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Abstract - Parkinson’s Disease (PD) is a common neuro disorder that leads to reduced nerve function in the brain as a result of 

decreased dopamine generation. The disease is progressive, and patients may have difficulty speaking, resulting in speech 

variations. Hence, it is essential to detect the disease at an early stage, and through proper diagnosis, the effect of Parkinson’s 

Disease can be controlled. This work aims to detect and classify PD based on a vocal feature set using a hybrid CNN-ALSTM 

model. The model is trained with Spectral, Acoustic, and Mel-Spectrogram features obtained from denoised voice signals. This 

proposed work involves four phases. In the first phase, voice signals are extracted from the voice input data, and de-noising is 

done using Improved Optimized Variational Mode Decomposition (IO-VMD). In the second phase, the Mel-Spectrograms are 

generated from the pre-processed data, where deep features are extracted and trained using Custom CNN, EfficientNetB0, and 

Inceptionv3 models. In the third phase, a metaheuristic Squirrel Search Water cycle Algorithm (SSWA) is applied to the feature 

vectors, where SSWA is used for feature selection and hyper parameter tuning. Finally, the spectral and acoustic features 
extracted from voice signals are concatenated with the mel spectrogram feature vectors, trained, and classified using the 

Attention based Long Short Term Memory (ALSTM) model. A comparative analysis of models like CNN-ALSTM, Inceptionv3-

ALSTM, and EfficientNetB0-ALSTM is carried out to classify PD. From the result analysis, the SSWA algorithm with a proposed 

hybrid EfficientNetB0-ALSTM model achieves an accuracy of 96.8% and performs better than the other models. 

Keywords - Neural network, Optimization algorithm, Spectrogram, Transfer learning, Voice signal. 

1. Introduction 
PD is a weakening nerve de-generative sickness. Even 

though the reason for the sickness is yet to be identified, it is 

recognized by the slow decline of dopamine-carrying neurons 

in the affected person’s brain. The early diagnosis of PD with 

minimal cost will help in the treatment of those already 

suffering and those at risk of being affected by it. The statistics 

also reveal that PD is diagnosed more frequently in men 

compared to women [1].  

The current state of PD treatment consists of symptoms 

that can be reduced or made inactive based on medication.  

Motor and non-motor symptoms are the two different kinds of 

PD symptoms. Generally, motor symptoms involve difficulty 
in muscle movement, resulting in severe movement problems, 

namely bradykinesia, firmness, trembling, and cognitive 

impairment. In contrast, non-motor symptoms result in 

sleeping disorders, weakness, dysphagia, depression, etc [2]. 

Though there are various symptoms categorized, the 

primary sign of the disease is speech difficulty, which occurs 

in 90% of people [3] with variations in the jitter feature, 

shimmer feature, and other baseline acoustic characteristics in 

the voice. These variations lead to hoarseness, roughness, and 

strain in the voice. Speech impairment occurs due to a lack of 

muscle coordination in the vocal cord. It is widely accepted 

that changes in acoustic elements in a person’s voice greatly 

reflect PD progression, which makes many researchers work 
on voice processing and analysis to develop an automated 

data-driven framework for PD detection [4].  

Speech impairment is evaluated at present primarily 

through clinician examinations and conducting questionnaire 

sessions with patients and caretakers as well concerning the 

patient’s nature of work, day-to-day routine, hobbies, sleeping 

time and other difficulties and to rate them based on the 

Unified PD Rating Scale (UPDRS) ranging between 0-4. 

Though clinicians use this method for identifying the disease 

in most cases, it has some limitations, including the 

differences in disease progression that could be seen between 
two patients with the same score [5]. 

Detecting and managing neurodegenerative diseases in 

their early stages is crucial for improving quality of life and 

http://www.internationaljournalssrg.org/
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slowing disease progression. Though it is true that many 

neurodegenerative disorders currently have no cure, an early 

diagnosis and intervention can help control symptoms, delay 

progression, and provide patients with better care and support.  

Diagnosis allows healthcare providers to initiate appropriate 

treatment and interventions at an earlier stage of the disease. 
This can help control the motor symptoms of PD more 

effectively and delay the onset of complications [6]. 

In the current era, AI models perform better at diagnosing 

Parkinson’s Disease, which helps clinicians with further 

treatment. Convolutional Neural Network (CNN) models help 

diagnose PD by training the image data, mostly gait images, 

brain MRI and CT scan images, and extracting the features at 

higher level layers. CNN improves the feature learning ability 

of the model and detects the disease accurately in most cases 

[7]. PD detection using Recurrent Neural Network (RNN) is 

familiar using time-frequency analysis with a deep learning 

shrinkage network and EEG signals. The model yields a better 
classification if more information is present in the data [8].  

Recent studies show that feature selection techniques 

combined with the deep learning model enhance the accuracy 

of PD detection, including minimum redundancy, maximum 

relevance, genetic algorithm [9, 13], multiple fine-tuning 

approaches with CNN and voice features, mel-frequency 

spectral coefficients, Principal Component Analysis [10, 11], 

etc. are used with deep neural networks for better 

performance. This work proposes hybrid deep learning 

models with the IO-VMD and SSWA optimization 

algorithms. The main contributions of the current study are: 

 Pre-processing the input voice signals using the IO-VMD 

algorithm 

 Generation of Mel-Spectrogram images from pre-

processed data. 

