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Abstract - X-ray and radar imaging are two different imaging techniques that can be used for various applications, such as 
security screening, medical imaging, and geophysical exploration. High-energy X-rays are used to make images of objects by 

detecting their backscattered radiation. The generated image contains information on the object’s interior structure and 

composition. Instead, radar imaging employs radio waves to form images by measuring reflected signals’ time delay and 

intensity. X-ray and radar images are aligned using a feature-based registration method. The goal of feature-based 

registration is to find corresponding points or features in the pictures and use them to compute the transformation that aligns 

the images. This paper proposed a Multi-Scale Feature Transform (MSFT) to improve the performance of feature extraction 

and object recognition tasks. Experimental results using image quality tests demonstrate that Multi-scale transform fusion 

performs better based on lesser false data, higher colour accuracy, and better image visibility. 

Keywords - Multi-Scale Feature Transform, Feature-based registration, Fusion image, X-Ray and radar image, NDT. 

1. Introduction 
X-ray backscatter imaging is a technique used in 

radiography to generate images by measuring the 

backscattered X-ray radiation from an object or material. 

Unlike traditional X-ray imaging that relies on transmitted 

X-rays, backscatter imaging utilizes X-rays scattered or 

reflected from the examined object. The basic principle of X-

ray backscatter imaging involves directing a focused X-ray 

beam towards the object of interest and detecting the 
scattered X-rays [1]. The intensity and energy distribution of 

the backscattered X-rays are measured, and an image is 

formed based on this information. 

X-ray backscatter imaging offers several advantages in 

specific applications. It can provide information about 

objects‟ internal structure and composition, including hidden 

objects or materials concealed within other substances. This 

technique is often used for security screening at airports and 

other high-security locations to detect concealed weapons, 

drugs, or contraband. It can also be applied in Non-

Destructive Testing (NDT) to inspect and analyze the 

integrity of structures, materials, or manufactured 
components [2]. Holographic radar imaging is a technique 

that combines holography and radar principles to generate 

high-resolution images of objects or scenes. It can obtain 

detailed information about targets‟ shape, position, and 

movement, even in challenging environments such as 

through walls, foliage, or adverse weather conditions [3]. 

Holographic radar imaging offers several advantages 
compared to traditional radar imaging techniques. It provides 

high-resolution imaging capabilities, allowing for detailed 

analysis of complex scenes [4].  

X-ray backscatter imaging and holographic radar are two 

distinct imaging techniques used in different applications and 

operating principles [5]. X-ray backscatter and radar imaging 

are other imaging techniques that can be used for various 

applications, such as security screening, medical imaging, 

and geophysical exploration [6]. It can also penetrate through 

certain materials or obstacles that may impede other imaging 

methods. Holographic radar imaging finds applications in 
various fields, including aerospace, defence, surveillance, 

remote sensing, and environmental monitoring. The specific 

implementation of holographic radar imaging systems may 

vary depending on the radar technology, signal processing 

techniques, and computational algorithms. The advancement 

of holographic radar imaging continues to be an active area 

of research, aiming to improve imaging quality, resolution, 

and system performance [7, 8]. 

X-ray backscatter imaging involves using high-energy 

X-rays to create images of objects by measuring the 
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backscattered radiation produced when the X-rays interact 

with the thing. The resulting image provides information 

about the object‟s internal structure and composition [9]. 

Radar imaging, on the other hand, uses radio waves to create 

images of objects by measuring the time delay and strength 

of the reflected signals. The resulting image provides 
information about the object‟s shape and position. 

Combining the two imaging techniques can provide a more 

comprehensive and accurate picture of the object being 

imaged [10]. For example, combining X-ray backscatter 

imaging with radar imaging in security screening 

applications can help detect concealed weapons or explosives 

that might be missed by either technique alone. 

The existing literature can be critically reviewed to 

identify research gaps in feature transform-based fusion of 

X-ray and radar images. Basic fusion methods and traditional 

algorithms may be the focus of many studies. Developing 

more advanced and effective feature transformation 
techniques tailored explicitly for X-ray and radar image 

fusion could be lacking. Modality, data acquisition, and 

characteristics of X-ray and radar images differ significantly. 

Medical imaging, remote sensing, or security applications 

may require more research into domain-specific feature 

transformation methods for X-ray and radar image fusion. In 

contrast to previous research, this study combines multiple 

transformation techniques to exploit their complementary 

strengths rather than focusing on a single type of feature 

transformation (e.g., wavelet, Fourier, or CNN-based 

features). 

