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Abstract - Autonomous vehicles in public transport can perform a wide range of real-world tasks such as: moving in factories, 

in public transport, in search and rescue, etc., thus requiring varying degrees of auto-navigation in response to changes in the 

environment. This paper presents the predictive model (MPC) for the active suspension system, the vehicle's damping system, 

combined with Deep Q-network (DQN) algorithm reinforcement learning method applied to control self-driving cars in public 

transport. Intelligent traffic control system to control movement to avoid fixed obstacles or movable obstacles in the event of 

external interference, taking into account the comfort of the occupants of the vehicle; taking into account the load, the 

conveying systems; for the purpose of application in the field of intelligent transportation. The research results, built on Matlab 

Simulink software, show that autonomous vehicles can safely complete intelligent navigation tasks in an unknown environment 

and become a real system intelligent with the ability to self-study and adapt well to many different environments and various 

nonlinear factors. 

 

Keywords - Autonomous vehicle, Active car suspension, Damping system, Model predictive control, Artificial intelligence, 

DQN algorithm.  

 

1. Introduction 
In recent years, advances in power electronics, 

microelectronics, and permanent magnet materials have 

enabled significant improvements in the electric drive field 

of autonomous cars and electric vehicles. More stable 

performance and dynamic state, reduced weight and mass of 

the system, unlimited combinations of electronic control 

systems on cars, high reliability, as well as reduced 

dimensions are factors important to rationalize towards more 

general use of electric drives [1-5]. This advancement in the 

field of technology warrants analysis of the feasibility of 

implementing existing suspension systems with 

electromagnetic actuators to increase its performance without 

increasing costs and energy consumption [6]. 

 

Based on the examined findings, the electromagnetic 

active suspension system is considered to be the future trend 

of automotive suspension designs due to its energy 

regeneration, uncomplicated structure, functional high 

bandwidth capacity, flexible and precise force control, good 

ride quality as well as handling performance [7- 9]. On that 

basis, the study and application of predictive control model 

MPC (Model Prediction Control) and reinforcement learning 

technology, including the damping factor in the control of 

autonomous vehicles in the field of public transport. This 

ensures that autonomous vehicles can learn new skills, 

improve their self-driving and self-balancing capabilities, 

and provide them with the ability to make rational decisions 

and control smartly and safely. In this way, autonomous 

vehicles can learn to optimally adapt to the uncertainty and 

unpredictable changes of random and constantly changing 

environmental factors while safely travelling on the road [10-

13]. In the world, a self-driving car driver training method in 

public transport, based on demonstration data, is a powerful 

and natural tool for developing controllers for autonomous 

vehicles taking into account these factors nonlinear factors 

such as the damping system caused by the vehicle. Some 

studies also develop techniques based on self-balancing 

methods based on adaptive control, adaptive fuzzy control, 

etc., which are collected from the observers and actions of 

incoming loads, observations and actions of autonomous 

vehicles [14 - 17]. There is also a wide range of 

demonstration training methods introduced in previous 

studies, including studies in the telecommunications field, in 

direct manipulation of trained agents, grasping objects, in the 

control of autonomous vehicles in public transport, etc., in 

addition to applied studies of reinforcement learning 

techniques and methods of building predictive models of 

autonomous vehicles when taking into account weaknesses. 

The vehicle's damping factor is based on the data of the path 

and obstacles, the load, etc. In recent times, a number of 

studies have also focused on the application of new control 
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theory [18]-[20] and the basis of artificial intelligence [2] to 

solve control problems in general and intelligent control for 

autonomous vehicles and robots in particular. Compared with 

methods through control data, the nonlinear factor caused by 

the vehicle, reinforcement learning method is being focused 

and more flexible, because in some cases, for example, when 

self-driving cars in hazardous environments, uneven paths, 

variable loads, etc., without prior information and data, it is 

necessary to apply and combine with new and suitable 

models such as control models forecast MPC, [13, 16, 19].  

