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Abstract - This paper presents the research and construction of a motion tracing control system for omnidirectional mobile 

robots based on reinforcement learning techniques in automatic control. The process of controlling a mobile robot in a flat 

environment with definite and unknown obstacles, taking into account the nonlinear factor of interference. Research and 

application of programming tools are operating systems for mobile robots (Robot Operating System - ROS). From updated 

information on maps, operating environment, robot control position, and obstacle identification (SLAM) to calculate the 

movement trajectory of a three-wheeled omnidirectional mobile robot. The positioning system calculates the orbital tracking 

for the robot based on the Q-learning algorithm. The results of simulation research in the Gazebo environment and running 

tests on real Turtlebot mobile robots have shown the practical effectiveness of the research problem of tracking motion tracking 

and intelligent navigation for mobile robots. 

Keywords - Three-wheeled mobile robot, Self-propelled robot, Automatic system, ROS, Artificial intelligence, Q-learning 

algorithm, Reinforcement learning.  

1. Introduction 
Mobile robots have recently been used in mission-

critical tasks and various activities. Due to the intelligent 

capabilities we humans have equipped them with: from new 

control algorithms, more optimized drive systems, control 

motors (servo motors), etc., making the operation of mobile 

robots more and more accurate [1]. These robots can be used 

as a stand-alone base or with rigid arms with multiple degrees 

of freedom and flexibility based on the nature of the action 

execution task [1-4]. In actual environmental conditions, the 

robot always has uncertain non-snow factors, which is 

undeniable; in this case, that factor is considered a nonlinear 

factor in control; needs to be overcome [5, 6]. Therefore, the 

research and development; of modeling the robot under ideal 

conditions, when environmental factors are not considered: 

noise factors, factors, wheel slip, obstacle course, etc., results 

include insufficient precision and large errors. Different from 

traditional wheeled robots (standard wheels), mobile robots 

using omnidirectional wheels have additional advantages, 

such as the ability to change position and orientation flexibly 

because they have the ability to move forward and rotate 

simultaneously or independently. Usually, the wheel is 

arranged along the axis of the robot. However, for the 

omnidirectional mobile robot, the wheels are arranged on the 

sides, and one wheel guides the robot to take advantage of the 

degrees of freedom of the omnidirectional wheel. In the 

motion control technique of mobile robots, the problem of 

orbital tracking and fast impact is the most necessary 

requirement. Therefore, using a common controller such as 

PID control, fuzzy control, PD control, linear control, PI 

control, LQR control, etc., is unsuitable for the system. 

Mobile robot systems always have these nonlinear factors 

that cannot be overcome [4, 5, 6]. Therefore, this is a very 

important issue that needs to be considered even when using 

intelligent control algorithms, such as artificial intelligence, 

sustainable adaptive optimal control, etc., for robots [7-9]. 

 

The study of the process of controlling mobile robots in 

many different fields and tasks has clearly demonstrated the 

importance of the robot transmission system model. From a 

number of studies that have been done to model the control 

system of mobile robots, as shown in document [7], some 

models of transmission systems for industrial robots in 

general and automatic robot models have been studied 

operating mobile robots in particular. Document [8], the 

study on programming control, navigation, tracing trajectory 

in flat space, and problem space for self-propelled robots and 

mobile robots does not consider nonlinear variable factors 

such as those above. However, in these works, they only stop 

at the design and simulation of the system without clearly 

assessing the nonlinear factor of the drive system for the 

robot. In general, the problem of controlling mobile robots 

for industry, transportation, medicine, etc., is being studied 

by domestic and international scientists [8-11]. 

 

In the fields of control engineering and information 
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technology, reinforcement learning is a subfield of machine 

learning that studies how an agent in an environment should 

choose which actions to take in order to maximize its 

effectiveness and maximize a certain reward in the long run. 

Reinforcement learning algorithms try to find a strategy that 

maps states of the environment to the actions the agent should 

take in those states [4, 5]. The working environment for robot 

control is often represented as a finite state Markop decision 

process (MDP), and reinforcement learning algorithms for 

this context are heavily involved in engineering techniques 

and dynamic planning. The transition probabilities and gain 

probabilities in the MDP are usually random but static during 

the robot control problem [12-17]. 

