
SSRG International Journal of Electronics and Communication Engineering Volume 10 Issue 5, 14-27, May 2023

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V10I5P102 © 2023 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

CryptNoSQL – A Methodology for Secure Querying and

Processing of Encrypted NoSQL Data on the Cloud

Environment

Sridhar Vemula
1
, Ram Mohan Rao Kovvur

2
, Dyna Marneni

 3

1
Osmania University, Hyderabad, India

1, 3
CSED, Maturi Venkata Subba Rao (MVSR) Engineering College, Hyderabad, India.

2
 ITD, Vasavi College of Engineering, Hyderabad, India.

1Corresponding Author : sridhar_cse@mvsrec.edu.in

Received: 02 March 2023 Revised: 08 April 2023 Accepted: 03 May 2023 Published: 31 May 2023

Abstract - Businesses today use modern computing technologies such as Big Data and Machine Learning in their daily

operations, which require effective management of large amounts of data. Relational data formats are no longer suitable for

these applications, and NoSQL data formats are preferred. The use of cloud infrastructure offers advantages such as

scalability, availability, and resource maintenance, but data security remains a challenge. Although cloud vendors provide

encryption features, they may not be sufficient for sensitive data. To address this, some businesses use their encryption

methods, but retrieving data from an encrypted form may not be possible. While specific encryption methods support the

processing of encrypted data without decryption, there is no complete implementation of secure processing for NoSQL data

from MongoDB or other databases. The proposed methodology, called CryptNoSQL, provides a secure way to query and

process NoSQL data, including updates on encrypted data. We introduce a customized database design model that selects an

appropriate encryption method during the insertion of a document based on the type of field and the operation it will be

involved in. Our experimental results demonstrate that our approach is suitable for organizations with sensitive data hosted

on the cloud and that require frequent query operations on this data.

Keywords - Secure data processing, Cloud security, Homomorphic, Order processing encryption, NoSQL.

1. Introduction
As computing increases in various domains, a vast

amount of data is generated. The domains are not specific,

but it covers many areas like social networking, public

relations, health care systems, banking systems, security

management systems, government body management etc.

These types of domains use various forms of data, including

text data, numeric data, custom objects, date, email, custom

objects, audio, video, animations etc. In some domains like

banking and finance, transactions securing data while

operating is of utmost importance. On the other side, as the

data generated is enormous, organizations prefer to store and

operate the data from Cloud. Many public cloud providers

offer various data protection techniques to secure data stored

in the cloud. However, the techniques offered by cloud

providers to secure data are under the control of cloud

administrators, and there are chances of data leakage by any

curious cloud administrator. Because of this reason, security

techniques provided by cloud services are not recommended.

Hence it is required to encrypt the data using our encryption

method before uploading it to the cloud. The application

should support retrieving and querying this encrypted data

without compromising security. Continuous research is

ongoing on querying and retreating information from various

forms of encrypted data without decryption. The various

forms of data include plaintext, relational data(SQL), non-

relational data(NoSQL), images, videos etc.

Data security is not new and was considered over a

decade ago. Security Methods and level of access keep

changing according to the type of applications used along

with data, the format of data and its access methods.

Suppose the data or information is in its format without

storing it in a data store or database. In that case, security

becomes easy as the same can be encrypted depending on its

format. However, applications involving multiple data forms

use data storage or database. In this scenario, careful

observation is needed to identify which part of the data is to

be secured. Initially, Relational Database is the popularly

used data store depository best suited for various categories

of applications. Some of them are Employee Management

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

15

Systems, Payroll Systems etc. The data stored in the database

is considered secure if stored in a Private Secured Network

of organizations. However, once the data is moved to the

cloud environment, security is the primary concern as it is

part of the Public Network [1-3]. CryptDB [4] provides one

of the solutions for this problem. The author created a proxy

where data is encrypted before uploading it to the database,

and a given query can be operated directly on Encrypted

content.

