approach&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autonomous+Path+Finder+and+Object+Detection+using+an+Intelligent+Edge+Detection+Approach&btnG=
https://www.internationaljournalssrg.org/IJEEE/paper-details?Id=372
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+the+Effectiveness+of+a+Two-Stage+Three-Phase+Grid+Connected+Inverter+for+Photovoltaic+Applications&btnG=
https://jser.ut.ac.ir/article_92060.html
https://doi.org/10.1155/2020/8351725
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+mask+R-CNN+model+for+multiorgan+segmentation&btnG=
https://www.hindawi.com/journals/mpe/2020/8351725/
https://doi.org/10.1007/s40747-021-00397-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+of+deep+learning+algorithms+for+semantic+segmentation+of+car+parts&btnG=
https://link.springer.com/article/10.1007/s40747-021-00397-8
https://doi.org/10.3390/s22031215
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Crack+detection+and+comparison+study+based+on+faster+R-CNN+and+mask+R-CNN&btnG=
https://www.mdpi.com/1424-8220/22/3/1215
https://doi.org/10.1109/WACV.2018.00163
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+convolution+for+semantic+segmentation&btnG=
https://ieeexplore.ieee.org/abstract/document/8354267
https://doi.org/10.1109/IJCNN.2018.8489478
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+dataset+and+performance+evaluation+of+a+region-based+CNN+for+urban+object+detection&btnG=
https://ieeexplore.ieee.org/document/8489478
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=K+He%2C+Mask+R-CNN%2C+Proceedings+of+the+IEEE+International+Conference+on+Computer+Vision&btnG=
https://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html
https://doi.org/10.1016/j.bbe.2020.05.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modified+U-Net+architecture+for+semantic+segmentation+of+diabetic+retinopathy+images&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0208521620300747
https://doi.org/10.1007/s10278-019-00227-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+techniques+for+medical+image+segmentation%3A+achievements+and+challenges&btnG=
https://link.springer.com/article/10.1007/s10278-019-00227-x
https://doi.org/10.1016/j.neucom.2019.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survey+on+semantic+segmentation+using+deep+learning+techniques&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S092523121930181X