 Deep feature extraction using the Custom CNN, 

Inceptionv3, and EfficientNetB0 models. 

 Use the Squirrel Search Water cycle optimization 

Algorithm (SSWA) to select the optimal features and fine-

tune the hyper parameters. 

 Integration of optimized features with extracted baseline 

acoustic and spectral features to make a single hybrid 
feature vector and fed to the ALSTM model for PD 

classification. 

 A comparative analysis of hybrid models CNN-ALSTM, 

Inceptionv3-ALSTM, and EfficientNetB0-ALSTM, along 

with SSWA, is carried out to increase the classification 

performance. 

This research work is prepared as follows: In section 2, 

associated works are discussed, and in section 3, the dataset 

used and workflow methodology are given. In section 4, 

implementation results with discussions are provided. The 

conclusion part and the future scope are given in section 5.  

2. Related Works 
Voice data has indeed gained attention in diagnosing 

Parkinson’s Disease (PD) because vocal impairment is a 

common and often early symptom in some patients. Early 

detection of PD can be challenging, as the symptoms can be 

subtle and easily missed during routine clinical evaluations. 

Specifically, the latest research indicates that speech 

abnormalities can appear up to ten years before the symptoms 

of a cardinal motor deficit [12]. The statistical parameters are 

calculated via a Support Vector Machine (SVM) with a 

genetic algorithm and a discrete wavelet transform. Statistical 

methods can be used to determine the pattern difference 

between Parkinson’s sufferers’ speech patterns and those of 
normal individuals [13].  

In a recent study [14], a model-driven and data-driven 

approach was developed as a decision-making process for 

pathological voice and addressed gender difference issues. 

Using the Chisquare L1 normalization SVM algorithm, a 

multiple-level feature selection strategy is employed to 

identify PD from features, including voice recordings. KNN, 

SVM, and DT were used for PD classification, with KNN 

yielding the potential outcome [15].  

An end-to-end strategy employing a CNN-multi layer 

perceptron neural network achieves 68.6% accuracy, whereas 
a feature-derived model using SVM achieved 67.9% accuracy 

using the PC-Gita speech dataset [16]. The authors in [17] used 

the Intrinsic Mode Function Cepstral Coefficient feature 

(IMFCC) for detecting PD from speech signals but with 

minimal dataset samples of 25 PD and 20 healthy controls. In 

[13], discrete wavelet transform is applied by an evolutionary 

genetic algorithm with a support vector machine to detect PD. 

However, the classification performance is not satisfactory.  

The authors in [18] have developed an automated 

diagnosis of PD by using Bidirectional LSTM and Wavelet 

Scattering Transform to identify speech disorders in patients 

having central nervous issues. Comparable research was done 
using spectrogram-derived deep features [11, 18].  

The study [19] used a variety of machine learning 

classifiers to analyze mPower data with shimmer and glottal 

quotients features for hand-held voice analysis for Parkinson’s 

Disease (PD) detection, achieving 71% accuracy.  The study 

[20] uses MDVP audio data in a random forest, KNN, and 

logistic regression models. A random forest model with 

relatively little (30 PD data) achieved 91.8% of the 

classification accuracy. 

Voice analysis and machine learning models can 

potentially provide a non-invasive and objective method for 
identifying early signs of PD. Apart from speech signals, 

many research studies were carried out using gait symptoms, 

handwriting, circle drawing images, and memory games for 
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PD detection [21]. Early diagnosis is a crucial step in 

effectively managing Parkinson’s Disease. It allows for timely 

intervention, personalized treatment plans, and proactive 

measures to balance symptom control with preventing 

complications like levodopa-induced dyskinesias [22]. 

However, most published works use very limited datasets and 

collections of features (often less than 50 instances), and no 

statistical comparison has been made over a more extensive 

range of illness phases, medication information, or 

impairment severity.  Table 1 gives the recent literature studies 

on the detection of PD with the methodology used, dataset 

details and accuracy obtained.  

Table 1. Recent literature works for Parkinson’s Disease classification based on voice features 

Objective Methodology Used Dataset Used 
Model 

Performance 

PD detection with an 

ensemble approach [1] 

Ensemble model with Optimal 

Features and Sample dependant base 

Classifiers (EOFSC) with DNN 

Speech, voice and vowel 

phonation data - 20 disease 

and 20 Healthy  from the 

UCI Repository 

Accuracy 87.5% 

Ensemble classification 

using voice samples [4] 

Sequential backward selection with 

wrapper method for feature selection 

and ensemble classifiers 

UCI archives with 32 

samples (23 PD and 8 

healthy) 

Accuracy 90.0% 

Augmentation of PD 

voice data [23] 

Deep CNN model - Xception is used 

for training and to evaluate the 

performance, Xception model is used 

PC-GITA dataset is used 

Accuracy 82.12% 

for word set and 

92.3 for vowel /a/ 

PD detection using 

optimization algorithm 

[24] 

Chronological Smart Sun Flower 

Optimization Algorithm (CSSFOA)   

for feature selection with ZF net 

model 

mPower voice data Accuracy 94.5% 

ML vs DL comparison 

for PD [25] 
CNN, KNN, SVM and Naïve Bayes 

266 healthy and 160 PD  

from Italian native speakers 
82.2% accuracy 

PD based on smartphone 

data [26] 
RBF kernel SVM with MFCC 

mPower voice data (1000 

samples) 
90% accuracy 

PD detection using time 
series data [27] 

Time series features with 1D and 2D 
– Convolutional Neural Network 

i.  Gyenno Science Research 

Center 
ii. PC-PITA dataset 

81.6% and 92.0% 
accuracy 

PD using multi-class 

data [28] 

Genetic Algorithm with Naïve Bayes 

and MLP 
111 healthy and 51 PD 95% accuracy 

Dysphonic voice in PD 
diagnosis [29] 

Boruta wrapper technique for feature 

selection and classification using 
various machine learning algorithms, 

including KNN, DT, RF, LDA, 

XGBoost, etc. 