 

Compared with methods through control data, the 

nonlinear factor caused by the vehicle, reinforcement 

learning method is being focused and more flexible, because 

in some cases, for example, when self-driving cars in 

hazardous environments, uneven paths, variable loads, etc., 

without prior information and data, it is necessary to apply 

and combine with new and suitable models such as control 

models forecast MPC, [10]. In the document [11, 12] studied 

and developed a ship rudder system using adaptive law 

combined with the MPC model, [12] proposed sustainable 

adaptive control theory combined with intelligence—

artificial intelligence to control automatic systems, robot-

Camera self-searching and tracking moving objects. In 

addition, the author Nguyen Tan Luy in [1] also proposed a 

system control solution for machine learning and intelligent 

control application of self-propelled robot objects that search 

for targets and avoid obstacles by control techniques behavior 

control based on empty space. At the same time, based on 

Lyapunov's theory to provide conditions to stabilize the 

process of focusing on the goal of self-propelled robots. The 

simulation results also show that the self-propelled robot has 

achieved the goal of tracing the orbit, and the transition time 

is at the allowable level. The study of reinforcement learning 

techniques in automatic control combined with the MPC 

predictive control model for damping systems is considered 

to be applied to autonomous vehicles' tasks in the 

autonomous driving public transport field. From there, 

propose a solution to control self-driving cars using the MPC 

model for the damping system and apply reinforcement 

learning techniques to control; aims to enable autonomous 

vehicles to learn optimally to the uncertainty and 

unpredictability of random, nonlinear, and constantly 

changing environmental factors, setting the stage for their 

application in practice, especially in today's smart traffic, [21-

25]. 

 

In this paper, the author presents the DQN algorithm to 

combine with the MPC model to control autonomous 

vehicles, considering the damping factor of autonomous 

vehicles in public transport in an unknown environment. The 

research is conducted based on the new control algorithm and 

MPC model. More specifically, the author introduces a neural 

network structure to generalize and approximate the value of 

all states of the DQN algorithm and simulate and test eggs 

using Matlab Simulink software and other supporting tools. 

 
Fig. 1 Model of the active suspension system 

 

2. The Building Models For Control Systems 
The suspension determines the position of the wheels 

relative to the body, and it overcomes the contact forces 

between the wheel/tire and the road surface. Equipping the 

car with advanced suspension systems capable of impeding 

vibrations and noise became necessary. Moreover, the 

vehicle's speed on bumpy roads was not limited by the 

propulsion system's performance, which is limited by the 

quality of the suspension. Evaluating suspension quality in 

terms of comfort involves taking into account a variety of 

functional vehicle situations and a number of criteria for 

determining and measuring suspension quality parameters. In 

general, the quality of comfort is difficult to quantify; this is 

a vehicle suspension psychological concept [6, 19]. 

 

With stable parameters that can be more easily 

determined and measured, evaluations are made based on 

generally accepted criteria, even if these criteria can 

sometimes become a confusing conflict. 

 

Then, in Figure 1, the vehicle suspension ¼ is presented 

where ms is the inflated mass, representing the body; mu is 

the unsprung mass, representing the mass of the wheel 

assembly; cs and ks are the damping and stiffness of the 

suspension, respectively; k1 and c1 represent the compression 

and damping capacity of the pneumatic tire, respectively; zs 

and zu are displacements of inflated and unsprung masses, 

respectively; zr is the displacement input of the line; u control 

signal is actively fed into the vehicle suspension. 

 
2.1. The Active Suspension Control System 

Consider the suspension model shown in figure 2, where: 

ms is the mass on the spring, representing the chassis; mu is 

the mass under the spring, representing the mass of the wheel 

assembly; ct and ku are the damping and stiffness of the 

suspension respectively; ks and cs represent the compression 

and damping capacity of the pneumatic tire, respectively; zr 

and zu are the displacements of the unpacked and unpacked 

masses, respectively; zs is the displacement input of the line; 

u is the active input of the suspension. 
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Fig. 2 Model of active suspension system ¼ 

 

When designing the control law for an active suspension 

system, we need to consider the following factors: 

  

 Passenger comfort: It is widely accepted that ride 

comfort is closely related to body acceleration. Therefore, 

when we design the controller, one of the main goals of the 

author is to reduce the acceleration of the body, i.e.: 

 

𝑧̈𝑠 = 0    (1) 

 

Ensure mechanical strength: due to the mechanical 

structure, the suspension stroke must not exceed the 

maximum allowable value, i.e.: 

 
|𝑧𝑠(𝑡) − 𝑧𝑢(𝑡)| ≤ 𝑧𝑚𝑎𝑥  (2) 

 

Where zmax is the maximum allowable value of the 

suspension system. 