2. Related Works 
In medical applications, separated format images fail to 

provide appropriate information for diagnosis. As a result, it 

is essential to integrate the benefits, or complementarities, of 

several image modalities. This research [11] offered an 

effective method for the fusion of medical images using the 

distinct wavelet transform and an optimization approach 
called inverse crow searching. This paper [12] presents a 

unique proposal for a synchronously adaptable framework 

for the fusion of multi-band images, which is based on 

integrated methodologies that are model and data-driven. The 

neural kernels in the initial level of the above technique‟s 

large stacking neural network with convolution for images 

were given an updated definition after applying Gaussian and 

Gaussian-Laplace filtering. This allowed the approach to be 

used for multi-band images.  

The noise from speckles dramatically affects the image 

clarity by diminishing the image‟s features, such as edge 
details, reducing the contrast, and causing resolution 

difficulties. To cut down on the speckle noise, researchers 

have looked at a few different avenues of inquiry [13-15]. In 

computer vision, „image reconstructions‟ refers to low-level 

vision tasks that restore and convert damaged images into 

excellent-quality images. Image reconstruction is used in 

medical imaging to get higher-quality images for therapeutic 

applications at a reduced cost and danger to patients [16]. 

This is accomplished via the utilization of image 

reconstruction. The Generative Adversarial Network, more 

often called GAN, is a relatively new advancement area in 

deep learning. Suppose these many forms of networks start 
cooperating and stop trying to one-up one another and 

instead start cooperating to maintain arm-in-arm links to one 

another‟s worlds. In that case, the results will be different 

[17]. This article [18] covers a method in X-ray absorption 

measurement taken across the head at several different 

angles. The absorbance coefficients of the material present 

within the skull are estimated on a machine employing these 

data; then, the results are shown as a sequence of photos of 

segments from the forehead. This research [19] gives an in-

depth status report on the various computational compression 

approaches currently used for medical imaging data. This 

article looks at the appropriate categorization, performance 
measures, practical concerns, and challenges in improving 

two-dimensional and three-dimensional medical image 

compression. 

In the recent past, the field of computer vision has seen 

significant development and undergone a revolutionary 

change from human-engineered features to automated ones 

to solve complex tasks. Whenever a discovery leads to a 

more intuitive understanding and operation of the visual 

system in humans, it will often cause a change in the strategy 

used to create algorithms for computer vision [20]. The area 

of computer vision is constantly developing and may trace its 
roots back to the discipline of neurology. In theory, recurrent 

networks can retain previous inputs and use them to generate 

the output that is now being sought. As a result of this quality 

[21], recurrent networks help predict time series and control 

processes.  

This article [22] discusses the effects that deep learning 

technologies have had on the design of cameras. A camera‟s 

primary job is to take images, but its secondary job is to 

build an image from the data it has taken. Deep learning 

helps enhance the merging of images from many apertures to 

allow task-specific array cameras when applied to lens 

design. The living body comprises an infinite number of 
intricate and complicated structures, and even though these 

structures have been researched in the past, a significant 

quantity of knowledge relevant to them is still unidentified. 

This article [23] contains a discussion of the recent 

developments in technical and analytical fields. 

3. Proposed Methodology 
X-ray backscatter imaging involves using high-energy 

X-rays to create images of objects by measuring the 

backscattered radiation produced when the X-rays interact 

with the thing. The resulting image provides information 

about the object‟s internal structure and composition. Radar 

imaging, on the other hand, uses radio waves to create 
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images of objects by measuring the time delay and strength 

of the reflected signals. In our proposed model, the Feature-

based registration method used for image registration is a 

process that aligns two or more images of the same scene 

taken from different viewpoints, time points, or imaging 

modalities. Let‟s explore each method in more detail: 
Feature-based registration involves identifying and matching 

distinctive image features to establish correspondences. 

These features can be points, edges, corners, or other 

identifiable structures. The registration process involves the 

following steps: 

 Feature Detection : Features are identified in each image 

using corner detection, Scale-Invariant Feature 

Transform (SIFT), or Speeded-Up Robust Features 

(SURF). These algorithms locate key points in the image 

that are likely to be unique and repeatable. 

 Feature Description : Descriptors are computed for each 

detected feature to capture its distinctive characteristics. 

These descriptors encode information about the local 

image patch around the feature point. 

 Feature Matching : Corresponding features between the 
images are determined by comparing the descriptors. 

Various techniques such as nearest neighbour matching, 

Random Sample Consensus (RANSAC), or geometric 

constraints can be employed to establish accurate 

correspondences. 

 Transformation Estimation : Once feature 

correspondences are established, a geometric 

transformation (e.g., affine or projective) can be 

estimated based on the matched features. This 

transformation is used to align the images. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

Fig. 1 Procedure of image registration 

Feature-based registration is robust to image intensity, 

contrast, and noise differences. It is beneficial when dealing 

with non-rigid deformations or images acquired under 

different conditions.  

