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Abstract - Breast cancer (BC) is an increasingly prevalent malignant disease in females globally. Lately, early diagnoses and 

the best adjuvant therapy have considerably enhanced patient outcomes. However, new challenges have occurred as our 

growing understanding of tumors has exposed their complex nature, and diagnoses by histopathology have proved to be 

helpful in guiding BC treatment. We faced an absolute necessity for accurate histopathologic BC diagnoses to make better 

therapy decisions as patient demand for personalized BC therapy increases. Furthermore, current development in memory 

capacity and computational power resulted in the applications of medical image processing and Deep Learning (DL) 

techniques to analyze and process histopathological images (HIs) of BC. Therefore, this study performs a Systematic Review 

of Deep Convolutional Neural Network based BC Classification on HIs. This survey aims to review the conventional and 

recently developed DL techniques for BC diagnosis using HIs. Firstly, the role of machine learning (ML) and DL algorithms 

for HI classification for BC detection is elaborated briefly. Next, the recently developed DL-based HI classification models for 

BC are reviewed in detail. Moreover, a comparison stud of the reviewed models with result analysis is performed. 

Furthermore, an elaborate description of the challenging issues with possible future directions is identified at the end of the 

survey. 
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1. Introduction 
BC has advanced mortality and sickness among women, 

as per the World health organization report, and this kind of 

cancer causes a few hundred thousand deaths annually 

around the world [1, 2]. The earlier diagnoses and treatment 

could considerably decrease the mortality rate. The 

histopathological diagnoses based on light microscopy are a 

golden standard for BC detection [4, 5]. Histopathological 

inspection needs pathologists having rich experience and 

strong professional backgrounds, and primary-level clinics 

and hospitals suffer from the lack of expert pathologists [7]. 

In addition, traditional manual diagnoses require an 

enormous amount of work, and diagnostic errors can be 

prone to occur with the protracted work of pathologists. One 

potential solution to resolve these challenges is proposing 

intelligent diagnostic techniques [8]. It learns from the senior 

pathologists and later inherits the experience used for 

training the younger pathologists. 

 

Moreover, using the robust computing capability of 

hardware [9], namely GPU, the automated technique could 

reduce the error rate and speed up the manual diagnosing 

process. Histopathological image (HIs) analysis is a time-

consuming and difficult task requiring professional 

knowledge [10,12,13]. The diverse kinds of breast diseases 

in HIs are illustrated in Fig. 1.  
 

Computer-assisted analysis of HI’s plays a critical role 

in its prognosis and the diagnosis of BC [14]. But the 

succeeding challenges impede the process of designing tools 

to perform these analyses. Firstly, HIs of BC are a fine-

grained, high-resolution image that depicts complex textures 

and rich geometric structures [15, 17]. The consistency 

between classes and the variability within a class could make 

classification tremendously challenging, particularly while 

handling multiple classes [18]. The next is the limitation of 

the feature extraction method for HIs of BC. The deep 

learning (DL) technique can automatically retrieve data from 

information, learn advanced abstract representations of 

information, and automatically extract features. They could 

resolve the feature extraction problem and are effectively 

used in biomedical science, computer vision (CV), etc. 

[19,21,22]. Because of the robust feature extraction benefits 

of DL and the threats in HIs of BC, this study analyzed HIs 

of BC using the DL technique. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Corresponding%20Author%20:%20saragopi76@gmail.com


R. Gurumoorthy & M. Kamarasan / IJECE, 10(4), 31-40, 2023 

 

32 

 
Fig. 1 Different types of breast diseases 

This study performs a Systematic Analysis of Deep 

Convolutional Neural Network based Breast Cancer 

Classification on Histopathological Imaging. This survey 

aims to review the conventional and recently developed DL 

techniques for BC diagnosis using HIs. Firstly, the role of 

machine learning (ML) and DL algorithms for HI 

classification for BC detection is elaborated briefly. Next, the 

recently developed DL-based HI classification models for 

BC are reviewed in detail. Moreover, a comparison stud of 

the reviewed models with result analysis is performed. 

Furthermore, an elaborate description of the challenging 

issues with possible future directions is identified at the end 

of the survey. 