176 Healthy and 178 PD 
samples from Italian, 

Spanish, Czech language 

91% accuracy on 
average 

PD detection using semi-

supervised competitive  

learning [30] 

Correlation pattern analysis using  

Pearson’s correlation coefficients and 

PCA with KNN and SVM classifier 

UCI machine learning 

repository with 80 subjects 

PD 40, Healthy 40 

83.8% 

accuracy by SSCL 

method. 
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2.1. Challenges 

The existing literature shows the performance of various 

models in detecting Parkinson’s Disease. Even though models 

of neural networks can extract features at higher layers, very 

few studies incorporate optimization strategies to pick 

relevant components for deep neural network training, and 
only a restricted number of attributes are studied. Hand-

crafted features were most prominently used for PD diagnosis 

using traditional ML algorithms. But did not provide a 

satisfactory outcome. Moreover, processing voice samples 

directly into a neural network is  not effective. Because one 

second of audio, when processed at 44.1KHZ sampling rate, 

would give 44100 sample points (features), which is enormous 

for the neural network to handle. So, the proposed study shows 

a better and more prominent feature selection method using 

the meta-heuristic SSWA optimization algorithm for 

enhanced classification accuracy of PD in the hybrid CNN- 

ALSTM Model. 

3. Methodology  
The proposed work depicts PD detection and 

classification using voice input data. The input signals are pre-

processed using Improved Optimized-VMD and filtered to 

eliminate the noise in the data. From the denoised voice 

signals, Mel-Spectrogram images are extracted for further 
processing. The images are trained using a custom CNN 

model [31], Inceptionv3 [32], and EfficientNetB0 [33] models, 

followed by hyperparameter tuning using a novel SSWA 

optimization algorithm. From the initial population, the fitness 

function is computed based on squirrel migration and the 

feature vectors are generated until stop criteria are reached. 

The highly correlated features are extracted from the 

spectrogram images. The temporal features are extracted from 

the optimization result, and baseline acoustic and spectral 

features where the embedded vectors are generated. Highly 

correlated components are selected for reconstructing the 

original signal, and the proposed architecture is given in 

Figure 1. 

3.1. Dataset Description  

In the proposed work, the mPower dataset [34] obtained 
from the synapse is used along with a demographic survey. 

The dataset contains audio recording samples of healthy 

subjects and disease-affected individuals, in which 12,300 

samples of healthy controls and 12,100 PD voice recordings 

were considered for this study for training from 65022 

samples. These samples are fine-tuned based on the 

demographic survey, as shown in Figure 2. The mPower 

dataset requires participants to record a sustained phonation 

by pronouncing /aa/ into the iPhone microphone for 10 

seconds. The recordings of voice are collected based on the 

medicine taking time, like right after or before taking 

Parkinson’s medicine, I don’t use Parkinson’s medication, and 
it has no value. 

3.2. Data Pre-Processing  

Each audio sample is 10 seconds long. The signals are 

converted into frames and stored as frames for feature 

extraction, and the frame length is chosen as 30 ms. 40% over-

binning is fixed for smooth transitions. 

P = {p1,  p2, … . , pi, … . pj} (1) 

The sequence of voice signals is represented as P, as given 

in Equation 1, where it denotes the ith voice signal and j denotes 

the total count of input voice signals. Pre-processing and de-

noising using IO-VMD are performed to lessen the noise in the 

input speech signals.

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 1 Architecture diagram of the proposed hybrid CNN-ALSTM model for PD classification 
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Fig. 2 Fine-tuned mPower voice dataset 

3.3. Improved Optimized Variational Mode Decomposition 

(IO-VMD) for De-Noising 

Variational Mode Decomposition (VMD) is a pre-

processing method used in signal processing applications to 

decompose the non-stationary signals [35], F(t), into discrete 
modes or sub-signals NK(t). Each method of the signal NK(t) 

is localized on a central frequency WK(t), and the result of 

applying the Lagrangian multiplier for converting to non-

constraint optimization  is, 

𝐿{𝑁𝐾, 𝑊𝐾, 𝜆} = 𝛼 ∑ ||𝜕𝑡 [(𝜕𝑡 +
𝑗

𝜋𝑡
) ∗ 𝑁𝐾(𝑡)]𝑘

𝐾=1 𝑒−𝑗𝑊𝐾||  +

𝐹(𝑡) − ∑ 𝑁𝐾(𝑡)||𝐾
𝑛=1   +  〈𝜆(𝑡), 𝐹(𝑡) − ∑ 𝑁𝐾(𝑡)〉         (2) 

In Equation 2, λ is the Lagrangian multiplier, 𝜕 is the time 

derivative, K ->{1, 2,…, k} represents the number of IMFs and 

* denotes the convolution operation. The noisy signals are 

converted to Intrinsic Mode Functions (IMFs) to decrease the 

low-frequency and high-frequency noise signals.  