As computing technology improves, the type of data

used in their applications are also changing. Nowadays, most

applications are making use of data in a Non-relational

format. NoSQL is a ―Not Only SQL‖ format used in most

applications. Data is stored in various types [5] in NoSQL,

including Key-value pairs, Column-oriented, Document

Store and Graph-Based.

Choosing an Appropriate Security Mechanism for data

stored in these various models is very important [6]. In

Secure NoSQL[7], the author proposed a proxy architecture

which encrypts numeric data with Order Preserving

Encryption (OPE) and Textual data with AES. The NoSQL

query operates on Encrypted Data by encrypting the data

values in the query and executing them on a NoSQL

database. This work is implemented on Key-value pairs in

JSON format.

The proposed system only compares sorting, groups and

equality. Any modifications to data stored in databases, like

additions and multiplications, are not supported in Secure

NoSQL [7]. In [8], The author proposes a similar scheme as

mentioned in Secure NoSQL [7] by removing separate

security plans. In [9, 10], the author proposed Security-as-a-

Service for NOSQL databases. This system does not support

updating a numeric value over Encrypted data. In [11], The

NoSQL database is decomposed into two parts - one with

Numeric data, which contains indexed and numeric columns.

The remaining data does not contain fields to compare.

The first part is encrypted with OPE to enable comparisons

over Encrypted data [12]. The second content database part is

encrypted with AES, which only retrieves documents by

query results from the first document. As the data is

decomposed, retrieving all data from both partitions takes

extra processing time.

Moreover, this does not support updating a numeric

value with addition or subtraction. All existing proposed

models to secure NoSQL databases use OPE along with

AES, which supports only Queries with comparisons,

sorting, logical and grouping operations. They do not support

updating queries by adding or subtracting a value.

This paper proposes a methodology that supports all

query operations, including addition or subtraction in various

queries. We use OPE, AES, along with Homomorphic

Encryption to accomplish this. We also use a customized

plan to increase throughput by using a customized plan to

decide on which column to be used for encryption involving

what type of operations.

The main contributions of this paper are:

 Provides customized NoSQL database design to choose the

type of encryption used based on the type of operations

 Proposes a methodology which supports various types of

querying on encrypted NoSQL database based on

conditions

 Proposes a methodology to support updating encrypted

NoSQL data, including adding or multiplying a value

based on some conditions without data loss.

The rest of the paper is organized as follows. In section

2, we discuss standard encryption methods used in our work.

Section 3 discusses designing a customized security plan

according to application requirements, and the proposed

methodology of CryptNoSQL is explained in Section 4.

Section 5 presents the system to implement the common

NoSQL operations. In section 6, the Implementation of

CryptNoSQL is discussed. Finally, in section 7, the results

and performance of the work are presented.

2. Preliminaries
The backbone of any cryptosystem is its fundamental

encryption methods used. This section discusses various

public and private encryption methods proven to be strong

enough for any secure processing models. As part of our

proposed work, we use the following encryption systems.

2.1. AES-DET Encryption

Advanced Encryption Standard (AES) is a popular

encryption method which provides strong security in the

context of various attacks. The key size used in AES could

be 128, 192 or 256 bits, and the block size is 128 bits. With

Pseudo Random Initialization Vector (IV), AES generates

different cypher text for the same plain text elements.

Because of this feature, it is considered an RND encryption

method. In the context of processing Encrypted data without

decryption, AES-RND only helps retrieve a single document

or complete database and does not help retrieve data with

queries, including conditions.

In order to provide an equality comparison, DET

encryption is used. DET encryption generates the same

ciphertext values for the same plain text elements. Hence it

provides support for queries involving equality comparison.

AES with fixed IV can be implemented as DET encryption,

wherein it provides Strong Encryption (AES) along with

query execution (only equality) on Encrypted data.

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

16

2.2. OPE

Order Preserving Encryption (OPE) was proposed [13].