2. Role of ML and DL Models in 

Histopathology Image Analysis 
Latest advancements in promising AI dramatically 

change the way BC is detected and treated [23]. The 

distinction between deep learning, AI, and machine learning 

is not often noticeable to non-experts. AI incorporates the 

technique for the machine to go beyond or mimic human 

intelligence, primarily in cognitive abilities. AI involves 

different subfields, namely rule-based systems, a traditional 

technique of AI where the computer programmer explicitly 

encodes the knowledge given by the expert [25, 26]. On the 

other hand, ML is a subdomain of AI which employs 

statistical approaches for learning to identify patterns from 

the sequence of data without any human intervention. DL is a 

new ML technique which exploits bio-inspired networks to 

characterize data via modest and non-linear methods that 

convert the preceding representation into a greater abstract 

representation [28, 29]. The complicated nature of the 

framework enables DNNs to form nonlinear and extremely 

complicated representations that offer unprecedented 

discriminative power [30].  

 

The deep network has generated revolutionary outcomes 

in various challenges involving speech recognition and 

image classification [32-34]. Computerized diagnosis 

systems in medicine and technology usually have 

conventionally been rule-based. But over the last few 

decades, we have seen fundamental improvement in 

numerous features; the ever-growing digitization of medical 

information, the emergence of robust ML approaches, and 

the progression of graphics computation resources. This 

development led to the explosion of interest in ML since this 

system progressively replaced classical image analysis for 

automated medical diagnoses [35]. Fig. 2 shows the working 

of CAD methods for classifying BC. 
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Fig. 2 Pipeline of CAD model for BT classification 

The objective of the ML technique is to utilize the task-

related training dataset for learning the task, which generally 

includes the input dataset and processes them to generate an 

accurate output. The training dataset comprises various 

instances. Also, it includes examples of the accurate output 

that is popularly known as labels. Once the input dataset 

includes the respective label for every example, supervised 

learning scenarios are named [36]. 

 

Currently, supervised learning is a popular technique in 

digital histopathology.  The given labelling for the visual 

input dataset corresponds to a window within the image, the 

whole image, or at the pixel level. Due to the emergence of 

the DL method that powerfully benefitted from pixel-level 

annotation, the second is the major kind of issue that has 

been researched currently [37]. DL method is used for end-

to-end learning, and differently from other learning 

techniques, DL needs the least processing on the output or 

input values. End-to-end models take in the raw dataset and 

directly produce the desired outcome without the designed 

experts' feature extraction phase needed by other learning 

techniques [38]. DL includes modelling through multiple 

layers of non-linear transformation. 

 

3. Review of CAD Models for BC Classification 

Bruno et al. [39] presented a technique related to the 

association amongst CT, LBP, and FS by distinct 

classification and statistical analysis approaches to assist the 

expansion of the CAD system. The comparable feature was 

detached through the statistical analysis of variance 
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Fig. 3 Sample his 

(ANOVA). The feature understanding was assessed through 

the DT, RF, SVM and polynomial (PL) classifications, which 

consider the area under the ROC curve (AUC) and metrics 

accuracy (AC). Reis et al. [40] remodelling of collagen fibre 

provide intensification to notice patternings in Hematoxylin 

and Eosin (H&E) stained sliding’s from medical invasive 

breast carcinoma cases that the pathologists could be labelled 

as immature or mature stroma. The objective is to classify 

and categorize stromal regions based on maturity 

automatically. It shows that the classification agreed with the 

expert observer, thereby offering a quantitative and 

repeatable measure for analytical research. A few samples of 

HIs are shown in Fig. 3. 

 

Zhang et al. [41] presented a novel automated 

BC classification scheme related to 

histological images. The image feature was extracted through 

the Completed LBP (CLBP), CT, and statistics of GLCM 

correspondingly. The three distinct features are integrated 

and exploited for the classifier. A classifier ensemble 

technique named Random Subspace Ensemble (RSE) is 

utilized for selecting and aggregating a sequence of base 

neural network classifiers. In [42], an enhanced hybrid active 

contour method-based classification technique was exploited 

for segmenting nuclei from the image. The semantic level 

feature was extracted through the CNN technique, describing 

the proportion of nuclei belonging to the various grades. 