The issues revolve around tuning the hyperparameters, 

precisely the parameters K and penalty α, and the time-

consuming process of identifying their optimal values. In an 

Improved Optimized Variational Mode Decomposition (IO-

VMD), the Shannon entropy measure of the signal is used to 
determine these parameters automatically.  

The low Signal-to-Noise Ratio (SNR) tends to exhibit 

higher entropy, which implies that a minimal set of modes may 

suffice due to the masking effect of noise on the discriminative 

features of the signal. Consequently, the number of modes in 

IO-VMD is inversely related to the signal’s entropy. α 

parameter can be identified using the entropy measure, 

considering the distortion effects on the frequency 

characteristics of the signal. 

 Integrating the Shannon entropy measure into the pre-

processing step to automatically determine parameters could 

streamline the optimization process and mitigate the 
computational burden associated with parameter tuning. 

3.3.1. Algorithm for Improved Optimized Variational Mode 

Decomposition 

Input: f -> signal to be analyzed,  

n -> number of modes,  e -> level of tolerance 

Output: K, ∝ 

1. Initialize: ∝, Kmin, Kmax    

Let K = Kmin. Set Kmin = 1 and Kmax  = 15 

2. Compute the energy loss coefficient denoted by e.  

                               e = ‖f − ∑ uk‖/‖f‖  

           Where, uk is the Kth mode function 

3. If  e < μ1 , calculate Shannon entropy of every mode μk 

K =  ⌊Kmax − (S(fi (t)/Smax ) / (Kmax ) + Kmin⌋ (3) 

∝ = (|((S(fi (t) − Smin)/ (smax – smin)|) ∗∝s) +∝b (4) 

 S(fi (t) is the Shannon entropy and Smin and Smax are the 

smallest and highest Shannon entropy values in the 

dataset. ∝s  represents the step value and ∝b denotes the 

base value, which is set as 1000.  

4. Else, iterate K= K+1. 

5. To terminate the execution, check the condition given in 

Equation 5, 

mPower 

Dataset 

(Voice 

Samples) 

Clinical 

Diagnosis? 

Deep – Brain 

Simulation? 

False 

True 

True 

False 

Unknown 

Medication 

Time Point 

Just after PD Medication  

I Don’t Take PD 

Medication 

Parkinson’s 

Healthy 

Immediately before 

PD Medication 
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∑ ‖μk
n+1−μk

n‖k

‖μk
n‖

< e                (5) 

Till the above condition is satisfied, iterate the process. 

The optimal output is obtained using IO-VMD. 

6. Return μk of each mode, K and penalty parameter∝. IO-

VMD estimated the optimal K value as 12 and ∝=
10000. The maximum value of ∝ is 20000. 

3.4. Feature Extraction  

Baseline acoustic and spectral features are extracted using 

the librosa audio library and implemented in Python. The 

tool’s versatility is beneficial for both developing the 

proposed model and managing the essential characteristics of 

audio signals for the classification of PD. Different types of 

vocal feature sets are extracted for the proposed work from 

mPower dataset samples. 

3.4.1. Generation of Mel Spectrogram Features 

Mel-Spectrograms are well suited for audio analysis. It is 

a 2D representation of an audio signal over frequency and time 
[7]. Spectrogram images can be deeply analyzed using the 

CNN model’s convolutional layers, pooling layers, and other 

architectural elements. It is obtained by computing a Fast 

Fourier Transform on each window to move from the time to 

the frequency domain, generating the signal’s power 

spectrum. Then, a mel filter bank is applied to simulate human 

auditory perception.  

For many voice recognition applications, the Mel 

frequency is used, which scales up to 1 kHz and increments 

logarithmically for greater values. It is the rate of the tone 

chosen by the human ear. A colour map is used to depict each 
frame’s power and energy spectrum, with the intensity of the 

colours denoting the signal’s higher energies. Table 2 shows 

the parameter settings for generating spectrograms from the 

speech input signals. Figure 3 gives the process of developing 

the Mel-Spectrogram. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Generation of Mel-Spectrogram 

Table 2. Parameter settings for generating Mel-Spectrogram 

Parameter Used Value 

Sampling rate 44.1kHz 

Frame length 30ms 

Window length 2048 

Frame shift 11.61ms 

 

3.4.2. Spectral and Acoustic Features 

Table 3 describes extracted spectral and acoustic features. 

Five jitter variants, five shimmer variants, two mean harmonic 

parameters, six spectral characteristics, and 39 MFCC 
coefficients and 39 GTCC coefficients (0 order, 1st order, and 

second order delta co-efficient values with energy coefficient 

factor) are computed from voice signals using the librosa 

python package and voice box toolkit. 