As its name suggests, it preserves the order between data

values even after encryption. Although it is not completely

strong and leaks the order information, it is suited for

requirements when data security and processing support on

encrypted forms are required.

Let x and y be plain text elements and, after encryption with

key K, generate OPE(x) and OPE(y).

As per the principle of OPE, it retains the order between the

encrypted values. i.e

If x < Y, then OPE(x) < OPE(y) will be satisfied.

2.3. Homomorphic Encryption

Homomorphic Encryption allows computations to be

performed on Encrypted Content without Decryption [14].

After much research, [15] provides the algorithm for Fully

Homomorphic Encryption, which supports both

Multiplication and Addition on encrypted data [16].

However, it is not easy to implement. Because of its

difficulty, Fully Homomorphic Encryption can be

categorised into two types [17]: Additive Homomorphic

Encryption and Multiplicative Homomorphic Encryption. An

additive homomorphic algorithm has the property as shown

in Equation 1.

E (x) * E (y) = E (x + y) (1)

As Equation 1 shows, the sum of two encrypted values can

be found by multiplying two.

Whereas, Multiplicative homomorphic encryption has the

following property.

E (x) * E (y) = E (x * y) (2)

As mentioned in Equation 2, the multiplication of two

values can be obtained by decrypting the multiplication of

two encrypted values. Additive Homomorphic Encryption

can be implemented by Paillier [18] Cryptosystem, and

Multiplicative Encryption can be implemented by RSA[19]

and ElGamal [20] schemes.

In our proposed work, Additive Homomorphic Feature

supports Addition operations over Encrypted Content.

Paillier Encryption method encrypts numeric values before

storing them in a NoSQL database to support Addition

operations on Encrypted Content. Similarly, Multiplicative

Encryption supports Multiplications over Encrypted data.

RSA Encryption is used to encrypt values before storing

them in a database.

3. Customized Design Plan
The main contribution of this paper is to propose a

methodology which makes querying and updating values

possible even on encrypted data. We use various encryption

algorithms to achieve this. Which security system to be used

depends on the column type and required operations in which

the column is going to involve. In general primary index key

or field of any NoSQL collection is not involved with any

comparison or update operations. As a result, the index fields

are encrypted with only AES, which supports querying

documents based on equality and provides high security. The

properties of documents, which involves comparisons only,

are encrypted with OPE. Another type of field involved in

updations frequently is encrypted with Paillier Encryption

and OPE encryption to support addition and multiplication,

respectively.

The encryption can be customized with a customised

database design before data uploading. The key points about

customized database design are:

 For the more sensitive fields, they are to be encrypted with

AES, which provides strong security. This field supports

querying using only the Equality check.

 The fields that involve only comparisons can be encrypted

with OPE so that this field supports querying based on

equality and comparison.

 The fields that involve updations will be encrypted using

Paillier and RSA to support additions and multiplications

on encrypted data.

 Fields involving both Querying based on comparisons and

updations will be encrypted with OPE, Paillier and RSA so

that they supports Querying based on comparisons and

updations.

This process of creating a customized security plan is

shown in Figure 1 and described in Table 1. A sample

employee JSON document representing it after storing it in

the NoSQL database using a customized security plan is

shown in Figure 2 for reference. While storing the

documents, column and table names are also encrypted with

AES. For understanding purposes, column names are shown

with actual names in Figure 2.

4. Proposed Methodology

With the help of customized database design, the

proposed system ensures to execute comparison and update

queries on encrypted NoSQL data hosted on the cloud. To

provide security to data at all levels of operations, a layer of

functionality is required to encrypt new data to be uploaded

or any involved in the query before sending it for execution.

This functionality is implemented in the Intermediate layer or

client system. At the server, another layer of functionality is

required to implement homomorphic updations on encrypted

data.

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

17

Fig. 1 Customized database design plan for NoSQL databases

Start

Identify data type

of field

Is numeric

Will it involves in

queries with

frequent

updations

Encrypt with RSA and Paillier

and Paillier

Will it involves

queries with

comparison?

