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Abstract - Wireless sensor networks (WSNs) are becoming more frequently utilized in many applications like environmental 

monitoring, smart cities, and healthcare. But, security is an important problem in WSNs because of the possible vulnerability 

to attacks. Intrusion detection systems (IDS) are utilized for detecting and preventing attacks on WSNs. Typical IDS depend 

on rule-based or signature-based methods that are limited in their capability for detecting before unseen attacks. Deep 

learning (DL)-based IDS are exposed to promising outcomes in identifying novel attacks. DL-based IDS for WSNs are 

created utilizing an integration of supervised and unsupervised learning approaches. Therefore, this study designs a Selfish 

herd optimization with Improved Deep Learning based Intrusion Detection (SHOIDL-ID) technique for secure WSN. The 

presented SHOIDL-ID technique focuses on the process of identifying and classifying intrusions in the WSN. The presented 

SHOIDL-ID approach applies data preprocessing to normalize the input data to accomplish this. The SHOIDL-ID technique 

employs an attention-based bidirectional long short-term memory (ABiLSTM) approach for intrusion recognition and 

classification. Finally, the SHO approach was utilized for the optimal hyperparameter tuning of the ABiLSTM algorithm. 

The experimental validation of the SHOIDL-ID approach takes place on the WSN-DS dataset. The outcomes indicate the 

improved performance of the SHOIDL-ID methodology over other existing approaches in terms of different measures. 

Keywords - Intrusion detection, Wireless sensor networks, Security, Deep learning, Selfish herd optimization. 

1. Introduction 
Wireless Sensor Networks (WSN), the basic 

technology that allows the Internet of Things (IoT), has 

quickly increased in terms of application [1]. The small, 

intellectual sensor node (SN) is positioned to monitor 

physical phenomena or events. The node transmits the 

gathered information to the central node, named the base 

station (BS), for data fusion and processing [2] or to the IoT 

cloud for further analysis. WSN network is vulnerable to 

many critical cyberattacks because of the limited node 

resources and poor security capabilities [4]. This 

cyberattack has different goals: stealing, hacking, altering 

information the sensor has, flooding or collecting the 

targeted node with additional packets in an effort to drain 

the batteries of the sensor and disconnect them from the 

network, which prevents them from sensing or routing 

traffic and renders them inoperable [5]. Robust security 

measures, namely well-determined recognition and 

mitigation methods, should be prepared to resolve the 

challenge. WSN has a unique feature that grants traditional 

heavyweight security measures involving cryptography, 

spread spectrum, and insufficient and key administration, 

because of constrained resources like computation power, 

data storage, and packet buffering [7]. This detriment has 

constructed the necessity to search for an effective, 

lightweight security mechanism that balances node resource 

use in terms of memory, power, processing, and storage. 

There exist various solutions that are used to protect 

WSNs, namely cryptography or authentication and key 

management [8]. Notwithstanding, this solution does not 

guarantee complete prevention of each attack. The 

challenging problem that the whole security division face is 

identifying and tackling forthcoming attacks. However, it is 

prominent that an intrusion detection system (IDS) is a 

highly efficient security mechanism for monitoring the 

network for unauthorized access or vicious attacks as a 

second line of defense and alert administrator on these 

subjects [9]. In summary, IDS is necessary to protect against 

WSN attacks. In the last decade, the applications of the 

Machine Learning (ML) algorithm for detecting 

maliciousness in WSN have mainly improved.  