Besides object-level (architecture) and pixel-level (texture) 

features, for creating the incorporated set of image attributes 

that could be outperformed a subset of features. Then, a 

cascaded method is utilized for training 

multiple SVM classifiers with the combination of feature 

subtypes to enable the probability of performance to 

maximize through leveraging distinct feature sets extracted 

from various levels. 

The authors in [43] Developed a technique for 

classifying H&E-stained breast biopsy imaging through 

CNN. The image was categorized into four classes, benign 

lesion, normal tissues, invasive and non-invasive carcinoma, 

and two types, non-carcinoma and carcinoma. The study 

intends to retrieve data at distinct scales involving overall 

tissue organization and nuclei. This presented method 

enables the addition of the presented technique for complete 

slide histology imaging. Also, the feature extracted by the 

CNN is utilized to train an SVM classifier. Roy et al. [44] 

established patch-based classifiers (PBC) with CNN for the 

automated classification of HIs. The incidence of restricted 

images required the extraction of patches and an increase in 

the training sample count. Therefore, patches of appropriate 

size carrying essential diagnosis data were extracted from the 

original image. The presented classifying technique functions 

in 2 dissimilar manners: All Patches in One Decision 

(APOD) and One Patch in One Decision (OPOD). 

 

Baker et al. [45] introduce an architecture for auto-

classification and detection of BC from microscopic 

histological images. The image was categorized into 

malignant or benign. The presented technique includes 

various stages that involve image classification, image 

enhancement, image segmentation, and feature extraction. 

The presented technique makes use of novel integration of 

K-means watershed and clustering techniques in the 

segmenting phase. Then, applied K-means clustering to 

generate initial segmented images and later employed the 

watershed segmentation technique. In [46], the multiclass BC 

classification is implemented through DCNN based TL 

technique. A pre-trained DCNN mechanism is inherited to 

examine the possibility of TL in breast histology, and at the 

same time, a multiscale feature concatenation technique is 

applied. Furthermore, it integrates channel colour 

modification and stain normalization techniques.  

 

Beevi et al. [47] discovered the possibility of TL for 

mitosis identification. A pre-trained CNN is converted by 

pairing RF classifiers with the primary FC layer to extract 

discriminative factors from nuclei patching and precisely 

predict the class labellings of cell nuclei. The adapted CNN 

exactly categorize the cell nuclei with restricted training data. 

The proposed method achieves the greatest achievement of 

the classification by pre-processing the extracted factors and 

fine-tuning the pre-trained module. Vo et al. [48] developed 

a DL technique with a convolutional layer to extract visual 

features for the classification of BC. It is demonstrated that 

the DL technique extracts more features than that hand-

crafted feature extraction techniques. Also, it proposed a 

boosting technique for achieving the primary objective, 

where the method is proficiently augmented by gradually 

merging the DL model (weak classifier) with the 

strong classifiers. 

 

In [49], a fusion-level set-based segmenting technique 

for segmenting nuclei from the image. A quantile 

normalization technique has been exploited to improve the 

colour images' consistency. The semantic level feature was 

extracted through the CNN method, which defines the 

proportion of nuclei that belong to the dissimilar gradings, 
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besides object-level (structure) and pixel-level (texture) 

factors, to form the incorporated set of features. An SVM 

classifier has been trained to discriminate the BC between 

lower, intermediate, and higher grades. Khan et al. [50] 

projected a DL architecture for recognizing and classifying 

BC in breast cytology imaging with the TL concept. In the 

presented technique, the feature from the image was 

extracted through pre-trained CNN structures like ResNet, 

GoogLeNet, and  VGGNet that are fed into an FC layer for 

benign and malignant cell classification with the average 

pooling classification.  