 

Based on the above analysis, the paper builds an orbital 

tracking controller for a three-wheeled omnidirectional 

mobile robot based on Q-learning reinforcement learning 

techniques combined with the MPC model applied in 

automatic control. In which the controller is designed when 

affected by some nonlinear components of the model and 

unknown perturbation factors, simulation results and egg 

testing using Matlab Simulink software and other supporting 

tools. 

 

2. The Dynamic Model for Omnidirectional 

Mobile Robot Robot 
The study and analysis of robot dynamics is a complex 

mechanical system with many masses and possibly many 

degrees of freedom. Each degree of freedom performs one 

motion and is controlled by an electric drive. Furthermore, a 

robot is a control object containing many interrelated motors. 

To build a control system model for the robot, we consider a 

mobile robot, as shown in Figure 1, with three wheels, two 

wheels on both sides: left rudder, right rudder and front wheel 

(multi-wheel) direction) can make the mobile robot balance 

and not cause any movement restrictions for the mobile robot 

[3, 4], [6], [9, 10, 18].  
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Fig. 1 The kinetic model for controlling a mobile robot 

 

In which figure 1 depicts a wheeled mobile robot with 

two active wheels xc and yc is the robot's position in the plane, 

ϑ is the robot orientation, φr is the angle of the right wheel, φl 

is the angle of the wheeled vehicle on the left, b is half the 

width of the robot, d is the distance from the center of gravity 

to the wheel axle, and r is the wheel radius. For this robot, the 

free motion of the movable wheel is not considered in the 

kinematic model, as shown below. 

 

Then we call the general coordinator of the system 𝑞 =
[𝑥𝑐  𝑦𝑐𝜗 𝜙𝑟 𝜙𝑙]

𝑇, the dynamic equation of the transmission 

system, when taking into account the wheel slip phenomenon 

is set up as follows [1], [4]: 

 

𝑀(𝑞)�̈� + 𝑐(𝑞, �̇�) = 𝑁𝜏(𝑡) − 𝐴𝑇(𝑞)𝜆 + 𝐹(𝑞, �̇�)        (1)
 

 

Where, 5 5[ ( )]M q   
is the inertial matrix, 5 1[ ( , )]c q q    is the 

Coriolis and centrifugal force matrix, 2 1[ ]   is the input 

vector of the system, 5 5[ ]N   is the matrix of the input 

coefficients of the system, λ is the factor vector Lagrange and 

5 1[ ( , )]F q q   are traction vectors. 

 

The constraints of the system in the process of tracking 

the robot's motion trajectory, which, when considering the 

nonlinear factor, are written in the following form: 

 

�̇�𝑐 𝑐𝑜𝑠( 𝜗) + �̇�𝑐 𝑠𝑖𝑛( 𝜗) + 𝑏�̇� = 𝑟�̇�𝑟 − 𝜁�̇� 
 

�̇�𝑐 𝑐𝑜𝑠( 𝜗) + �̇�𝑐 𝑠𝑖𝑛( 𝜗) − 𝑏�̇� = 𝑟�̇�𝑙 − 𝜁�̇�  
 

−�̇�𝑐 𝑠𝑖𝑛( 𝜗) + �̇�𝑐 𝑐𝑜𝑠( 𝜗) − 𝑑�̇� = �̇� (2) 

 

where r  
is the longitudinal slip of the right wheel, l is 

the longitudinal slip of the left wheel, and 
 
is the lateral slip. 

 

𝐴(𝑞) = [

𝑐𝑜𝑠( 𝜗) 𝑠𝑖𝑛( 𝜗) 𝑏 −𝑟 0
𝑐𝑜𝑠( 𝜗) 𝑠𝑖𝑛( 𝜗) −𝑏 0 −𝑟

− 𝑠𝑖𝑛( 𝜗) 𝑐𝑜𝑠( 𝜗) −𝑑 0 0
]  (3) 

 

   𝑆(𝑞) =

[
 
 
 
 
 
 
𝑟(𝑏 𝑐𝑜𝑠(𝜗)−𝑑 𝑠𝑖𝑛(𝜗))

2𝑏

𝑟(𝑏 𝑐𝑜𝑠(𝜗)+𝑑 𝑠𝑖𝑛(𝜗))

2𝑏
𝑟(𝑑 𝑐𝑜𝑠(𝜗)+𝑏 𝑠𝑖𝑛(𝜗))