However, the general approach still considers the 

analysis as an offline-learning issue, where the model was 

trained only once on past information [10]. Due to the 

increasing quantity of information necessary to uncover 

increasingly sophisticated attack, and provide the massive 

quantity of information produced in real-time that gush 

through this network on a systematic basis [12], existing 

identification technique is inadequate to detect malicious 

network intrusion. The recognition of attacks needs a faster 

mechanism for the online investigation of thousands of 

events every second [13].  
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This study designs a Selfish herd optimization with 

Improved Deep Learning based Intrusion Detection 

(SHOIDL-ID) technique for secure WSN. The presented 

SHOIDL-ID technique focuses on the process of identifying 

and classifying intrusions in the WSN. The presented 

SHOIDL-ID approach applies data preprocessing to 

normalize the input data to accomplish this. The SHOIDL-

ID technique employs an attention-based bidirectional long 

short-term memory (ABiLSTM) approach for intrusion 

recognition and classification. Finally, the SHO approach is 

utilized for the optimal hyperparameter tuning of the 

ABiLSTM algorithm. The experimental validation of the 

SHOIDL-ID method takes place on the WSN-DS dataset. 

2. Related Works 
Alruhaily and Ibrahim [15] suggest a multilayer 

Intrusion Detection (ID) structure for WSN, in which the 

authors practice a defence-in-depth safety policy, where two 

detection levels are arranged. The initial level is situated on 

the dispersed network core sensors and employs an NB 

categorizer for the real-time decision of the examined 

packets. The next level was situated on the cloud server and 

used a Random Forest (RF) multiclass categorizer to inspect 

the investigated packets deeply. Zhang and Xiao [16] 

propose a purifying selection prototype founded on spatial 

partition and enforced to ordered WSN. The prototype 

initially evaluates self-set dispersion in the real-valued 

space and later separates the real-valued space, and many 

subspaces were attained. Pan et al. [18] recommend a 

Lightweight Intelligent ID prototype for WSN. Integrating 

Sine Cosine Algorithm (SCA) and k-Nearest Neighbor 

(kNN) Algorithm can knowingly enhance the categorization 

precision and tremendously mitigate the rate of false alarms 

and, in a way, intellectually detect a range of outbreaks 

encompassing unidentified outbreaks. The compact 

mechanism was enforced to SCA (CSCA) to save the 

computation space and period from regulating the 

convolution of the prototype. The Polymorphic Mutation 

(PM) policy was employed to reimburse for the 

maximization precision losses. 

Mittal et al. [19], to accomplish greater effectiveness 

and dependable procedures in accordance with the present 

application policies, two popularly known energy-effective 

procedures, that is, Energy–Efficient Sensor Routing 

(EESR) and Low-Energy Adaptive Clustering hierarchy 

(LEACH), are restructured in view of NNs. In particular, a 

Levenberg–Marquardt NN (LMNN) is incorporated to 

enhance the outcomes regarding energy effectiveness. Also, 

to enhance the accomplishment, a sub-cluster LEACH-

derived procedure is suggested. Tan et al. [21] suggest a 

technique of implementing the Synthetic Minority 

Oversampling Technique (SMOTE) to normalize the 

database and later employ the RF protocol to train the 

categorizer for ID.  

The authors [22] construct lightweight IDS founded on 

two ML methods, called feature classification and feature 

selection. The initial categorization protocol for the present 

scheme was recognized by comparing DT, LR, KNN, SVM, 

RF, NB, and multilayer perceptron (MLP). Alqahtani et al. 

[23] recommend a novel prototype to identify invasion 

outbreaks founded on a genetic protocol and an Extreme 

Gradient Boosting (XGBoot) categorizer named the 

GXGBoost prototype. The last is a GBoost prototype 

constructed to enhance the accomplishment of conventional 

prototypes to identify fewer classes of outbreaks in the 

hugely non-stabilized data traffic of WSN. 

3. The Proposed Model 
In this study, we have designed a new SHOIDL-ID 

approach for the automated identification and classification 

of intrusions in the WSN. The presented SHOIDL-ID 

technique focuses on the process of identifying and 

classifying the intrusions in the WSN. The presented 

SHOIDL-ID approach encompasses three operational 

stages: preprocessing, ABiLSTM-based intrusion detection, 

and SHO-based parameter optimization. Fig. 1 represents 

the overall process of the SHOIDL-ID approach.  

 
Fig. 1 Overall Process of SHOIDL-ID Approach 

3.1. Intrusion Detection using ABiLSTM Model 

For intrusion recognition and classification, the 

SHOIDL-ID technique employed the ABiLSTM model. 