 

Ensure traction: to ensure the safety of the car, it is 

necessary to ensure that the contact of the wheel with the road 

is not interrupted, and the dynamic load of the tire should be 

small, that is: 

 

𝑘𝑠(𝑧𝑢(𝑡) − 𝑧3(𝑡)) < (𝑚𝑠 +𝑚𝑢)𝑔 

 

⇒
𝑘𝑠(𝑧𝑢(𝑡)−𝑧3(𝑡))

(𝑚𝑠+𝑚𝑢)𝑔
< 1  (3) 

 

As a result, much attention has now been paid to active 

damping control (active suspension); thus, some of the 

important results based on the control approach in the system 

active suspension with different control techniques have been 

proposed; for example, fuzzy logic control method and neural 

network [3], adaptive control method [7], sustainable control 

H [3], adaptive sliding control [4], etc. many positive 

results for this system. 

 

 

2.2. Reinforcement Learning Methods as Controllers 

Previously, in traditional studies, research has been done 

on control problems of self-propelled robots, industrial 

electric drive systems, conveyor systems, and CNC 

metalworking machine tracking systems. ,..v.v...  and studied 

the design and experimented with working on traditional 

controllers such as PID algorithm, fuzzy PD, PD, PI & LQR. 

The biggest problem with those methods is that they need to 

be adjusted manually, which is not yet up to the quality of the 

controller. Therefore, achieving optimal controller values 

depends on many trials and occurs with many errors. Many 

times the optimal values are not achieved at all. The biggest 

benefit of reinforcement learning algorithms in automatic 

control is that as a controller, it is considered a self-correcting 

model to achieve optimal values. Then, with the 

reinforcement learning technique of the Q Learning 

algorithm and the Deep Q Network algorithm combined with 

the MPC predictive model, it has brought great benefits in 

terms of control quality for the active suspension system of 

the real car practice in public transport that the author goes to 

study.  

 

With Q learning algorithm: According to document [21], 

“this algorithm gives actors the ability to learn how to act 

optimally in Markovian domains by experiencing the 

consequences of actions without asking them to build control 

environment maps for autonomous vehicles in traffic - Active 

suspension system”. In the Markovian domain, the function 

Q - algorithmically generated model - computes the expected 

utility for a given finite state s and any possible finite action 

a. for agents - which are autonomous vehicles in traffic, in 

this case - allowing to choose the optimal action with the 

highest value of Q (s, a), this action selection rule is also 

called priority policy. Initially, the function values Q (s, a) 

are assumed to be 0. Then through each training step, the 

values are updated according to the following equation [2, 

22]: 

( ) ( ) 

( ) ( )1

, ,

, ,

t t t t t

t t t tmax
a A

Q s a Q s a

Q s a Q s a

R

 +

+



 +

+ − 
 (4) 

 

( ) ( ), . ,
1

Q s a R max Q s at t t ta A
 +

+
  (5) 

 

In the DQN algorithm, when training the neural network, 

there exists an arithmetic coefficient (α) in the 

backpropagation process, so it is reasonable to omit the 

learning coefficient (α) in formula (5). By doing this, the 

calculation of updating values also becomes simpler, and then 

we have:  

( ) ), .( ( , )
1

Q s a R r maxQ s at t t t
 + +

+
  (6) 

 

 



Tran Ngoc Son & Lai Khac Lai / IJECE, 10(3), 1-9, 2023 

 

4 

The Q matrix had 20 columns, each column representing a 

state and ten rows, each representing every action. Initially, 

the Q-values were assumed to be 0, and some random actions 

were specified for every state in the policy π. We trained for 

1500 episodes, each episode having 2000 iterations. At the 

beginning of each episode, the simulation refreshed. 