Table 3. Extracted baseline acoustic & spectral features 

Parameter Features Description 

Frequency 

LocalJitter, 

local absolute jitter, RapJitter, ppq5Jitter, 

ddpJitter 

Variations in cycle-to-cycle duration with 

respect to frequency 

Amplitude 
Local shimmer, local dB shimmer, 

apq3Shimmer, apq5Shimmer, ddaShimmer 

Variations in cycle to cycle duration with 

respect to amplitude 

Harmonicity Noise to harmonic, harmonic to noise 
Expressed in dB. It indicates the harmonics 

and noise present in the signal 

Spectral features 

Spectral flux, spectral kurtosis, spectral 

centroid, spectral spread, tonal power ratio, 

fluctuation index 

Frequency domain representation indicates 

the frequency distribution of voice signal 

performed using  Fourier analysis 

Mel Frequency Cepstral 

Coefficients and 

Gammatone Cepstral 

Coefficients 

Zero order, first order and second order 

derivatives 

MFCC coefficients and GTCC coefficients 

gives the spectral characteristics of voice 

signal 
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3.5. SSWA Optimizer for Feature Selection Process 

SSWA is a fusion of SSA [36] and WCA [37] meta-

heuristic optimization algorithms. WCA addresses various 

optimization issues and provides optimal solutions. WCA is 

capable of solving combinatorial optimization problems with 

less computational effort.  

The SSWA algorithm is devised by employing the 

characteristics of the food nature of squirrels and the flow of 

water through the river and streams towards the sea. It is more 

robust and scalable for solving real-time optimization 

problems and provides global optimal solutions. 

𝑄 = {𝑄1, 𝑄2, … . . , 𝑄𝑖 , … . . , 𝑄𝑗 , 1 ≤ 𝑖 ≤ 𝑗}           (6) 

In Equation 6, j represents the total solution and Qi shows 

the ith solution.  

3.5.1. Computing Fitness Function 
It is computed using the Canberra distance metric for 

finding out the optimal parameters and is defined as, 

𝐶𝑛𝑏 = ∑
|𝐹𝑖

𝑗
−𝐹𝑖

𝑗+1
|

|𝐹
𝑖
𝑗

|−|𝐹
𝑖
𝑗+1

|

𝑛
𝑖=1                               (7) 

In Equation 7,  Fi
j
 and Fi

j+1
 denote the next consecutive 

features.  

3.5.2. Finding New Update Solutions 
The new positions of the stream and river populations are 

updated using WCA, and the update equation is given in 

Equation 8. 

𝑄𝑠𝑡𝑟𝑒𝑎𝑚
𝑗+1

= 𝑄𝑠𝑡𝑟𝑒𝑎𝑚
𝑗

+ 𝑟𝑎𝑛𝑑 𝑋 𝑙 𝑋 (𝑄𝑠𝑒𝑎
𝑗

− 𝑄𝑠𝑡𝑟𝑒𝑎𝑚
𝑗

) (8) 

Where, l denotes the cost estimate function, r and 

indicates the random distribution between [0,1], Qsea
a  shows 

the current position of the sea population and Qstream
a  denotes 

the exact position of the stream population. 

The new update position is computed in Equation 9 as, 

𝑄𝑟𝑖𝑣𝑒𝑟
𝑗+1

= 𝑄𝑟𝑖𝑣𝑒𝑟
𝑗

+ 𝑟𝑎𝑛𝑑 𝑋 𝑙 𝑋 (𝑄𝑠𝑒𝑎
𝑗

− 𝑄𝑟𝑖𝑣𝑒𝑟
𝑗

) (9) 

The new updated position of SSWA is given as, 

𝑄𝑠𝑡𝑟𝑒𝑎𝑚
𝑛𝑒𝑤 =

𝑎𝑐𝐵𝑑

𝑎𝑐𝐵𝑑−1
[√𝜇𝑟𝑎𝑛𝑑 𝑓(1, 𝐸𝑣𝑎𝑟) −

𝑄𝑗(1−𝑎𝑐𝐵𝑑)

𝑎𝑐𝐵𝑑
](10) 

In Equation 10, μ denotes the search position coefficient, 

Evar denotes design variables, rand f  shows the normal 

distribution function that generates random numbers.  

ac shows random gliding distance and Bd random number 

with a default value of 0.9 and Qstream
new  denotes the position of 

the new stream. By integrating the optimal solution of the SSA 

and WCA algorithm, the new update equation of SSWA is 

obtained. For each solution update, the fitness function is 

calculated, and after reaching maximum iterations, the best 

solution has arrived, and the optimal features of PD are 

extracted.  

3.6. Deep Feature Extraction Using CNN Based 

Architectures 

This study uses the architectures of  custom CNN, 

adaptive transfer learning Inceptionv3 and EfficientNetB0 

CNN models for deep feature extraction.  

3.6.1. Custom Convolutional Neural Networks (CNN) 

The custom CNN model uses five convolutional layers, 

three Fully Connected (FC) layers, and four max pooling 

layers. The Convolutional layer extracts highly intense and 

prominent regions from the input. The kernel size is set as 

three, and the padding value is one, followed by a pooling 

layer for downsampling.  The max pooling layer has a stride 
value of 2 and a learning rate 0.0001. In contrast, the dropout 

layer 0.5 enhances model accuracy by eliminating local 

optimum solutions with the number of epochs to 50. The 

convolution process is given in Equation 11. C represents the 

output of the convolution operation. P is an image, and K 

shows kernel size. a, b denotes row and column matrix. 

C[𝑎, 𝑏] = (𝑃 ∗ 𝐾)[𝑎, 𝑏] = ∑ ∑ 𝐾𝑗𝑖 [𝑖, 𝑗](𝑃)[𝑎 − 𝑖, 𝑏 − 𝑗] (11) 

3.6.2. Inceptionv3 Model 

 Inception-V3 is a commonly used model for image 

classification tasks. It consists of symmetric and asymmetric 
components encompassing layers like convolution, average 

pooling, max pooling, dropout layers, concatenation layers 

and Fully Connected layers. A batch normalization process is 

used in the model, which improves the accuracy. The model 

includes the functionality of label smoothing convolutions, 

which are factorized and classifiers capable of propagating the 

label’s information down to all the layers of the network 

structure. 