The RNN generate better performance of the network in 

modelling hidden sequential pattern of time‐series dataset 

[25]. Typically, it can be resolved using 2 variations of 

RNN, namely GRU and LSTM. Theoretically, the 

architecture of LSTM is like RNN; however, a special unit 

memory cell" was presented in LSTM to replace the 

updating procedure of RNN. The memory cells of LSTM 

keep data for a long period. Consider the existing input 

vector 𝑥𝑡, the final hidden state ℎ𝑡−1, and the final memory 

cell state 𝑐𝑡−1, the subsequent equation is used for 

implementing the LSTM model: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖)                 (1) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓)                 (2) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)                 (3) 
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𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜)               (4) 

ℎ𝑡 = 0𝑡 . 𝑡𝑎𝑛𝑏(𝑐𝑡)                (5) 

Where, 0, I, 𝑐, and 𝑓 indicate the output gate, input gate, 

memory cell state, and forget gate at time 𝑡, 

correspondingly. 𝜎 signifies the sigmoid activation 

function; 𝑊 and 𝑏 demonstrate the weight and bias vector. 

For obtaining the entire context of any video, it can be 

significant to consider both directions, viz., the historical 

and upcoming context of the video. Thus, the BLSTM 

seems to be a relevant option in video classification since it 

keeps the data in both directions. 

 

In BLSTM, there exist two dissimilar hidden layers 

represented as backward hidden layers (ℎ𝑡
𝑏) and forward 

hidden layer (ℎ𝑡
𝑓

). Where ℎ𝑡
𝑓
 consider backwards hidden 

layer ℎ𝑡
𝑏  in descending sequence viz., 𝑡 = 𝑇, 𝑇 − 1, 𝑇 − 2, 

… , 1 and the input vector 𝑥𝑡 in ascending sequence viz., 𝑡 =
1,2,3, … , 𝑇. Finally, the output 𝑦𝑡  is produced by integrating 

the outcomes of ℎ𝑡
𝑓
 and ℎ𝑡

𝑏: 

ℎ𝑡
𝑓

= tanh (𝑊𝑥ℎ
𝑓

𝑥𝑡 + 𝑊ℎℎ
𝑓

ℎ𝑖𝑡−1 + bℎ
f               (6) 

ℎ𝑡
𝑏 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ

𝑏 𝑥𝑡 + 𝑊ℎℎ
𝑏 ℎ𝑡+1

𝑏 + 𝑏ℎ
𝑏)              (7) 

𝑦𝑡 = 𝑊ℎ𝑦
𝑓

ℎt
f + 𝑊ℎℎ

𝑏 ℎ𝑡
𝑏 + 𝑏𝑦             (8) 

Note that adding an extreme amount of layers of 

BLSTM raises the difficulty and reduces the training 

procedure. Therefore, this work applied two layers of 

BLSTM for understanding video representations. Fig. 2 

represents the framework of BLSTM. 

 

 

 

 

 

 

 

 

 

Fig. 2 Architecture of BLSTM 

A NN structure with the attention model decides when 

to look into the dataset (segment of videos) by providing a 

higher focus level to the feature vector with useful data than 

the feature vector with lesser valuable data. Consider the last 

hidden state of 𝑖‐ 𝑡ℎ BLSTM as ℎ𝑖𝑡 , which can be evaluated 

as follows: 

ℎ𝑖𝑡 = [ℎ𝑡
𝑓

, ℎ𝑡
𝑏]                  (9) 

Next, the attention model can be evaluated by the 

subsequent formula: 

𝑒𝑖𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎ℎ𝑖𝑡 + 𝑏𝑎)                 (10) 

𝑎𝑖𝑡 =
exp(𝑒𝑖𝑡)

∑ 𝑒𝑇
𝑗=1 𝑥𝑝(e)

               (11) 