2𝑏

𝑟(−𝑑 𝑐𝑜𝑠(𝜗)+𝑏 𝑠𝑖𝑛(𝜗))

2𝑏
1

2𝑏
−

1

2𝑏

1 0
0 1 ]

 
 
 
 
 
 

    (4) 

 

The constraint matrix of the system 𝐴(𝑞) is inferred 

based on 𝐴(𝑞)�̇� = 0 the system constraints when taking into 

account the nonlinear component, and the empty space matrix 

of the constraints  is obtained in the form shown in 

equations (3) and (4). 
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The kinematics of a mobile robot in nonlinear tracing 

control is written in the following form: 

 

�̇�𝑐 = 𝛺 𝑐𝑜𝑠( 𝜗) − 𝛥 𝑠𝑖𝑛( 𝜗) 
 

�̇�𝑐 = 𝛺 𝑠𝑖𝑛( 𝜗) + 𝛥 𝑐𝑜𝑠( 𝜗) 
 

�̇� = 𝜔   (5)

 
In there: 

𝜔 =
𝑟�̇�𝑟 − 𝑟�̇�𝑙

2𝑏
−

𝑟𝜁�̇� − 𝑟𝜁�̇�

2𝑏
;𝛺 =

𝑟�̇�𝑟 + 𝑟�̇�𝑙

2
−

𝑟𝜁�̇� + 𝑟𝜁�̇�

2
; 

 

𝛥 = 𝑑(
𝑟�̇�𝑟−𝑟�̇�𝑙

2𝑏
−

𝑟�̇�𝑟−𝑟�̇�𝑙

2𝑏
) + �̇� (6) 

 

Here we rewrite (5) in matrix form, then 

�̇�

 becomes 

equation (7) as follows:

    

�̇� = 𝐻(𝑞)(𝑅 − 𝜁̇) + 𝜓   (7) 

 

In there:   𝑅 = [𝑣 𝜔]𝑇   (8) 

 

     𝜓 = [−�̇� 𝑠𝑖𝑛( 𝜗) �̇� 𝑐𝑜𝑠( 𝜗) 0 𝜁�̇� 𝜁�̇�]
𝑇  (9) 

 

𝜁̇ = [
𝑟(𝜁𝑟+𝜁𝑙)

2

𝑟(𝜁𝑟+𝜁𝑙)

2𝑏
]
𝑇

  (10) 

 

𝐻(𝑞) =

[
 
 
 
 
 
𝑐𝑜𝑠( 𝜗) −𝑑 𝑠𝑖𝑛( 𝜗)
𝑠𝑖𝑛( 𝜗) 𝑑 𝑐𝑜𝑠( 𝜗)

0 0
1

𝑟

𝑏

𝑟
1

𝑟
−

𝑏

𝑟 ]
 
 
 
 
 

  (11) 

 

Taking the derivative of (7) and substituting it into 

expression (1), we get (12) as follows: 

 

𝑀(𝑞)[�̇�(𝑞)(𝑅 − 𝜁̇) + 𝐻(𝑞)(�̇� − 𝜁̈) + �̇�] + 

+𝑐(𝑞, �̇�) = 𝑁𝜏 − 𝐴𝑇(𝑞)𝜆
  (12) 

 

      From the equation 𝑆𝑇(𝑞)𝐴𝑇(𝑞) = 0, we work with 

multiplying 𝑆𝑇(𝑞) into both sides of equation (12), and we 

ignore the term 𝐴𝑇(𝑞)𝜆 , and then we get (13) as follows: 

 

�̇� = (𝑆𝑇(𝑞)𝑀(𝑞)𝐻(𝑞))(−1)

× [−𝑆𝑇(𝑞)𝑀(𝑞)�̇�(𝑞)(𝑅 − 𝜁̇) + 

+𝑆𝑇(𝑞)𝑁𝜏 − 𝑆𝑇(𝑞)𝑀(𝑞)�̇� − 𝑆𝑇𝑐(𝑞, �̇�)] + 𝜁 ̈ (13) 

 

Considering 𝑣 = [
�̇�𝑟

�̇�𝑙

], since the state space equation of 

the system is written in terms of �̇� = [
�̇�
�̇�
], it needs to be 

calculated and transformed, then we get equation (14) as 

follows: 