3.6.3. EfficientNet Model 

 EfficientNet is a Convolutional Neural Network 

architecture that uniformly scales all dimensions using depth, 
resolution, and other metrics. EfficientNetB0 is the baseline 

architecture which uses the fixed scaling coefficients. The 

resolution, width, depth, and other parameters are scaled down 

using compound coefficients.  

The receptive field and the number of channels are 

increased depending on the size of the input image. Here, the 

input image is resized to 224*224*3.  More fine-grained 

patterns from the data are extracted well, and the network is 

tuned for good accuracy. The architecture blocks of the 

Efficient Net model for the variant B0 are given in Figure 4.   
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 Fig. 4 Architecture blocks of EfficientNet-B0 model for feature extraction 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 
 
 

 
Fig. 5  LSTM cell

3.7. Attention-Based LSTM Model (ALSTM) for PD 

Classification 

LSTMs are well-suited for processing data sequences and 
are commonly used in tasks involving time series or sequential 

data [38]. The main reason for using the LSTM model is that 

it can learn long-range dependencies. But could not hold or 

retain for a more extended period of time.  

Hence, along with LSTM layers, an attention mechanism 

is added with attention weights to capture the most prominent 

and best informative feature from the input sequence, thereby 

improving accuracy. In the proposed work, CNN features are 

fed to the attention-based LSTM model, and it is made of an 
input layer with several units representing the total features in 

the input data, two LSTM layers with variable LSTM units 

that carry input from the first layer and produce the target 

value and an attention layer. Input Gate ig(t), Output Gate 

Og(t), Forgot Gate fg(t), and Memory gate constitute each 

LSTM unit and are given in Figure 5. LSTM model structure 

for classifying PD is shown in Figure 6. 

Conv,3*3 

MBConv1,3*3 

MBConv6,3*3 

MBConv6,3*3 

MBConv6,5*5 

MBConv6,5*5 

MBConv6,3*3 

MBConv6,3*3 

MBConv6,5*5 

MBConv6,5*5 

MBConv6,5*5 

MBConv6,5*5 

MBConv6,5*5 

MBConv6,5*5 

MBConv6,5*5 

MBConv6,3*3 

Conv6,1*1 

Global Average 

Pooling 2D 
MBConv6,3*3 

Input 224*224*3 

112*112*32 

112*112*16 

56*56*24 

56*56*24 

28*28*40 

28*28*40 

28*28*80l 

28*28*80 

28*28*80 

14*14*112 

14*14*112 

14*14*112 

7*7*192 

7*7*192 

7*7*192 

7*7*192 

7*7*320 

7*7*1280 

1*1280 

C
(t-1)

 

h
(t-1)

 

C
(t)
 

h
(t)
 

X
(t)

 

Forget 

Gate 
Input 

Gate 
Control 

Gate 

Output 

Gate 

tanh 

tanh σ σ σ 

f
g(t)

 i
g(t)

 c
g(t)

 o
g(t)

 



S. Sharanyaa & M. Sambath / IJECE, 10(11), 11-26, 2023 

 

 

19 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 6  LSTM model structure 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Fig. 7 Architecture of attention-based LSTM for PD classification 

Forget gate gives the cell’s needs information and is 

presented in Equation 12. X(t) is the current input to the 

ALSTM cell, h(t-1) is the previous output, σ denotes the 

sigmoid function, W represents weight inputs, and b is the bias 

value. The sigmoid layer is known as the input gate layer, and 
it determines whether or not the value has to be updated (0 or 

1), as given in Equation 13.  The tanh layer generates a vector 

and transforms them between -1 and 1, as given by C(t) in 

Equation 14.   

 Equation 15 gives the output gate, where the sigmoid 

function decides which part of information passes to output, 

and this output is multiplied with C(t) from tanh function. 

Network parameters such as hidden units, batch size, and 

epochs were fine-tuned for better results. The dropout layer 

was also utilized to keep the model from being overfit.   

 fttftg
bXhWf   )],[ )()1()(

  (12) 

 ittitg bXhWi   )],[ )()1()( 
 (13) 

))],[tanh( )()1()( cttct bXhWc    (14) 

))],[( 0)()1()( bXhWo ttotg  
 (15) 

 )()( tanh. ttt Coh 
 (16) 

Attention-based LSTM adds an attention layer with 

weights to the traditional LSTM model. The architecture of 
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Attention-based LSTM for PD classification is given in Figure 

7.  At every time step t, the hidden layer is denoted as shown 

in Equation 17, 

 
)()1()(

, ttt
XhLSTMh 

               
(17) 

The weighted sum of encoded hidden vectors for the 

attention layer is computed by, 

)tanh( )( vthl byWWa                     (18) 

In Equation 18, Whl represents the weight vectors among 

hidden layers. 

Where, 



n

t
ttt hay

1
)()()(  

Here, a(t) represents the attention weights, h(t) denotes the 

hidden layer, and n represents the size of the input vectors.  

The attention weight a(t) is given in Equation 19 as, 
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t

t
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q
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)(

)(

)(

)exp(

)exp(
                  (19) 

Where, )tanh(
)()( qtAt

bhWq 
 

Here, WA is the parameter matrix, bq is the bias value. 