𝑣𝑡 = ∑ 𝑎𝑖𝑡

𝑇

𝑡=1

. ℎ𝑖𝑡                   (12) 

The attention model allocates attention weight 𝑎𝑖𝑡  to 

𝑖‐ 𝑡ℎ BiLSTM output vector at 𝑡 time.  𝑏𝑎 and 𝑊𝑎 denotes 

the bias and weight from the attention layer. Lastly, output 

from the attention layer produces an attention vector 𝑣𝑡 that 

can be evaluated as the weighted sum of multiplication in-

between attention weight 𝑎𝑖𝑡  and 𝑖‐ 𝑡ℎ BLSTM output 

vector at 𝑡 time. 

3.2. Parameter Tuning using SHO Algorithm 

In this work, the SHO algorithm is utilized for the 

optimal hyperparameter tuning of the ABiLSTM approach. 

SHO algorithm begins by setting the number of iterations 

(𝑖𝑡𝑟𝔪𝑎𝑥) and population (𝑁𝑝) [26]. The individual position 

is formulated in Eq. (13). The (𝑁𝑝) can be splitted into prey 

(𝑁𝑝𝑟) and predator(𝑁𝑝𝑑). 

𝑎𝑖𝑗
0 = 𝑥𝑗

𝑙𝑜𝑤 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑗
ℎ𝑖𝑔ℎ

− 𝑥𝑗
𝑙𝑜𝑤)                (13) 

The survival with the worst and best values are expressed as 

follows. 

𝑆𝑉𝑎𝑖 =
𝑓(𝑎𝑖) − 𝑓𝑏𝑒𝑠𝑡

𝑓𝑏𝑒𝑠𝑡 − 𝑓𝑤𝑜𝑟𝑠𝑡

                  (14) 

𝑓𝑏𝑒𝑠𝑡/𝑤𝑜𝑟𝑠𝑡 = min
𝑗𝜀{1,2,…,K}

/ 𝑚𝑎𝑥 ((min𝑗𝜀{1,2,…,N}(𝑓(𝑎𝑖)))
𝑗
) (15) 

3.2.1. Structuration Stage  

The member with maximum surviving or aggression 

factors is promoted as a leader. By using Eq. (16), the leader 

can be chosen. During the challenging moment, each 

attempt to be safe; thus, all the members upgrade the 

location based on the near optimum location. This new and 

nearest neighboring value can be defined using Eq. (17). 

ℎ𝐿𝑑
𝐾 = (ℎ𝑗

k𝜀𝐻k|𝑆𝑉
ℎ𝑖

𝑘 = max
𝑗𝜀{1,2,…,Nh}

(𝑆𝑉
ℎ𝑗

𝑘))                (16) 

ℎ𝑁𝑖

k = (ℎ𝑗
k𝜀𝐻𝑘 , ℎ𝑗

𝑘 ≠ [ℎ𝑖
𝑘 , ℎ𝐿𝑑

𝑘 ]|𝑆𝑉
ℎ𝑑𝑗

𝑘 > 𝑆𝑉
h𝑖

k , rij

= min
𝑗𝜖{1,2,…,Nh}

(‖ℎ𝑖
𝑘 − ℎ𝑗

𝑘)                     (17) 

In the chasing process, the herding group can be split 

into two sub-groups, namely deserted herds and leader 

followers. Furthermore, the leader-follower is broken into 

two subgroups subordinate member and dominant member. 

Outputs 

Backward  Layer 

Forward  Layer 

Inputs 
xt-1 xt xt+1 

 LSTM LSTM  LSTM 

LSTM LSTM LSTM 

Yt-1 Yt+1 Yt 
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The subordinate or dominant members were evaluated by 

comparing with the mean survival value of herds that are 

shown as follows. 