Encrypt with OPE

Will it involves

queries with

equality check?

Encrypt with AES-

DET

Encrypt with AES-RND

Stop

Stop

Stop

Yes

Yes

No

Yes

No

Yes

No

No

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

18

Fig. 2 Sample employee JSON representing encrypted document in database

Fig. 3 System model

The system design of our proposed system is shown in

Figure 3.

The proposed work is divided into three modules,

1. Intermediate Layer/ Client Layer

2. Server Layer

3. Key Management Module

4.1. Intermediate Layer / Client Layer

The functionality of this layer is to deal with various

querying requirements of the client. One functionality is

encrypting document keys and values according to

customized database design and sending the encrypted

document to the NoSQL database server running on the

cloud. Another functionality encrypts any comparison values

or operands in querying or updating queries. The

administrator shares private keys with trusted clients based

on requirements.

Key

Management

Service

Trusted users

Trusted users

Insert: Encryption

of document fields

based on

design plan

Find or

update: Encryption

of data if any in find

or update queries as

per design plan

Decryption of

Encrypted results

after queries

execution

Encrypted

NoSQL

DB &

DBMS

Homomoprhic

Addtions/

multiplications

Insert and find queries

Update

 queries

Get field value

to update

Store back

updated value

Client / Intermediate Layer Server layer

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

19

Table 1. Customized database design plan

Type Encryptions used Encryption Type

If the field involves only equality, check AES Private Key Encryption

If the field involves only comparison OPE Private Key Encryption

If the field involves only numeric updations Paillier, RSA Public Key Encryption

If fields involve both comparisons and updations OPE, Paillier, RSA Public Key Encryption

This key is used to decrypt the results of query

processing. This layer can be included as a separate layer of

functionality and run as a mediator between clients and

server database systems. It is possible to include this

functionality in the client system, provided the client should

have the facilities to implement it.

4.2. Server Layer

This layer of functionality becomes active at the time of

executing updations operations. As stated above, to support.

In homomorphic encryption, the fields are encrypted using

RSA and Paillier.

Adding or multiplying a value with any encrypted value

stored in the database cannot be done as the size of the result

will not fit into the database. In this case, the update

operations are implemented as follows:

Step-1 : The server layer retrieves the value stored in that

database that needs to be updated

Step-2 : It also receives encrypted operands from the

client layer.

Step-3 : The server layer implements homomorphic

addition/multiplication using modified algorithms

based on the type of operation needed. The output

of this step is adjusted so that it does increase in

size.

Step-4 : The newly generated value is then stored back in

the database.

All the above steps are carried out entirely on encrypted

content. Hence complete security of the data is guaranteed

despite the implementation of various operations.

The server Layer runs in the same enrolment where the

database is hosted. The reason behind this is to execute

update() queries faster. There is little delay in connecting and

fetching the data from the NoSQL database as the server

layer runs in the same environment where the database is

hosted.

4.3. Key Management Service

Key Management Module responsible for generating

vital keys for Encryption Schemes used in the system. The

Encryption methods used in our system are

1. Advanced Encryption Standard (using fixed IV): This

Encryption scheme encrypts text data and other values

that are not involved as query parameters.

2. Order Preserving Encryption (OPE): This Encryption

scheme supports queries with comparison and sort

operations. This scheme maintains the order of plain text

elements even after decryption; hence it helps in

processing queries involving comparison and sort

operations. We are using the Boldyreva [21]

implementation of OPE.
3. Homomorphic Encryption: This encryption scheme

allows computations on Encrypted content—the ordinary

update operation on a field of NoSQL data stored in

addition or multiplication. For additions, the Paillier

Encryption method is called Additive Homomorphic

Encryption. For multiplications, RSA encryption is

termed Multiplicative Homomorphic Encryption.

The Key management module generates and manages

the keys between users and data administrators. The

Encryption algorithms used in our works are AES-DET,

OPE, Paillier and RSA. Table 2 shows the Encryption

algorithm name and size of the key and cipher text.