 

Gupta and Chawla [51] focus on leveraging pretrained 

(CNN) activation features on conventional classifiers to 

implement automated classification of BC imaging. For these 

purposes, a two-stage method was introduced for automated 

classification based on magnification, consequently 

categorizing the sample as benign and malignant. In [52], a 

Nucleus-Guided Transfer Learning (NucTraL) method is 

projected as an affordable and modest BT 

segmentation technique. The image features are 

characterized using a combination of local nuclei features 

extracted through the CNN model pretrained on ImageNet 

databases. The nucleus patch extraction approach is applied 

to avoid fine classification of nuclei boundary; however, it 

gives features with a better discriminatory classification 

ability. Classification of the combined feature into malignant 

and benign classes can be implemented through 

SVM classifiers. 

 

Wang et al. [53] established an effectual technique for 

classifying H&E-stained histological BC imaging. To 

enhance the robustness and accuracy of the classifiers, the 

extracted imaging factors of the multiple networks were 

through four pre-trained DCNN techniques. Furthermore, an 

FS technique of the DOLL method improves the outcomes 

by decreasing the feature dimension to mitigate over-fitting. 

Furthermore, the E-SVM classifiers were trained through the 

merged feature and voting strategies to enhance the 

performance of the classification. In [54], the DL model with 

HI implements an automatic IDC recognition. DenseNet and 

ResNet techniques are exploited for automatic IDC 

recognition. The 50 × 50 image patches belong to the WSI of 

the subject. In [55], a patch dependedDL technique by name 

Pa-DBN-BC is developed to classify and detect BC on HIs 

with the DBN. The feature was put under extraction by the 

supervised fine-tuning and unsupervised pre-training levels. 

Then extracts feature from the image patch. LR is exploited 

for categorizing the patch from HI’s.  

 

Boumaraf et al. [56] proposed a novel DL model for 

automated BC recognition on HIs, comprising magnification-

dependent (MD) and magnification-independent (MI) 

classification. The presented DL approach relies on the 

block-based fine-tuning process where the final two residual 

blocks of the DL technique are high domain oriented to the 

target. Besides, the suitability of the presented method can be 

enhanced via GCN, which depends upon the target data value 

and 3-fold data augmentation on the training dataset. 

Chattopadhyay et al. [57] developed a dual shuffle attention-

guided DL model based on the bottleneck unit. It improves 

the capability of the model to learn complicated image 

patterns. 

 

Alqudah and Alqudah [58] presented a novel sliding 

window (SW) approach to produce feature vectors exploiting 

the LBP features. Each image results in a set of 25 SWs, and 

the features are generated from every SW. The BC 

classification procedure is executed using the SVM 

classification model, which recognizes benign as well as 

malignant images. In [59], handcrafted feature extractors and 

DNN models can be applied to classify BC on the BreakHis 

database. The produced features using hand engineering 

models can be utilized for training the DNN models with 4 

dense and 1 softmax layer. Finally, the data can be 

augmented to resolve the overfitting problem. A 

summarization of the reviewed technique is demonstrated in 

Table 1. 

 

4. Discussion 
This section gives a short comparative study of the 

different existing BC classifications. Table 2 and Fig. 4 

exhibit a comparative 𝒂𝒄𝒄𝒖𝒚 inspection of various 

classification models. The results indicated that the 

LBP+RDT, DBN+LR, and CNN+FCN models have 

accomplished reduced 𝒂𝒄𝒄𝒖𝒚 of 84%, 86%, and 87% 

respectively. Meanwhile, the CNN+SVM model has 

provided 𝒂𝒏𝒂𝒄𝒄𝒖𝒚 of 90%. Next to that, the VGGNet+RF, 

VGG16+LR, and DenseNet-161+FCN models have 

highlighted identical 𝒂𝒄𝒄𝒖𝒚 of 91%, whereas the 

Inception+GBT model has reached 𝒂𝒄𝒄𝒖𝒚 of 92%. 

Contrastingly, the VGG16+FCN and AlexNet+SVM models 

have reported reasonably closer 𝒂𝒄𝒄𝒖𝒚 values of 95% and 

96%, respectively. Finally, the GoogleNet+FCN and ResNet-

50+E-SVM model has shown higher 𝒂𝒄𝒄𝒖𝒚of 97% and 97%, 

respectively. 

5. Challenging Issues and Future Scope 
Earlier conventional techniques that involve the pipeline 

method have gained considerable attention in processing 

BCHI. This method includes dissimilar stages, classification, 

pre-processing, segmentation, and feature extraction [60]. 