ℎ𝐹𝑜𝑙
k = {ℎ𝑖

𝔩𝑐 ≠ ℎ𝐿𝑑
𝑘 |𝑆𝑉

ℎ𝑑𝑖
𝑘 ≥ 𝑟𝑎𝑛𝑑(𝑂, 1)}           (18) 

ℎ𝐷𝑒𝑠
k = {ℎ𝑖

𝑘 ≠ ℎ𝐿𝑑
𝑘 |𝑆𝑉

ℎ𝑑𝑖
k , < 𝑟𝑎𝑛𝑑(𝑂, 1)}          (19) 

ℎ𝑑𝑜𝔪
𝑘 = {ℎ𝑖

𝑘 ∈ ℎ𝐹𝑜𝑙
𝑘 |𝑆𝑉

ℎ𝑑𝑗
k , ≥ 𝑆𝑉𝐻𝜇

𝑘}                (20) 

ℎ𝑠𝑢𝑏
k = {ℎ𝑖

k ∈ ℎ𝐹𝑜𝑙
k |𝑆𝑉

ℎ𝑑𝑖
𝑘 < 𝑆𝑉𝐻𝜇

𝑘}                   (21) 

Where mean 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙, 𝑆𝑉𝐻𝜇
𝑘 =

∑ 𝑆𝑁
𝑖=1 𝑉

ℎ𝑑𝑖
𝑘

𝑁ℎ𝑑
 

In this work, afterwards, forming the herd member, the 

centre of mass of the predator, and the herd were evaluated 

by the following equations representing the relative riskier 

or safer position.  

ℎ𝑑𝑐𝑚
k =

∑ 𝑆𝑁
𝑖=1 𝑉

ℎ𝑑𝑖
𝑘ℎ𝑑𝑖

𝑘

∑ 𝑆
𝑁ℎ
𝑗=1 𝑉ℎ𝑑𝑗

𝑘

                (22) 

𝑝𝑑𝑐𝔪
𝑘 =

∑ 𝑆
𝑁𝑝

𝑖=1
𝑉

𝑝𝑑𝑖
k𝑝𝑑𝑖

𝑘

∑ 𝑆
𝑁𝑝

𝑗=1
𝑉𝑝𝑑𝑗

𝑘

                           (23) 

During chasing, the predator tries to hunt, and 

instantaneously, the herding group get closer towards the 

safer location. The leader of the herd, updating of the 

predator, and other members are shown in the following. 

𝑝𝑑𝑖
k+1 = 𝑝𝑑𝑖

𝑘 + 2𝜌(ℎ𝑑𝑖
𝑘 − 𝑝𝑑𝑖

𝑘                            (24) 

ℎ𝐿𝑑
𝔩𝑐+1 = {

ℎ𝐿𝑑
𝑘 + 𝑐k 𝑖𝑓 𝑆𝑉

ℎ𝑑𝐿
𝑘 = 0

ℎ𝐿𝑑
𝑘 + 𝑆𝑘 𝑖𝑓 𝑆𝑉

ℎ𝑑𝐿
k > 0

                         (25) 

ℎ𝐿𝑑
𝑘+1 = {

ℎ𝑑𝑖
𝑘 + 𝑓𝑖

k 𝑖𝑓ℎ𝑑𝑖
k ∈ ℎ𝐹𝑜𝑙

𝑘

ℎ𝑑𝑖
k + 𝑑𝑖

𝑘  𝑖𝑓ℎ𝑑𝑖
k ∈ ℎ𝐷𝑜𝑚

𝑘
                          (26) 

 

Where 𝑐k = 2𝛼𝜙ℎ𝐿𝑃𝑀

k (𝑃𝑀
𝑘 − ℎ𝐿

𝑘 , 𝑆𝑘 = 2𝛼𝜓ℎ𝐿𝑋𝑏𝑒𝑠𝑡

𝑘 (𝑥𝑏𝑒𝑠𝑡
𝑘 −

ℎ𝐿
𝑘) 