Whenever the robot’s state exceeded the limit, it was 

penalized by assigning a reward of -100. The Q Table is 

updated at each step according to equation (6). This 

algorithm shows the full algorithm [2, 17, 18]. 

 

3. Research and Application of the DQN 

Algorithm Combined with the MPC Model for 

an Active Suspension System 
3.1. Reinforcement Learning Method with DQN Algorithm  

DQN inherits all properties of Q-learning. It is a model 

in the form of a free model, learned alone and belongs to the 

group of off-policy algorithms. 

 

As mentioned in documents [2, 3]. The Q-learning and 

State Action Reward State Action SARSA (State Action 

Reward State Action) algorithms both have memory 

problems when storing the evaluation function as a two-

dimensional array Q(s, a). When the state space and the 

action space are very large, about hundreds or thousands, then 

this storage will have memory problems, not to mention the 

computational cost of updating the value will increase 

exponentially. 

 

In addition, the Q-learning algorithm still has another 

major weakness: the inability to estimate values for unknown 

states 1 2{ }i Ts S s s s, ,... thus, the inability to predict, 

leading to a lack of generalization. To solve this problem, the 

DQN algorithm has the ability to remove the two-

dimensional Q-Table array and instead build a neural 

network to approximate this Q-Table algorithm table, as 

shown in figure 2 below is an illustrative example. 

 

70.82

st

at

70.82

action at

state st
DQN

Q(s,a) Q(3,2)

3
s

2
a

Q(s,a) Q(3,2)

Q-Table

70.82

60.12 61.22 63.43 64.75 66.49

84.5182.6362.73 66.31

1
a

2
a

70.82

Input

Hidden

Output

1 2 3 4 5
s s s s s

 
Fig. 3 The from Q-Table to DQN algorithm 

 

 

The same Q-learning algorithm, the DQN training 

process is also based on a temporary differential method; 

DQN Agent updates network parameter θ of Q rating (S, A) 

at each step of the network training in order to Execute action 

a, receiving the new algorithm R, then it will significantly 

improve the performance of the control model for 

autonomous vehicles in traffic - Active suspension system; 

when using the control programming using the DQN 

algorithm.  

 

3.2. Research on the Controller based on the Active 

Suspension System 

From the system model, as shown in figure 1 and figure 

2, we have the ideal dynamic equations of the multi-mass 

components on the vehicle as follows: 

 

 

         The kinetic equations for the upper and lower springs are: 

           {

𝑚1𝑧̈1(𝑡) + 𝑏1[𝑧̇1(𝑡) − 𝑧̇2(𝑡)] + 𝑘1[𝑧1(𝑡) − 𝑧2(𝑡)] = 𝑢(𝑡)

𝑚2𝑧̈2(𝑡) − 𝑏1[𝑧̇1(𝑡) − 𝑧̇2(𝑡)] − 𝑘1[𝑧1(𝑡) − 𝑧2(𝑡)] + 𝑘2[𝑧2(𝑡) − 𝑧3(𝑡)]

+𝑏2[𝑧̇2(𝑡) − 𝑧̇3(𝑡)] = −𝑢(𝑡)

+   (7) 

 

When designing the control law for an active suspension 

system, we need to consider the following factors: in 

expression (7), z1 is zr, z2 is zu, z3 is zs, k1 is ks, k2 is ku, c1 is 

cs, c2 is ct. 

 

Ensuring riding comfort: It is widely accepted that riding 

comfort is closely related to body acceleration. Therefore, 

when we designed the controller, one of our main goals was 

to reduce the body acceleration, means 𝑧̈1 = 0. 

 

𝑧̈1 = 0         (8) 

Ensure mechanical strength: due to mechanical 

construction, the suspension stroke should not exceed the 

maximum allowable level, which means: 

 
|𝑧1(𝑡) − 𝑧2(𝑡)| ≤ 𝑧𝑚𝑎𝑥    (9) 

 

Where, zmax is the maximum deflection of the suspension. 