Softmax function is used in the output layer and given in 

Equation 20, where eXi is the exponential function of the input 

feature vector and eXj is the exponential function of the output 

feature vector. FC layers are connected to the softmax layer 

attached to the classification layer with two output classes, PD 

or healthy.  

SoftMax(Xi)  =
eXi

∑ eXjK
j=1

                 (20) 

4. Results and Discussion  
4.1. Implementation Results 

Figures 8(a) and 8(b) show the waveforms of healthy and 

PD samples. The Mel-Spectrogram images are generated by 

applying the mel scale from the denoised signals after pre-

processing and are given in Figure 9. The generated Mel-

Spectrogram image of healthy and PD samples is given in 

Figures 10(a) and 10(b). The custom CNN-ALSTM model 

obtained a classification accuracy of  91.1% and a validation 
accuracy of 86.32%.  As the epoch increases, the loss value 

decreases during training and is given in Figure 11. The 

Inceptionv3- ALSTM model obtained a classification 

accuracy of 94.3% and a validation accuracy of 88.68% with 

a learning rate of 0.1. The number of iterations is 48; 6 

iterations per epoch is used, and the number of epoch is set as 

8.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8(a) Waveforms - healthy sample 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 8(b) Waveforms – PD sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 MEL scale 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10(a)  Mel-Spectrogram of healthy sample 
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Fig. 10(b)  Mel-Spectrogram of PD sample 

 

 

 

 

 

 
 

 

 

 

 

  
Fig. 11 Loss value of custom CNN model 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 12 Accuracy, loss graph of Inceptionv3-ALSTM hybrid model 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Fig. 13 Accuracy, loss graph of  EfficientNetB0-ALSTM hybrid model 
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The loss value is 0.5. The sensitivity value is 95.2%, and 

the specificity obtained is 95.6%. The EfficientNetB0 - 

ALSTM model has a classification accuracy  of 96.8% and a 

validation accuracy of 94.18% with a learning rate of 0.001.  

The number of iterations is 150, and the number of epochs 

is 30 and 5 iterations per epoch are used. The loss value is 0.3. 
The sensitivity and specificity values obtained are 97.12% and 

97.69%, respectively. Figures 12 and 13 gives the accuracy 

and loss graph of the EfficientNetB0-ALSTM hybrid model 

and the Inceptionv3-ALSTM hybrid model. 

4.2. Discussion Based on Model Performance 

The performance metrics estimate the model’s accuracy, 

sensitivity and specificity. After IO-VMD and SSWA are 

applied, the maximum accuracy rate is precise at 96.8%, 

sensitivity at 97.12%, and specificity at 97.69% for the 

EfficientNetB0 - ALSTM Model with batch size 32 with a 

learning rate of 0.001.  

For batch size 32 and a learning rate 0.1, the maximum 
accuracy rate was acquired at 94.3%, sensitivity 95.2%, and 

specificity 95.6% for the Inceptionv3 model. For custom 

CNN, 91.1% accuracy is obtained, which underperforms the 

other adaptive transfer learning models.A comparative 

analysis uses CNN-based architectures, solely considering the 

Mel spectrogram feature. The performance of CNN-based 

models using Mel-Spectrogram input is higher in PD detection 
after de-noising using IO-VMD. In addition, it is discovered 

that the performance is lower than the feature-fused model.  

Table 4 gives the performance analysis metrics of CNN-

based models with Mel-Spectrogram images. In the end, a PD 

classification model that combines CNN-based architecture 

with ALSTM using concatenated features as input is used for 

comparison. It is found that the EfficientnetB0 model, when 

combined with the ALSTM model, yields a greater accuracy 

of 96.8%.  

On implementing the SSWA algorithm, both Mel 

spectrogram and concatenated features provide good 

classification accuracy.  Table 5 gives the standard metrics for 
performance evaluation on hybrid models with concatenated 

features. 

Table 4. Performance evaluation metrics of CNN models 

Mel Spectrogram Feature (without IO-VMD and SSWA) Accuracy (%) Sensitivity (%) Specificity (%) 

Custom CNN 70.3 71.38 72.82 

Inceptionv3 79.8 76.09 77.11 

EfficientNet-B0 80.8 80.3 81.21 

Mel-Spectrogram Feature (with IO-VMD and SSWA) Accuracy (%) Sensitivity (%) Specificity (%) 

Custom CNN 89.78 90.12 92.97 

Inceptionv3 90.45 91.52 91.16 

EfficientNet-B0 93.52 92.13 94.81 

 
Fig. 14 Overall comparative analysis of proposed model 
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Table 5. Performance evaluation metrics of hybrid models using concatenated features 

Proposed Model Batch-Size Learning Rate Accuracy (%) Sensitivity (%) Specificity (%) 