𝑑𝑖
k = 2 (𝛽𝜓ℎ𝑖ℎ𝑏𝑒𝑠𝑡

𝑘 (𝑥𝑏𝑒𝑠𝑡
𝑘 − ℎ𝑖

𝑘) + 𝛾 (1 − 𝑆𝑉
ℎ𝑖

𝑘) 𝑟̂) 

and  

𝑓𝑖
𝑘

= {
2 (𝛽𝜓ℎiℎ𝐿

k (ℎ𝐿
k − ℎ𝑖

k + 𝛾𝜓ℎ𝑡̇ℎ𝑁

𝑘 (ℎ𝑁
𝑘 − ℎ𝑖

k))  𝑖𝑓 ℎ𝑖
𝑘 ∈ 𝐻𝑑

𝑘

2𝛿𝜓ℎ𝑖ℎ𝐿

𝑘 (ℎ𝑀
𝑘 − ℎ𝑖  𝑖𝑓 ℎ𝑖

k ∈ 𝐻𝑠
𝑘

 

Now, 𝛼, 𝛽, 𝛾, and 𝛿 denote the random value differs 

within [0,1]. The radius of the domain of danger is 

expressed in Eq. (27): 

𝑅 =
∑ |𝑛

𝑗=1 𝑥𝑗
𝑙𝑜𝑤 − 𝑥𝑗

ℎ𝑖𝑔ℎ
|

2𝑛
                        (27) 

Threatened prey of the predator can be represented as 

follows: 

 𝑇𝑃𝑖 = {ℎ𝑗 ∈ ℎ|𝑆𝑉ℎ𝑑𝑗 < 𝑆𝑉𝑃𝑖 , ‖𝑝𝑑𝑖 − ℎ𝑑𝑗‖ ≤ 𝑅, ℎ𝑑𝑗 ∉ 𝜅}   

(28) 

Finally, the new members are created by mating 

probability for restoring the size of the herding group 

unchanged as: 

𝑀ℎ𝑗
=

𝑆𝑉ℎ𝑑𝑗

∑ 𝑆(ℎ𝑑𝑚𝜖𝑀) 𝑉ℎ𝑑𝑚

, ℎ𝑑𝑗 ∈ 𝑀                  (29) 

Where 𝑀 = {ℎ𝑗 ∉ 𝐾} 

According to mating probability, a set of '𝑛' arbitrarily 

selected individuals from the matrix 𝑀 exchange their 

location using the roulette selection technique. With that 

regard, a new solution can be created. The procedure is 

continued until the stopping condition is reached, viz., each 

herd member with maximum survival value than the 

predator. 

The SHO approach produces a fitness function (FF) to 

accomplish better classifier results. It explains a positive 

integer to exemplify the good efficiency of candidate 

results. Here, the minimal classifier rate of errors regards 

that FF is written in Eq. (24).    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100       (30) 

4. Results and Discussion 
In this section, the results of the SHOIDL-ID technique 

are studied on the WSN-DS Public Dataset [27], comprising 

5000 instances with five classes, as defined in Table 1. 

Table 1. Details of dataset 

Class No. of Instances 

Normal 1000 

Blackhole 1000 

Grayhole 1000 

Flooding 1000 

Scheduling 1000 

Total Number of Instances 5000 

 

Fig. 3 exhibits the classifier results of the SHOIDL-ID 

technique under the test dataset. Fig. 3a portrays the 

confusion matrix obtainable by the SHOIDL-ID method on 

70% of TRP. The figure denoted that the SHOIDL-ID model 

has detected 670 instances under normal, 672 instances 

under blackhole, 704 instances on grayhole, 678 instances 

on flooding, and 705 samples on scheduling. Besides, Fig. 

3b displays the confusion matrix offered by the SHOIDL-
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ID technique on 30% of TSP. The figure denoted that the 

SHOIDL-ID method has identified 304 samples on normal, 

300 samples on blackhole, 282 samples on grayhole, 304 

samples on flooding, and 282 samples on schedule. 

Likewise, Fig. 3c demonstrates the PR analysis of the 

SHOIDL-ID model. The figures stated that the SHOIDL-ID 

method had obtained maximum PR performance in all 

classes. Finally, Fig. 3d illustrates the ROC investigation of 

the SHOIDL-ID model. The figure depicted that the 

SHOIDL-ID approach has proficient results with higher 

ROC values on five class labels. 