 

In addition, to ensure the safety of the car, we need to 

ensure that the contact of the wheel with the road surface is 

not interrupted, and the dynamic load of the tire must be 

small, that is: 
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     𝑘1(𝑧2(𝑡) − 𝑧3(𝑡)) < (𝑚1 +𝑚2)𝑔 
 

⇒ [𝑘1(𝑧2(𝑡) − 𝑧3(𝑡))/(𝑚1 +𝑚2)𝑔] < 1  (10) 

 
|𝑢(𝑡)| ≤ 𝑢𝑚𝑎𝑥    (11) 

 

From there, the author will design a predictive controller 

to generate signal u(t) acting on the vehicle suspension 

system so that the expressions (8), (9), (10) are satisfied with 

the condition binding (11) 

 

First, we need to represent expression (1) in the state 

space in a form suitable for the design of the MPC controller. 

Set the state variables as follows: 

 

{
 
 

 
 
𝑥1(𝑡) = (𝑧1 − 𝑧2)
𝑥2(𝑡) = (𝑧2 − 𝑧3)

𝑥3(𝑡) = 𝑧̇1
𝑥4(𝑡) = 𝑧̇2
𝑥(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) 𝑥4(𝑡)]

𝑇

 (12) 

 

where, x1(t) represents the suspension deflection; x2(t) is 

the tire deflection; x3(t) is the mass release rate, and x4(t) 

represents the uninflated mass rate. The noise input is defined 

𝑤(𝑡) = 𝑧̇3(𝑡). The dynamics equations (7) can be written 

as follows: 

𝑥̇(𝑡) = 𝐴 [

𝑥1(𝑡)

𝑥2(𝑡)
𝑥3(𝑡)

𝑥4(𝑡)

] + 𝐵 [
𝑢(𝑡)
𝑤(𝑡)

]  (13) 

in there, 

1 1 1

1 1 1

1 2 1 1 2

2 2 2 2

1

2 22

k b b

m m m
k k b b b

m m m m

0 0 1 1
0 0

0 0 0 1
0 1

A ; B0 1 / m 0

b / m1 / m
+

−

−
= =− −

−− −

   
   
   
     

 

 

   𝐶 = [

0 0 1 0
1 0 0 0

0
𝑘1

(𝑚1+𝑚2)𝑔
0 0

] ;𝐷 = [
0
0
0

0
0
0
]. 

 

From the above equations, we build a predictive 

controller model according to the model consisting of two 

inputs and three outputs, including the first input value, u(t), 

is a measurable input, simple position N; the second input 

value: pavement undulation r(t) is random noise, this is an 

unmeasured component, unit (m); output components 

include: first output: body acceleration 𝑧̈1 (𝑚/𝑠
2) is a 

measured quantity; the second output is suspension travel (z1 

- z2) (m) which is an unmeasurable quantity; and the third 

output is road grip (kgm/s^2) (this is the relative dynamic 

load of the tire); assuming the constraint is |𝑢(𝑡)| ≤ 𝑢𝑚𝑎𝑥. 
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Fig. 4 Vehicle suspension control diagram with MPC model combined 

with reinforcement jurisprudence 
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Fig. 5 The schematic diagram of the reinforcement learning model 

 

3.3. The MPC Predictive Control Combined with the 

Damping System of Autonomous Vehicles using the DQN 

algorithm 

The DQN algorithm was initially introduced as an AI 

agent to design for computational values with the action 

space the agent causes [2, 3]. The DQN algorithm 

Incorporating the MPC control model accomplished different 

results with the same algorithm. Each new value is 

considered a new state in which the agent can perform an 

action; since there are so many possible states and actions, it 

is impossible to explore all of them or use conventional 

algorithms to solve the problem posed, presented in figure 4. 