𝑅(𝑡) = [
𝑣
𝜔

] = 𝑃𝑣, 𝑃 =
𝑟

2
[
1 1
1

𝑏
−

1

𝑏

]  (14) 

�̇� = [
�̇�
�̇�
]

= [
𝐻(𝑞)(𝑅 − 𝜁̇̇) + 𝜓(𝑞, �̇�)

(𝑆𝑇𝑀𝐻𝑃)(−1)[−𝑆𝑇𝑀�̇�(𝑅 − 𝜁̇) − 𝑆𝑇𝑀�̇� − 𝑆𝑇𝑐] + 𝑃(−1)𝜁̈
]

+ 

+[
0

(𝑆𝑇𝑀𝐻𝑃)(−1)𝑆𝑇𝑁𝜏
] (15) 

 

Now we consider the problem of longitudinal and lateral 

traction forces related to the robot drive system as follows [7, 

20, 27]: the drag force is a function of the slip ratio (sr), and 

the slip angle (sa) is determined under forms 𝑠𝑟 =

𝜁̇/𝑚𝑎𝑥( |𝑟�̇�|, |𝑟�̇� − 𝜁̇|) and 𝑠𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛( �̇�/|𝑟�̇� − 𝜁̇|). By 

considering that both components (sr) and (sa) are small in 

this paper, then the longitudinal and transverse tensile forces 

are estimated linearly in the form of equations (16) and (17), 

where 𝛿 > 0 and 𝜍 < 0, according to [15], [27]. 

𝑓𝑑𝑜𝑐 = 𝛿
�̇�

|𝑟�̇�−�̇�|
   (16) 

 

𝑓𝑛𝑔𝑎𝑛𝑔 = 𝜍
�̇�

|𝑟�̇�−�̇�|
  (17) 

 

In expressions (16), (17) and in figure 1, fdoc is flon; fngang 

is flat, which clearly shows the nonlinear factor in the process 

considering the kinematics and dynamics of the robot. The 

process of automatic movement and navigation or avoiding 

obstacles in the robot's path always follows the motion 

trajectory and generates forces at the wheels; these forces are 

usually generated when encountering obstacles, undulating 

roads, etc. 

 

3. Research and Application of Q - Learning 

Algorithms for Robot 
3.1.  The Q - Learning Algorithms 

The reinforcement learning method with a Q-learning 

algorithm is a branch of machine learning developed to serve 

intelligent computation for the field of science and 

technology in general and in terms of cybernetics in 

particular; Robot control techniques are being researched and 

applied to develop algorithms. This is a model to study 

reinforcement learning from offline to online control, which 

is the enhanced dynamic programming method IDP 

(Incremental Dynamic Programming), [3, 4], [22]. To design 

optimal learning rules for precise traction control; Online 

approximation of the nonlinear control problem. 

 

With Q-learning in particular and reinforcement learning 

in general, everything is divided into “state - st” and “action 

– at” with time represented by a series of time steps (t = 0, 1, 

2, 3 etc.). For a continuous working environment such as 

controlling a self-propelled robot, the first thing to do is to 

quantize the state space to update 𝑆 = {𝑆1, 𝑆2, . . . 𝑆𝑚} and 
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quantize the action space to set 𝐴 = {𝑎1, 𝑎2, . . . 𝑎𝑛}, resulting 

in a The school generates rewards 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎) ∈ 𝑅, to 

understand better we have the learning environment 

interaction diagram as shown in Figure 2. 

 

 
Fig. 2 The diagram of interaction with the learning environment of an 

omnidirectional mobile robot 

 

Then, the way Q-learning works is to compute and store 

the value of Q on a particular action and state, Q(s, a). All 

information and experience accumulated from previous 

calculations will be coded into an evaluation table. 

 

We calculate the total reward obtained after time t as Rt 

returned as follows: 

𝑅𝑡 = ∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0   (18) 

 

where, 0 ≤ 𝛾 < 1 is the deduction factor for the rewards. The 

smaller the value of γ, the more focused the reward is while 

performing the action. Then, the action value function 

(function Q) is defined as follows: 

 

𝑄𝑛(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}  (19) 

 

where, 𝐸𝜋{...} represents the expectation under the 

stochastic policy in the action space. The function 𝑄𝑛(𝑠, 𝑎) 

represents the total expected discount reward when we 

choose action a under state s and then choose action under 

policy π. The function Q is described as a recursive formula 

as follows: 

𝑄𝜋(𝑠, 𝑎) =
∑ 𝑃𝑟( 𝑠′|𝑠, 𝑎)𝑠′∈𝑆 𝑟. ((𝑠, 𝑎, 𝑠′) +𝛾 ∑ 𝜋(𝑎′|𝑠′)𝑄𝜋(𝑠′, 𝑎′)𝑎′∈𝐴 )

 (20) 

 

where S and A are the state and action set, respectively. 