Custom CNN- 

ALSTM with 

SSWA 

32 

0.1 91.1 90.2 92.1 

0.01 92.7 93.1 91.4 

0.001 90.2 89.7 88.11 

64 

0.1 89.20 88.40 84.32 

0.01 80.89 83.91 89.11 

0.001 80.21 81.19 81.43 

128 

0.1 91.25 89.83 93.72 

0.01 88.76 90.80 91.43 

0.001 86.43 91.12 90.12 

Inceptionv3-

ALSTM with 

SSWA 

32 

0.1 94.3 95.2 95.6 

0.01 93.6 94.1 94.9 

0.001 91.8 92.3 92.11 

64 

0.1 92.01 93.04 94.23 

0.01 87.8 89.09 90.12 

0.001 83.12 86.89 87.34 

128 

0.1 93.52 94.13 94.81 

0.01 92.45 93.52 94.16 

0.001 91.78 93.12 93.97 

EfficientNetB0-

ALSTM with 

SSWA 

32 

0.1 95.30 96.43 96.41 

0.01 95.12 96.64 97.43 

0.001 96.8 97.12 97.69 

64 

0.1 93.85 95.02 95.90 

0.01 95.87 96.93 97.02 

0.001 95.23 96.43 96.25 

128 

0.1 95.64 96.42 97.21 

0.01 94.32 95.67 95.72 

0.001 93.18 95.41 96.21 

 

4.3. Discussion Based on Similar Studies in the Literature 

(mPower Dataset)  
Recent Literature has examined using the mPower dataset 

for PD diagnosis from voice samples. In [39], the authors used 

a time-frequency analysis algorithm on spectrogram images in 

a CNN model using the mPower dataset and achieved the best 

accuracy of 90.4%. However, the number of samples used by 

the authors is limited to 500 healthy and 500 PD.  The authors 

of [27] obtained 99% accuracy on a limited 1000 random 

speech samples from the mPower dataset, with diagnosis 

relying solely on a single dependent MFCC feature. In 
addition, the work demonstrates a lack of knowledge 

regarding noise removal in the pre-processing step. 85% PD 

detection accuracy is achieved in the cited paper [40] using the 

AVEC and GEMAPS feature sets on the mPower dataset 

using the gradient boost algorithm, and the same algorithm is 

used in [20] and obtained the lowest accuracy of  71% for PD 

detection with a high computational period of 13.5 minutes.  
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Table 6. Comparison of  proposed study with existing state of art methods 

Performance 

Metrics 
IMFCC+NN SVM+GA BiLSTM SSWA+ALSTM 

Proposed EfficientnetB0 + 

Attention LSTM 

Accuracy 0.714 0.754 0.874 0.925 96.8 

Sensitivity 0.772 0.795 0.895 0.934 97.12 

Specificity 0.705 0.745 0.865 0.914 97.69 

 

 
Fig. 15 Analysis based on the performance of proposed model with existing models 

In [41], transfer learning CNN models were used to 

reduce computation time for medical diagnosis applications, 

including Squeezenet, Densenet, and Resnet for PD detection, 

and it was reported that densenet161 obtained the highest 

accuracy of 89.7% and sensitivity of 91.5% on the same 

mPower voice dataset. On comparing the earlier cited papers, 

this proposed work gives a promising result of 96.8% accuracy 

in classifying Parkinson’s Disease. To the best of the 

information, the mPower dataset is the largest dataset for PD 
audio data.  

The performance of the proposed work is also compared 

with the state-of-the-art techniques, including Intrinsic mode 

function cepstral coefficients with neural network [17], 

Support Vector Machine with Genetic Algorithm [13], 

Bidirectional LSTM [18], SSWA with attention-based LSTM 

and the Proposed IO-VMD and SSWA based EfficentnetB0 – 

ALSTM model for Parkisnon’s disease classification and 

given in the Table 6. An Analysis of the proposed work 

compared with existing research literature work is shown in 

Figure 15.  

5. Conclusion  
The study used the mPower dataset, which contains many 

voice samples for training and classifying individuals into two 

categories (likely PD or not). After pre-processing, mel-

Spectrogram images are generated from voice samples and 

used as input data. The FC layer of Inceptionv3 and 

EfficientNetB0 models was preferred to extract relevant 

features from these images. These pre-trained CNNs are 

known for extracting high-level features from images. To 

capture sequential information from the components extracted 

by the CNNs, an ALSTM network was designed and used.  

Features extracted from CNN-based models, along with 
spectral and acoustic features, are concatenated as a single 

feature vector and given to the ALSTM model for PD 

classification. According to the study’s results, the 

EfficientNetB0 + ALSTM model with IO-VMD achieved the 

highest classification performance, with an accuracy of 

96.8%.  

This shows that the suggested technique effectively and 

efficiently detects PD from sound recordings. The research 

compares the proposed model with cutting-edge models, 

demonstrating that it achieves good efficiency in PD 

detection. This suggests that combining IO-VMD for pre-
processing, CNN-based feature extraction, ALSTM for 

classification, and SSWA optimization for hyperparameter 

tuning is a promising approach for this specific task.  
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The findings of this research are significant because they 

contribute to the ongoing efforts to develop accurate and non-

invasive methods for the early diagnosis of Parkinson’s 

Disease. Early diagnosis can lead to better management and 

treatment outcomes for individuals affected by the disease. 

However, it’s important to note that while this method shows 
promising results, further validation and testing on diverse 

datasets are typically required to assess its robustness and 

generalizability. Additionally, the clinical application of such 

models would require careful consideration of ethical and 

privacy concerns associated with patient data. Nonetheless, 

advancements in deep learning techniques hold great potential 

for improving the accuracy and accessibility of medical 

diagnostics. Future research can be conducted using different 

datasets, such as those related to gait images, memory 
patterns, handwriting images, etc., and it will be possible to 

identify different illness phases by considering the UPDRS 

scale.   
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