  

The deep Q network algorithm starts by exploring the 

action space and gradually learns the mechanics of those 

values; the more these actors learn, the more they can get and 

the higher scores they can get. In this work, DQN will explore 

the relationship between changing geometric properties and 

the effect of action space on the final result through 

simulation and then use that knowledge to design structures 

that produce the optical response we desire. First, the 

environment is set up. This includes the initial structural 

design and simulation environment. Second, the agent's 

actions to change the structure are decided, and finally, a 

defined reward system. The DQN algorithm that connects all 

these parts together is shown in figure 5. 

 

The decision of which action to take in a given state is 

decided by an updated neural network based on what it has 

learned (autonomous vehicle action spaces). To improve the 

performance of the DQN, an auxiliary model used in 
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conjunction with this network is used to select actions for the 

performing agents, while the primary DQN network is used 

to predict the Q value of the pair state-action. This prevents 

overestimation, which is a problem in DQN in general. At 

each iteration, two models are trained on the network, and the 

weight of the target model is obtained from a combination of 

the main model weights and the target model weights. This 

method helped to overestimate due to using only one model. 

The backend network is periodically updated with the 

parameters of the DQN algorithm. 

 

The implementation of the DQN algorithm on our Robot 

model: is similar to the Q-Learning algorithm. However, 

there are some exceptions. Initially, a model is initialized 

instead of Q-Matrix Initialization. Instead of choosing an 

action based on policy π, Q values are computed by the model 

in a policy with a value component. At the end of each set of 

state data values, the component is trained using random 

small batches of experience. Initially, an architecture with 

two hidden layers of 20 units was chosen, while the last layer 

was a Linear Density layer with ten units. With the 𝛾 of 
0.9999 and very high precision probability values. DQN 

algorithm deployed on self-driving car model with input and 

output; shows that for the purpose of evaluating the quality 

and efficiency of the algorithm when the estimator is used in 

the whole process, the objective function helps to create 

separation for improvement, which improves the stability. 

Moreover, the neural network training process is kept 

constant for computation and updated gradually. The network 

training process is somewhat similar to supervised learning. 

 

The performance of the implemented DQN algorithm is 

very satisfactory. One of the main reasons why this algorithm 

offers omnidirectional robot control is to develop an 

algorithm that can be used to control autonomous and 

industrial robots in homes and industrial machines. In 

industrial environments such as the 5S environment, Japan's 

6S environment is applied to all factories. Comparing the 

DQN algorithm with other algorithms shows that the 

optimization of RL, Q-learning, etc., was also successful. 

Several tests have been implemented to control the process 

and clearly show how well the DQN algorithm works in 

different cases. Therefore, in order to build a complete DQN 

algorithm, the needs must always be met: from selecting 

control actions to multicast mobile robots, executing actions, 

getting the reward, storing and sampling to train the 

algorithm, and then going to the objective function 

calculation, from there update the model parameter by 

minimizing the loss function on all the selected samples, 

teach, followed by selecting the method of updating the 

neural network parameters and the objective and finally 

updating the control coefficients with uncertainty, [2, 3]. 
 

 

 
 

From there, we build the DQN algorithm with the MPC 

model as follows: 

Algorithm: DQN Algorithm; MPC for self-driving car;

Initialize self-driving car;

Initialize model MPC;

Initialize the reward value;

for number of episodes do

      Reset simulation ;

      Wait for 1 second ;

      Pause simulation ;

       Read the pitch angle ϕ of the self-driving car ;

       state ← ϕ ;

       start simulation ;

       for number of iterations do

             Generate a random number rand;

             if  rand ≤ δ then

                 take random action ;

             end

             else 

                   Q ← M(state);

                   action ← action formax(Q);

             end

             statenew ← ϕ;

             Pause simulation; self-driving car;

             if   absolute value of statenew ≥ limit then

                  if   rewardtotal ≤ Target then

                       reward ← pen;

                       experience ←

                        (state, reward,  action,  statenew);

                       Add Exp to Memory;

                 end            

            end

            else

                  reward ← 1;

                  experience ← 

                    (state, reward,  action,  statenew);

                  Add Exp to Memory;

                  state ← statenew

            end

      end

      Take radom minibatch of Experience;

      if reward = = pen then

           Qpred← reward;

      end

      else

          Qpred ← 

          reward + γmax(Q(statenew, action))

     end

     ;