However, it relies on the images‟ availability of distinct 

and reliable features. The overall architecture of the proposed 

model is shown in Figure 2. The resulting image provides 

information about the object‟s shape and position. 

Combining the two imaging techniques can provide a more 

comprehensive and accurate picture. 

3.1. Multi-Scale Feature Transform 
Multi-Scale Feature Transform (MSFT) is a computer 

vision technique that aims to improve the performance of 

feature extraction and object recognition tasks. MSFT is 

based on the idea that objects in images can have different 

sizes and resolutions, and therefore, features extracted at 

different scales can provide complementary information. 

MSFT achieves this by applying multiple filters with varying 

heights to the input image and concatenating their outputs to 

create a multi-scale feature map.  

The MSFT approach has been utilized in computer 
vision applications, such as object detection, segmentation, 

and image classification. One notable application of MSFT is 

in the YOLOv4 object detection algorithm, which uses a 

spatial pyramid pooling module based on MSFT to capture 

features at different scales. The Multi-Scale Feature 

Transform (MSFT) algorithm may be classified into the 

following steps: 

Input image: The MSFT algorithm takes an input image 

as its input. 

Scale selection: The algorithm selects multiple scales for 

feature extraction. This can be done using techniques such as 

Gaussian pyramids or image rescaling. 

Feature extraction: The algorithm applies convolutional 

filters of different sizes to the input image at each selected 
scale to extract features. These features are then concatenated 

to create a multi-scale feature map. 

Pooling: The multi-scale feature map is then processed 

using a pooling operation to aggregate features at each scale. 
The pooling operation can be performed using various 

techniques, such as max or average. 

Output: The resulting multi-scale feature vector is then 

used for object recognition or other computer vision tasks. In 

summary, MSFT is a technique that leverages multi-scale 
information to improve feature extraction and object 

recognition performance in computer vision tasks. 
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Fig. 2 Overall architecture of proposed system 

            
Fig. 3 Steps involved in MSFT 

In Figure 3, the input image is first processed by 

selecting multiple scales to extract features using 

convolutional filters. The resulting segments are then 

concatenated to create a multi-scale feature map, which is 

processed using a pooling operation. The productivity of the 

pooling operation is a multi-scale feature vector that can be 

used for object recognition or other computer vision tasks. 

3.1.1. Pseudocode for MSFT 
function MSFT(xray_image, radar_image): 

    pyramid1 = constructImagePyramid(xray_image) 

    pyramid2 = constructImagePyramid(radar_image) 

        for scale_level = pyramid1.numLevels to 1 do: 

        current_ xray_image = 

pyramid1.getImageAtLevel(scale_level) 

        current_ radar_image = 

pyramid2.getImageAtLevel(scale_level) 

                features1 = detectFeatures(current_ xray_image) 

        features2 = detectFeatures(current_ radar_image) 

                matches = matchFeatures(features1, features2) 

                transformation = estimateTransformation(matches) 

                if scale_level > 1: 
            upscale transformation to the next level 

            return transformation 

function constructImagePyramid(image): 

    pyramid = empty Pyramid() 

    pyramid.addImage(image) 

   current_image = image 
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while current_image.width > min_width and 

current_image.height > min_height: 

        current_image = downsample(current_image) 

        pyramid.addImage(current_image) 

      return pyramid 

function detectFeatures(image):    // Perform feature 
detection using a specific algorithm 

    features = featureDetectionAlgorithm(image) 

    return features 

function matchFeatures(features1, features2):    // Perform 

feature matching using a specific algorithm 

    matches = featureMatchingAlgorithm(features1, features2) 

    return matches 

function estimateTransformation(matches):    // Perform 

transformation estimation using a specific algorithm 

    transformation = 

transformationEstimationAlgorithm(matches) 

    return transformation 
function downsample(image):    // Perform image 

downsampling to reduce resolution 

    downsampled_image = resize(image, scale_factor) 

    return downsampled_image 

 

3.2. Multi-Scale Fusion 

Multi-scale fusion combines information from multiple 

scales or levels of an image pyramid to generate a fused 

output.  

3.2.1. Pseudocode of Multi-Scale Fusion Algorithm 

function MultiScaleFusion(image_pyramid): 
    num_levels = image_pyramid.numLevels 

    fused_image = createEmptyImage() 

        for scale_level = 1 to num_levels do: 

        current_image = 

image_pyramid.getImageAtLevel(scale_level) 

        fused_image = fuseImages(fused_image, 

current_image) 

     return fused_image 

function fuseImages(xray_image, radar_image): 

    // Perform fusion of two images using a specific algorithm 

    fused_image = imageFusionAlgorithm(xray_image, 

radar_image) 
    return fused_image 

The pseudocode assumes the existence of an image 

pyramid, which contains images at different scales or 

resolutions. The MultiScaleFusion function iterates over the 

image pyramid levels, starting from the lowest resolution, 

and fuses each level‟s image with the previously fused result. 