From this formula, we can determine that the function Q 

according to the optimal policy π∗, that is, the optimal Q 

function, satisfies the following equation, which is called the 

Bellman optimal equation: 

 

𝑄∗(𝑠, 𝑎) = 𝐸𝑠′{𝑟𝑡 + 𝛾𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′, 𝑎′}         (21) 

 

In the Q-learning algorithm, by iteratively updating the 

function Q used in expression (21) based on experimental 

data, the function Q randomly converges to 
*
( , )Q s a . Thus, 

the optimal policy can be defined as an ambitious policy of 

*
*: ( , )

a
Q a argmax s a= . In practice, the robot's learning 

agent on the move must explore the action environment 

because the Q function is unreliable and needs to choose an 

action to be used broadly as a stochastic policy; it is then 

allowed to choose a probabilistic action for an input state s. 

More specifically, policy μ will engage in choosing an action 

that maximizes the function Q in state s with probability a of 

1- μ, μ [0, 1] and allows a random action to be selected with 

the remaining probability. When states and actions are 

discrete and distinct, a simple way to represent the function 

Q is to use as a table of values for all pairs of states, acting as 

follows: 

 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼. ((𝑟 + 𝛾𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠′, 𝑎′))  

(22) 

 

In which 0 1  is the learning rate and the larger the 

learning rate, the faster the new data will be updated. With 

this algorithm, the table Q converges to the optimal function 

Q under the convergence condition of the random 

approximation. On the other hand, since this is based on 

random approximation, an appropriate amount of data is 

required for all (s, a) pairs. In the tabular Q - Learning 

method, when the number of elements in the state or action 

space is very large or the state or action space is continuous, 

we usually represent the function Q as a parameter function 

Q (s, a; θ) using the parameters θ and then update the 

parameters according to the gradient expression as follows: 

 

 𝜃 ← 𝜃 + 𝛼(𝑡𝑎𝑟𝑔𝑒𝑡𝑄 − 𝑄(𝑠, 𝑎; 𝜃))𝛻𝜃𝑄(𝑠, 𝑎; 𝜃)  (23) 

 

Here, “targetQ” is the target value based on the optimal 

Bellman equation (17), and it is calculated as follows: 

 

𝑡𝑎𝑟𝑔𝑒𝑡𝑄𝑟(𝑠, 𝑎; 𝑠′) + 𝛾𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃)  (24) 

 

Function Q is updated in its consistent sequence. The Q-

learning algorithm is a method based on value functions and 

from the value function to give an optimal policy, in which 

the approximate value of the function Q is regressed to the 

target value, which depends on it is him. This means the true 

value changes automatically when the learning rule is 

updated. Therefore, when a non-linear function, such as a 

neural network, is used to approximate p, this learning 

becomes unstable due to kinetic changes in the target and in 

the worst case, the Q function will diverge [2, 6, 8], [23-26]. 

  

3.2. The Intelligent Tracking Control for Mobile Robots 

using the Q-learning Algorithm 

In the Q-learning algorithm, the values of the navigation 

control positions for the robot are usually updated by the 

instantaneous differential method, using the difference 
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between an iteration to estimate and calculate the Q-value 

function according to the parameters expression (22) above. 

When encountering navigational problems on the way, let the 

robot move with many different states and move actions (left, 

right), avoid obstacles (moving obstacles, fixed obstacles) ), 

etc. Then we choose α = 0.1; γ = 0.95; At this time, the robot 

moves in many different situations; at this time, the process 

of updating table Q is performed. 