But the performance of this system relies on the feature 

extraction and segmentation method from the recognized 

region. The handcrafted feature was used for determining the 

ROI. But the handcrafted feature might not capture each 

variation in the pattern of the dataset and thereby decreasing 

the model performance. Developing this system also requires 

wide domain knowledge in HIs and image processing.  
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Table 1. Summary of reviewed approaches 

References Pre-processing Segmentation Feature Extraction Classification 
Evaluation 

Metrix 

Bruno et al. 

[39] 
- - Curvelets and LBP DT, SVM, RF 𝐴𝑐𝑐𝑢𝑦 = 91% 

Reis et al. [40] 
Colour 

deconvolution 
- LBP 

Random Decision 

Tree 
𝐴𝑐𝑐𝑢𝑦 = 84% 

Zhang et al. 

[41] 

Macenko, Non-

linear conversion 
Thresholding Colour/texture/shape SVM 𝐹𝑠𝑐𝑜𝑟𝑒 = 88% 

Wan et al. [42] Non-linear mapping 
Hybrid active 

counter 

Pixels, Objects, 

semantic levels 
SVM 𝐴𝑐𝑐𝑢𝑦 = 92% 

Araújo et al. 

[43] 
Macenko - 

Colour, shape, 

Nuclear density 
CNN, SVM 𝑆𝑒𝑛𝑠𝑦 = 95% 

Roy et al. [44] Macenko - CNN FCN 𝐴𝑐𝑐𝑢𝑦 = 87% 

Baker et al. 

[45] 

Gaussian Blur 

Filters 

K-means, 

Watershed 

Morphological and 

geometrical features 

Rule-based, Decision 

Tree 

𝐴𝑐𝑐𝑢𝑦

= 70% 𝑡𝑜 86% 

Kausar et al. 

[46] 
Macenko - VGG-16 FCN 

𝐴𝑐𝑐𝑢𝑦

= 94% 𝑡𝑜 97% 

Beevi et al. 

[47] 

Colour 

deconvolution 
- VGG-Net Random forest, FCN 𝐹_𝑠𝑐𝑜𝑟𝑒 = 88% 

Vo et al. [48] Macenko - Inception network 
Gradient Boosting 

Tree 

𝐴𝑐𝑐𝑢𝑦

= 91% 𝑡𝑜 95% 

Cao et al. [49] 
Quantile 

normalization 

Hybrid level 

set 
CNN SVM 𝐴𝑐𝑐𝑢𝑦 = 90% 

Khan et al. 

[50] 
Macenko - 

Google Net, VGG-

Net, ResNet 
FCN 𝐴𝑐𝑐𝑢𝑦 = 97% 

Gupta and 

Chawla [51] 
Image rescaling - 

VGG-16, VGG-19, 

Xception,  ResNet-50 

SVM, Logistic 

regression 

𝐴𝑐𝑐𝑢𝑦

= 83% 𝑡𝑜 93% 

George et al. 

[52] 
Macenko 

Laplacian of 

Gaussian 

AlexNet, ResNet-18, 

ResNet-50, ResNet-

101, GoogleNet 

SVM 𝐴𝑐𝑐𝑢𝑦 = 96% 

Wang et al. 

[53] 

Colour 

enhancement 
- 

ResNet50, 

DenseNet121, 

Inception-V3, VGG-

16 

E-SVM 𝐴𝑐𝑐𝑢𝑦 = 97% 

Celik et al. 

[54] 
- - 

ResNet-50,  

DenseNet-161 
FCN 𝐴𝑐𝑐𝑢𝑦 = 91% 

Hirra et al. 

[55] 

Threshold window, 

Gaussian filter 
- DBN LR 𝐴𝑐𝑐𝑢𝑦 = 91% 

Boumaraf et 

al. [56] 
- - ResNet 18 GCN 𝐴𝑐𝑐𝑢𝑦 = 92.03% 

Chattopadhyay 

et al. [57] 
- - Dual Shuffle   

Residual Dual-

Shuffle Attention 

Block 

𝐴𝑐𝑐𝑢𝑦 = 97.43% 

Alqudah and 

Alqudah [58] 
- - LBP SVM 𝐴𝑐𝑐𝑢𝑦 = 91.12% 

Joseph et al. 