The fused image is updated and passed to the next level until 

all levels are processed. The final fused image is then 

returned. 

The fuseImages function represents the specific fusion 

algorithm used to combine two images. The details of this 
algorithm will depend on the requirements and techniques 

employed in the fusion process. It could involve blending, 

weighted averaging, wavelet transforms, or other fusion 

methods. The quantity of data transmitted after the initial 

image to the merged image is calculated using mutual 

information. 

                      (1) 

Where, 
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      ∑      
   

    
   (3) 

P is the density of edge_probability, PFA and PFB is the 

density of joint_probability. It is possible to determine how 

much information is contained in fusion results by utilizing 

the entropy: 

    ∑          
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Where,     is a Gray level probability distribution with 

pixel information.The average gradient represents an image‟s 

resolution.    has a gradient in all directions. 
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3.3. Inverse Transform 

Once performed a transformation on an image and want 

to reconstruct the transformed image back to its original form 

using an inverse transform function with the following 

pseudocode: 

def inverse transform(original_image, transformed_image, 

transform_function): 

    # Apply the inverse transformation function to the 

transformed image 

    inverse_transformed_image = 

transform_function.inverse(transformed_image) 
        # Apply the inverse transformation to the original image 

    reconstructed_image = inverse_transformed_image + 

original_image 

   return reconstructed_image 

In the above pseudocode, the inverse transform function 

takes three parameters: the original image, the transformed 

image, and the inverse transformation function. Here, we 

assume that the inverse transformation function is defined 

and provided separately. 

The inverse transformation function 

transform_function.inverse(transformed_image) applies the 
inverse operation to the transformed image, recovering the 
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intermediate representation obtained during the 

transformation process. After that, the visual that has been 

rebuilt is generated by appending the image that has been 

inversely converted to the initial image. This step combines 

the information from the original image with the recovered 

transformed information to restore the image to its original 
form. 

4. Experimental Analysis 
Tsinghua University contributed the X-ray scattering 

images for this work, while the radar images were created by 

the National University of Defence Technology‟s 

Holographic Subsurface Radar. Figure 4 shows an X-Ray 

image, radar image and a denoised image. The experimental 
metal target has a radius of 15 millimetres. The X-ray image 

is augmented to provide uniformity between the two kinds of 

images. 

            
                X-Ray Image                                         Radar Image 

 
Dinoised Image 

Fig. 4 Aligned images 

In theory, weighting fusion is simple to construct but has 

deprived edge deterrence. With three directional resolutions 

and the ability to rebuild accurately without losing 

information, Inverse Transform is well suited for analyzing 

approximations and detailed information. Nevertheless, it 

lacks translation consistency. The multi-scale geometric 

technique solves Inverse Transform shortages and more 

successfully represents rich textural and high dimensional 
information, although its density is relatively high, as shown 

in Figure 5. 

 
Fig. 5 Fusion result after inverse transform 

Radar and X-ray images contain inaccurate information, 

unlike previous image fusion techniques. The fused image is 

anticipated to retain more useful information after the image 

fusion operation. Consequently, subjective analysis must be 

conducted to determine the fusion method‟s overall 

effectiveness. 

 
Fig. 6 Performance comparison 

This paper compares our proposed fusion algorithm with 

the normal fusion algorithm. It shows that our proposed 

model gives better precision than the existing method, as 

shown in Figure 6. 

Integrating multi-scale feature modifications is a 

fundamental element of the suggested methodology. Various 

feature representations at varying scales are leveraged in this 

approach. Hybrid approaches capture fine details and global 

context simultaneously, which results in better-fused images 

than traditional single-scale approaches. 

5. Conclusion 
The qualities of X-ray scatter images and radar images 

are evaluated in this paper. Denoising an X-ray backscattered 

image requires simultaneously determining the target‟s 

appearance and radiofrequency characteristics.  

Multi-scale fusion integrates the recovered targeted 

image into the Radar image. The basic functions and 

decompose levels are frequently fixed in multi-scale 

transform-based algorithms that combine infrared and visible 

images.  

Data-driven selection of the optimal visualization of 

source images is still challenging, and adapting 

decomposition levels is also challenging. Flexible basis 
functions for enabling data-driven selection remain difficult 

to select. A hybrid method of combining infrared and visible 

images should combine the advantages of several image 

fusion techniques to achieve effective results. 
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