 

At the beginning of algorithm training, the subject will 

go once or twice to the right. However, as soon as the action 

to the left is selected, this action will continue to be selected 

on subsequent moves because it always gets rewarded for 

performing this left action. In this process, the robot always 

follows the correct motion trajectory according to the 

dynamics process. The goal of the model during navigation 

for the robot is to keep it within an allowable limit, that is, ±5 

degrees. At first, the robot model, Q matrix, and policy π will 

be initialized—some important points to navigation during 

migration, like non-finite states. In the limited range, there 

can be hundreds and thousands of elevation angles, and 

thousands of columns are impossible when updating the Q -

learning algorithm. So, we have sorted the state values into 

20 state angles from -10 degrees to 10 degrees. For the action 

value, we have chosen ten different velocities, and they are [- 

250, - 100, - 50, - 25, - 10, 10, 25, 50, 100, 250] ms-1. The Q 

matrix has 20 columns, each representing a state and ten rows 

representing every action. Initially, Q values are assumed to 

be 0, and some random action is assigned to every state in 

policy π. We trained for 1550 episodes, each with 1000 

repetitions. At the beginning of each training session, the 

simulation is refreshed. Whenever the robot's state exceeds 

the limit, it is penalized by assigning a reward of -100. Table 

Q is updated at each step according to expression (22). From 

there, we have the Q-learning algorithm to set up the 

automatic trajectory tracking and navigation process for the 

omnidirectional mobile robot, which is done as follows: 

 

Algorithm: Q-learning algorithm. 

1: Set all Q(s, a) randomly; 

2: Repeat (for each episode): 

3: Set s as one of the initial states; 

4: Repeat (for each step of an episode) 

5: Select action a according to state s using policy derived 

from Q; 

6: Take action a, observe r, next state st+1 

( ) ( ) ( )1 1,

1

, , ( ) ,t t t t t a t t t
s s

t

Q s a Q s a r max Q s a Q s a + +


+

= + + −  

 
7: Reward ← 1; 

8: Update Q; 

9: Update π sate ← sate new 

10: Until s is terminal. 

 

The Q-learning algorithm implements action agents for 

intelligent automatic navigation for the self-propelled robot 

to perform trajectories to avoid dynamic obstacles as well as 

static obstacles during the robot's movement. Time to 

calculate the shortest trajectory for the robot to move to the 

destination with the fastest path. One of the most important 

breakthroughs in reinforcement learning was the 

development of Q-learning by Watkins in the literature [15]. 

The Q-learning algorithm performs the update process on the 

action values. The best action of the following state is used 

as the return expectation during the update. The Q-learning 

update process is a step taken according to the proposed 

algorithm. Then the identification and estimation of this 

parameter is the process of optimizing the value function, 

then from here, the value at this time will give the optimal 

policy; at this time, the accumulated values are considered as 

values correct update; Here (we do the recognition when the 

speed is moving, the process of tracking the robot's trajectory 

to perform intelligent navigation when there are nonlinear 

factors appear) so that the robot moves without encountering 

any problems an obstacle on the way. 

 

4. Results and Discussion 
From the research, calculation, and setting up of the 

controller for the control system for the three-wheeled 

omnidirectional mobile robot, combined with Q-learning 

reinforcement learning algorithm. The author has conducted 

research with real robots; combined with building simulation 

models on Matlab Simulink 2021. The process of training and 

implementing the algorithm runs with the ROS operating 

system with the computer and the internet running on the 

processor, high configuration Dell computer: Core i7 intel, 

graphics card GTX 2022 TI Ram 8GB, with the following 

parameters: The self-propelled robot used is the Turtlebot3 

Buger robot with a maximum linear speed of 0.22 m/s and a 

maximum angular velocity of 2.84 rad/s (162.72 degrees/s). 

To implement intelligent navigation and traction for a 

three-wheeled mobile robot. The author implemented based 

on the Q-learning algorithm studied and proposed above to 

conduct some simulations with the following results: 

 

Episode

R
ew

ar
d

0
0

300 600 900 1200 1500 1800

50

100

200

150

250

 
Fig. 3 The average reward results of the learning process 

 

From the simulation results, we can see that the process 

of traction control and dynamic obstacle overcoming can be 
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randomly generated in the environment. The Q-learning 

algorithm performs the task. The author has deployed 1550 

learning batches; in the simulation, the first 1000 episodes are 

for accessing a set of waypoints with a total optimal orbital 

length of 125m. The last 1050 sets are for a set of waypoints 

projection with a total path length of 155m. Figure 3 depicts 

the total reward obtained after 1550 learning sessions. 