 

Fig. 3 Classifier outcome of (a-b) Confusion matrices of 70:30, (c) PR curve, and (d) ROC curve 

Table 2. Intrusion outcome of SHOIDL-ID approach on 70% of TRP 

with varying classes 

Training Phase (70%) 

Labels 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

AUC 

Scor

e 

Normal 98.74 96.82 96.82 96.82 98.02 

Blackhole 99.11 98.39 97.11 97.75 98.36 

Grayhole 99.40 98.19 98.88 98.53 99.21 

Flooding 99.31 98.40 98.12 98.26 98.86 

Scheduling 99.37 98.05 98.88 98.46 99.19 

Average 99.19 97.97 97.96 97.96 98.73 
 

Fig. 4 𝑨𝒄𝒄𝒖𝒚, 𝒑𝒓𝒆𝒄𝒏, and 𝒓𝒆𝒄𝒂𝒍 the outcome of the SHOIDL-ID 

approach on 70% of TRP  
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Fig. 5  𝑭𝒔𝒄𝒐𝒓𝒆 and 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 the outcome of the SHOIDL-ID approach 

on 70% of TRP  

In Table 2, the overall intrusion outcomes of the 

SHOIDL-ID technique are reported under 70% of TRP. Fig. 

4 inspects the results of the SHOIDL-ID technique in terms 

of 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙. In a normal class, the 

SHOIDL-ID technique reaches 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 

98.74%, 96.82%, and 96.82% respectively. Also, in the 

grayhole class, the SHOIDL-ID method reaches 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 99.40%, 98.19%, and 98.88% 

respectively. Meanwhile, on scheduling class, the SHOIDL-

ID method reaches 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 99.37%, 

98.05%, and 98.88% correspondingly. 

 

Fig. 5 scrutinizes the results of the SHOIDL-ID method 

in terms of 𝐹𝑠𝑐𝑜𝑟𝑒 and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒. In a normal class, the 

SHOIDL-ID technique reaches 𝐹𝑠𝑐𝑜𝑟𝑒 and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 

96.82% and 98.02%, respectively. In addition, in the 

grayhole class, the SHOIDL-ID technique reaches 𝐹𝑠𝑐𝑜𝑟𝑒 

and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 98.53% and 99.21%, respectively. In the 

meantime, on scheduling classes, the SHOIDL-ID 

technique reaches 𝐹𝑠𝑐𝑜𝑟𝑒 and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 98.46% and 

99.19%, respectively. 

 

In Table 3, the complete intrusion outcomes of the 

SHOIDL-ID technique are reported under 30% of TSP. Fig. 

6 illustrates the outcomes of the SHOIDL-ID technique in 

terms of 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙. In a normal class, the 

SHOIDL-ID technique reaches𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 

99.20%, 97.44%, and 98.70% correspondingly. 

Table 3. Intrusion outcome of SHOIDL-ID approach on 30% of TSP 

with varying classes 

Testing Phase (30%) 

Labels 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 
AUC 

Score 

Normal 99.20 97.44 98.70 98.06 99.02 

Blackhole 99.00 97.72 97.40 97.56 98.41 

Grayhole 99.40 98.95 97.92 98.43 98.83 

Flooding 99.27 98.06 98.38 98.22 98.94 

Scheduling 99.40 98.60 98.26 98.43 98.96 

Average 99.25 98.15 98.13 98.14 98.83 

 

 
Fig. 6  𝑨𝒄𝒄𝒖𝒚, 𝒑𝒓𝒆𝒄𝒏, and 𝒓𝒆𝒄𝒂𝒍 the outcome of the SHOIDL-ID 

approach on 30% of TSP  

Similarly, in the grayhole class, the SHOIDL-ID 

technique reaches 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 99.40%, 

98.95%, and 97.92% respectively. In the meantime, on 

scheduling class, the SHOIDL-ID approach reaches 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, and 𝑟𝑒𝑐𝑎𝑙 of 99.40%, 98.60%, and 98.26% 

respectively. 