The 128-bit key size is the most commonly used key

size for AES, and it provides a very high level of security.

The 192-bit and 256-bit key sizes provide even more robust

security but may be slower and more resource-intensive. The

same thing applies to OPE also. Hence we are using AES

and OPE with key sizes of 128 bits.

RSA and Paillier, being a public key encryption system

with a 2048-bit key, provides a high level of security and is

generally considered secure for most purposes. However, as

computing power increases, larger key sizes may be

necessary to maintain the same level of security. As RSA and

Paillier are involved in computations, we tested performance

and the operations with key sizes of 128 bit, 256 bit, 1024-

bit, and 2048-bit. The key management module's role is to

share the Keys generated in the initial process with

respective users in a secure channel. All the generated keys

are stored as Map, which is also encrypted separately. The

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

20

Encryption keys are shared with authorized clients so that

retrieved data can be decrypted on the client side after

completion of querying.

5. NoSQL Operations
This section covers the implementation process for

commonly used NoSQL operations. These operations are

essential functions for applications that use NoSQL data to

meet business requirements. In MongoDB, these operations

are called functions, not commands.

5.1. Storing Documents – db. collection.insert()

The storage module is part of the Client / Intermediate

layer responsible for encrypting the data to be uploaded into

a NoSQL database. The new data to be uploaded can be a

single document or multiple documents in the form of a

JSON file. If it is multiple documents, each document will be

read from a JSON file and encrypted before storing it in the

NoSQL data store.

The functionality of the storage module is depicted in

Figure 4. After reading the data from input documents, the

element type is retrieved. The encryption algorithm will

depend on the Customized design plan discussed in the

previous section. The encryption method is applied to field

values in such a way that it supports respective query

operations. This is summarized in Table 3.

5.2. Reading the Documents Based on Search Criteria – db.

collection.find()

Retrieving documents from any NoSQL database can be

done in various ways. Retrieve one particular record based

on an equality condition on the index field, retrieve some

documents based on a condition or retrieve all documents.

The query contains input values in the first two cases to

check for equality and comparisons. Hence the input values

are to be encrypted using OPE before executing the query.

In the third case, because there are no input values, the

query with only encrypted column names can be executed

directly. In the first two cases, the type of encryption is

chosen based on an input value. If the input value is numeric

and the search criteria contain comparison, then the given

input value is encrypted with OPE. The table and column

names are also with AES for all queries before sending them

to the MongoDB server. If the input value is not numeric and

the search criteria are equal, it is encrypted with AES to

compare for equality. This complete process is shown in

Figure 5.

5.3. Updating One or More Documents - db.collection.

update() with $inc and $mul

There are some situations where values in some

documents need to be updated. An example salary of an

employee needs to be incremented in the payroll system, or

the account balance needs to be added to the deposited

amount in the banking system etc. Using the Homomorphic

encryption property, updating the value of numeric fields can

also be done on encrypted data without decryption.

According to the homomorphic property, to perform

addition or multiplication on encrypted data, the ciphertexts

need to be operated upon, which yields the same result as the

actual addition or multiplication of the plaintexts. However,

the multiplication of two ciphertext numbers results in large

numbers that may not fit the database filed size. With the

algorithms proposed in our previous contribution [22], it is

possible to perform unlimited additions or multiplications on

ciphertexts without increasing the size of the result, making

it suitable for storage in a database at any time. Update

queries generally contain an operand to be added or

multiplied with document property value.

In this case, the type of encryption used to code a given

operand depends upon the type of updation. Suppose the

query is trying to add an operand value to the database. In

that case, it is encrypted with Paillier encryption, or if the

query is trying to multiply some value with the database,

then the RSA cryptosystem will be used. Because of their

Homomorphic property, we can update the Database content

with additions or multiplications without even decrypting the

destination value. This process is shown in Figure 6.