Although there are many fluctuations due to the changing 

complexity of the environment and the efficiency of current 

navigation algorithms, the recognition process also tends to 

show an increasing total reward of total reward over the 

period study has yielded high results. Detailed parameters 

used to train the robot: state size is 26, contains 24 values of 

Laser distance sensor (LDS), distance to target and angle to 

target. The size of the training sample pool we choose here is 

64, and the optimizer is Adam [4, 8], with a learning rate of 

0.0003, amortization factor γ = 0.999. 

In the tests, the authors perform several tasks in the 

sequence of the mobile robot's operations, such as the 

Ubuntu-powered Raspberry Pi 3 Model B +. The Raspberry 

Pi 3 Model B + embedded computer directly processes 

information from a range of sensors, including the Astra 

smart camera. The smart sensor then transmits commands to 

a smart microcontroller. 

3600 LiDAR for SLAM and Navigtion

Scalable structure

Single Board Computer

(Raspberry Pi)

OpenCR (ARM Cortex-M7)

DYNAMIXEL x 2 for Wheels

Sprocket Wheels for Tire and Caterpillar

Li-Po Battery 11,1V 1.800mAh
 

Fig. 4 Realistic image of TurtleBot omnidirectional mobile robot 

 
Fig. 5 The structure Diagram of sensor 3D LiDAR terrain detection 

 

To record images from the environment as well as 

measure the distance between mobile robots and unknown 

obstacles, mobile robots are equipped with cameras and smart 

sensors, in which the smart camera can do 360 degrees of 

laser scanning and ranges within 15m to generate map data to 

be used for the mapping process.  

  
Fig. 6 Build visual maps and robot models in the Gazebo environment 

 

Figure 6 shows a map built on Gazebo; the generated map 

has rectangular obstacles, a circular cylinder, and a mobile 

robot (green) with a depth camera and other objects. The 

obstacles are randomly placed in the Gazebo, as shown in 

figure 6. The controlled and guided robot automatically 

moves around the environment to obtain the necessary data 

that will be used to build the map. The light brown line is the 

laser scan signal generated from the RPLidar, and the robot's 

current position is updated using geometric measurements.

 

Robot

Robot

 
Fig. 7 The interface to execute the Q-learning algorithm and SLAM on ROS with the area around the robot containing obstacle information  
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Robot

 
Fig. 8 The tracking control results for the omnidirectional mobile robot Turtlebot on a real map with fixed obstacles in Rviz 

 

The results show that: Figure 7 shows the movement 

process when the robot performs Q-learning and SLAM 

algorithms on ROS, with the area around the robot containing 

full information about obstacles. Figure 8 shows the 

trajectories and automatic navigation results for the 

omnidirectional mobile robot Turtlebot in a real map with 

fixed obstacles in the Rviz environment. 
 

Compared with other algorithms, the Q-learning deep 

learning algorithm has more advantages; in value accuracy 

and control strategy. Hierarchical reinforcement learning 

technology is used to achieve more accurate mapping and 

computational probabilities from states to actions and meet 

mobile robots' mobility needs. The data has also 

demonstrated that the deep reinforcement learning-based 

robot path planning and tracking method is an optimal 

method for mobile robots for efficient end-to-end travel. The 

above results illustrate the feasibility of the proposed method 

in planning the path and the control process of a three-

wheeled omnidirectional mobile robot. 

 

5. Conclusion 
This paper has presented the study of kinematics and 

traction and motion control for the omnidirectional mobile 

robot system both in simulation and experiment with the 

omnidirectional mobile robot Turtlebot. The robot hardware 

is also optimally built to facilitate the integration of ROS-

based peripherals. Furthermore, the robot's activity can be 

tracked and monitored through the visualization tool. The 

positioning system has calculated the robot's global and local 

trajectory based on applying the Q-learning algorithm. 

Research results show that: simulation and testing studies on 

the ROS operating system and Rviz environment show the 

robot's ability to automatically navigate to the desired target 

locations and avoid static obstacles and obstacles motion at 

the scene. Migrate in simple to complex environments safely 

and efficiently without any crashes. These new researches are 

completely applicable: self-propelled robots, industrial 

robots, medical robots, and robots in public transport, 

especially in tracking motion control and automatic 

navigation of mobile robots in the field factories in Vietnam 

as well as in the world. 
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