     Train the model according to loss

      abs(Qpred(state, action) ‒ Qpred(state, action));

end
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4. Results and Discussion 
After studying, calculating, and setting up the controller 

for the active suspension system, combined with the MPC 

model and DQN reinforcement learning algorithm, the author 

modeled the system with the dynamic structure of 

autonomous vehicles applied in traffic as above. We proceed 

to build a simulation model on Matlab Simulink 2021; The 

network training process is run on a high-spec Dell Gaming 

G3 3590 processor: Core i7 9750H, graphics card: Nvidia 

GTX1660 TI Ram 8GB DDR5; Version 21H1, with the 

following parameters: 

 
Table 1. Parameters of ¼ car suspension system  

m1 m2 k1 k2 b1 b2 

973 

kg 

114 

kg 

92720 

N/m 

101115 

N/m 

1095 

Ns/m 

14.6 

Ns/m 

 

From there, we go to build a simulation model of the 

active suspension system combined with MPC predictive 

control and conduct the simulation; we have the following 

results: 
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Fig. 6 Response to body acceleration with active suspension 

 

Figure 6 shows the time-domain response of acceleration 

when considering body comfort for active suspension. Where 

the red line (Entire frequency) dotted represents the Entire 

frequency, and the solid black line (Finite frequency) 

represents a finite frequency. 
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Fig. 7 The deflection of the active suspension system 

Taking into account the ratio of deflection of the active 

suspension and the maximum limit for the system is shown 

in figure 7 above. 
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Fig. 8 Tire load relationship (traction) 

 

Taking into account the tire load relationship (traction) 

for the vehicle suspension is shown in figure 8 above. 
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Fig. 9 Force of the actuator 

 

When taken into account, the force relationship of the 

transmission (N) of the vehicle suspension is shown in figure 

9 above. 

 

When simulating and implementing reinforcement 

learning techniques in automatic control. We proceed to build 

a simulation model in Matlab Simulink 2021 (as shown in 

Figure 10) with the following parameter values: training 

episodes number is 3000; the average reward is 500; In fact, 

we can get more than 4000 episode numbers to know the 

accuracy of autonomous vehicles with DQN algorithm and 

MPC predictive control model. From there, we have the 

simulation results shown in Figure 11 with the following 

Training episodes and Average reward processes. 

 

Figure 11 depicts the values obtained during training and 

the learning process. Despite the volatility due to the 

changing complexity of the environment and the efficiency 

of the control algorithms for the active suspension, traction; 

vehicle comfort; damping factor; load factor; tire problems; 

etc., these problems also show that the total reward grows by 

the total reward during the period in training. The red line 

(DQN) is the result of training the network; the blue line 

(CDQN) is the line that performs the comparison process 

based on the red line (DQN); the dark blue line (DQN1), and 

the purple line (DQN2) are the results of training the values 

on a two-stage basis with different components. 
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Fig. 10 The MPC predictive control model and DQN reinforcement learning techniques in automatic control 
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Fig. 11 Example of a small figure 

 

5. Conclusion 
The article has studied the theory of reinforcement 

learning techniques combined with building the MPC 

predictive control model, combined with DQN, enhanced 

jurisprudence in automatic control for the active suspension 

system of autonomous vehicles applied in public transport. 

The obtained results show that the correctness of the studied 

model is appropriate. From information about control 

problems, environment, operating position of autonomous 

vehicles, load problems, the comfort of occupants, 

transmission forces, and obstacles are determined, the 

combines DQN algorithm with the MPC model to calculate 

the motion trajectory for autonomous vehicles in the 

intelligent traffic navigation system to safely reach the 

destination without any obstacles. The simulation results on 

Matlab simulink software with the proposed algorithm have 

shown the practical effectiveness of the intelligent automatic 

navigation system for autonomous vehicles that the author 

has built. The development direction of the research problem 

is desired, which will be implemented on some practical four-

wheeled self-propelled vehicles in the field of public 

transport and industrial plants today. 
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