 

Fig. 7 examines the outcomes of the SHOIDL-ID 

scheme in terms of 𝐹𝑠𝑐𝑜𝑟𝑒 and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒. In a normal class, 

the SHOIDL-ID technique reaches 𝐹𝑠𝑐𝑜𝑟𝑒 and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 

98.06% and 99.02%, respectively. Further, in grayhole 

class, the SHOIDL-ID technique reaches 𝐹𝑠𝑐𝑜𝑟𝑒 and 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 98.43% and 98.83%, respectively. In the 

meantime, on scheduling classes, the SHOIDL-ID 

technique reaches 𝐹𝑠𝑐𝑜𝑟𝑒 and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 98.43% and 

98.96% correspondingly. 

 

Fig. 8 examines the accuracy of the SHOIDL-ID 

technique during the training and validation process on the 

test database. The figure reports that the SHOIDL-ID 

method reaches increasing accuracy values over increasing 

epochs. In addition, the increasing validation accuracy over 

training accuracy exhibits that the SHOIDL-ID technique 

learns efficiently on the test database.  

 
 

Fig. 7  𝑭𝒔𝒄𝒐𝒓𝒆 and 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 the outcome of the SHOIDL-ID approach 

on 30% of TSP  
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Fig. 8 Accuracy curve of the SHOIDL-ID approach  

 

Fig. 9  Loss curve of the SHOIDL-ID approach  

The loss analysis of the SHOIDL-ID technique at the 

time of training and validation is demonstrated on the test 

database in Fig. 9. The figure indicates that the SHOIDL-ID 

technique reaches closer values of training and validation 

loss. The SHOIDL-ID method learns efficiently on the test 

database. 

Table 4 reports the overall comparative study of the 

SHOIDL-ID system is reported clearly [28]. The results 

indicate that the SVM, LR, and NB models obtain poor 

performance over other models. Next, the DT model has 

tried to report moderately improved outcomes.  

Table 4. Comparative outcome of SHOIDL-ID method with existing 

systems 

Methods 
𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

SHOIDL-ID 99.25 98.15 98.13 98.14 

NB 

Algorithm 
96.34 75.29 84.96 76.51 

SVM 

Algorithm 
95.79 82.77 82.87 81.70 

LR 

Algorithm 
95.83 85.08 83.69 84.50 

DT 

Algorithm 
97.01 96.78 97.89 96.90 

XG-Boost 98.71 95.99 97.10 97.65 

SLGBM 98.89 97.23 97.19 97.31 

Although the XGBoost and SLGBM models highlight 

reasonable results, the SHOIDL-ID technique gains 

maximum 𝑎𝑐𝑐𝑢𝑦 of 99.25%, 𝑝𝑟𝑒𝑐𝑛 of 98.15%, 𝑟𝑒𝑐𝑎𝑙 of 

98.13%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.14%. These outcomes show the 

enhanced outcome of the SHOIDL-ID method over other 

present techniques. 

5. Conclusion 
In this article, we have designed a new SHOIDL-ID 

methodology for automated classification and identification 

of intrusions in the WSN. The presented SHOIDL-ID 

technique focuses on the process of classifying and 

identifying the intrusions in the WSN. The presented 

SHOIDL-ID approach applies data preprocessing to 

normalize the input data to accomplish this. For intrusion 

recognition and classification, the SHOIDL-ID technique 

employed the ABiLSTM model. Finally, the SHO technique 

is exploited for the optimal hyperparameter tuning of the 

ABiLSTM method. The experimental validation of the 

SHOIDL-ID algorithm takes place on the WSN-DS 

database. The outcomes indicate the improved performance 

of the SHOIDL-ID method over other existing approaches 

in terms of different measures. In the future, feature 

selection approaches can boost the SHOIDL-ID technique's 

performance. 
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