[59] 
- - Handcrafted DNN 𝐴𝑐𝑐𝑢𝑦 = 97.87% 
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Table 2. Comparative analysis of distinct existing bc classification 

Methods Accuracy (%) 

LBP+Random Decision Tree 84.00 

CNN+FCN 87.00 

VGG16+FCN 95.00 

VGGNet+Random Forest 91.00 

Inception+Gradient Boosting Tree 92.00 

CNN+SVM 90.00 

GoogleNet+FCN 97.00 

VGG16+Logistic Regression 91.00 

AlexNet+SVM 96.00 

ResNet-50+E-SVM 97.00 

DenseNet-161+FCN 91.00 

DBN+LR 86.00 
 

 
Fig. 4 Accuracy analysis of distinct existing BC classification 

DL has become popular over the past decades for HIs 

processing because of its capability to model convolutional 

patterning and raise computation power. CNN is a 

prevalent option for feature extraction since the process 

learned for extracting the most applicable feature 

depends on the BP technique. But researcher should 

examine each layer's outcomes to justify the 

performance of the presented method for the BCHI 

analysis. The advancement of the CNN model for the 

HIs analysis also needs experts in DL. However, the 

DL-based algorithm requires a largescale data with 

annotation for model training. The shortage of a typical 

annotation dataset makes it hard to design a DL-based 

model for HIs processing. Furthermore, feature analysis 

and visualization are essential for understanding the 

system's behaviour. 

There exist a large number of studies on the applications 

of medicinal image processing methods for processing 

BCHI. But there are some difficulties which are shown in the 

following. 

  

• Creating annotation for the nuclei classification is 

time-consuming, challenging and dreary.  

• The lack of a typical dataset makes them hard to 

compare and evaluate different techniques. A typical 

dataset provides different researcher workers with a 

common platform which facilitates proper 

comparison.  

• There exist no standardized metrics to assess the 

accuracy of the colour normalizing method.  

• Nuclei segmentation from 400x magnification 

remained problematic because of clustered nuclei and 

overlapping. Furthermore, nuclei segmentation at 

100x is complicated because of the random 

distribution, smaller size, and varying structure of 

nuclei.  

• The malignant sample's heterogeneous features make 

it hard to model the pattern to distinguish them from 

the benign sample.  

• The CNN-based method for classifying HI extracts the 

feature from the whole image. It might not emphasise 

the ROIs like glands, mitotic cells and nuclei that 

largely contributed toward the decision of categorizing 

the image into benign and malignant. Therefore, there 

is a possibility for integrating the attention module in 

CNN to enable the algorithm to emphasise the ROI. 

• There is a possibility for designing a unified method 

to classify HIs and nuclei segmentation.  

 

Future research might need strong cohorts with multi-

omics datasets. But the challenge for ML is not to recognize 

metastasis or tumours in an image because an expert 

pathologist could complete these tasks faster. DL is used for 

predicting the prognostic of the tumours and therapy 

response and complementing or integrating with 

transcriptomics and genomics for patient stratification. 

Collaborations between research pathologists, computer 

scientists, and bioinformaticians are of the greatest 

significance for the progress of computer-aided prognosis 

and relevant algorithms. In the future, we envision a DL 

model combined with multi-omics data for progressive 

accuracy in medicine. 

6. Conclusion 
This paper provided a comprehensive survey of DL-

based BC classification models on HIs. This survey 

elaborated on the conventional and recently developed DL 

approaches for BC detection using HIs. Firstly, the role of 

ML and DL techniques for HI classification for BC detection 

is elaborated briefly. Next, the recently developed DL-based 

HI classification algorithms for BC are reviewed in detail. 
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Moreover, a comparison stud of the reviewed models with 

result analysis is performed. 

 

Furthermore, an elaborate description of the challenging 

issues with possible future directions is identified at the end 

of the survey. Finally, we have pointed out the general 

process involved in the BC classification model with 

different challenging issues and possible solutions. It paves 

the way for the readers to work on designing automated 

CAD models for BC classification. 
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