6. Implementation
The proposed work CryptNoSQL applies to document-

based NoSQL databases. This work can be extended to other

models of NoSQL databases with slight modifications in the

module. MongoDB is one of the most popular document-

based NoSQL databases, so the proposed work is

implemented on this.

The same can be applied to other document-based

NoSQL databases also. We have installed MongoDB 5.0.9

Enterprise version on Windows 10 operating system running

on Intel Core-i5 8th generation platform with 8GB RAM.

The proposed CryptNoSQL is tested on a sample json dataset

downloaded from Github generated by MdAhemdian [23].

We have used one lac document of plaintext data from this

dataset. We have created four NoSQL databases with 256-

bit, 512-bit, 1024-bit and 2048-bit key sizes concerning RSA

and Paillier encryption systems.

The processing time of inserting, querying, and updating

data are compared. All four databases are uploaded in

MongoDB, and performance is monitored by executing

various queries on all three databases. The work

CryptNoSQL is implemented in JAVA, and it is running

under Java VM version 8. The Java components are

connected to the MongoDB database using the API provided

by MongoDB [24, 25].

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

21

Fig. 4 Storage model

Table 2. Key sizes of various encryption methods used in our work

Name of the algorithm AES DET OPE Paillier RSA

Key Size 128 bits 128 bits 512 – 2048 bits 512 – 2048 bits

Table 3. Summary of encryption methods and their supported NoSQL operations

S.No Encryption methods Supported NoSQL operations Example

1 AES find() with an equality condition
db.emp.find()

db.emp.find({ name:‖John‖} }

2 OPE
find() with comparisons and equality

MIN() and MAX() aggregations

db.emp.find({$gt: {sal : 500000} }

$min and $max operators

3 RSA
updateOne() or updateAll() with $mul

operator

db.emp.updateOne({ name:‖John‖} ,

{ $mul : {sal: 2} })

4 Paillier
updateOne() or updateAll() with $inc

operator supports SUM(), AVG()

db.emp.updateOne({ name:‖John‖} ,

{ $inc : {sal: 100000} })

$sum , $avg

Read Value p of

Every Key and

Find its Datatype

Generate

p_ope = OPE(p)

Send Encrypted
Value p_ope to

DB

Generate

p_plr = Paillier(p)

Send Encrypted

Value p_plr to

DB

Generate

p_rsa =

RSA(p)

Send Encrypted

Value p_rsa to DB

Convert Numeric

value to long

Convert Numeric value

to long

Generate

C = AES_Encrypt(p)

Send Encrypted Value

to DB

{ ename :

"Y6ncmHjJc3L0xxHVSw=

=",
sal_ope :53468287974865,

sal_plr: 3246889454597,

sal_rsa: 5431234903453 }

NoSQL

Data store

If the

Datatype is
- Int

- Double or

- Long

If the

Datatype is -

String or Text

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

22

Fig. 5 Processing of queries with conditional operations

7. Results and Discussion

Various queries are executed on four databases prepared

with data encrypted with different key sizes to measure the

performance. The module developed in JAVA works as a

proxy and takes care of the following activities:

Upload process: Encrypt the numeric with OPE, RSA, PLR

encryption and non-numeric data with AES while uploading

any dataset into the NoSQL database.

Query process: Encrypt condition variables, retrieve the

documents based on condition and decrypt the results at the

client side.

Update process: Encrypt the operand variables, perform

modifications on the encrypted document(s) and decrypt the

results if any.

The performance of this system can be measured by

executing the various queries over encrypted and

unencrypted data. The processing time of an operation

contains the following components:

1. Time required to encrypt table name, column name and

any values used in the query

2. The communication delay between the client and the

server

3. The response time of database systems to execute queries

on the NoSQL database.

4. If any, time is required to decrypt the results at the client

side.

The communication delay depends on various factors

like server locations, network speed and other characteristics.

The communication delay is unrelated to our work and is not

considered. Decrypting the results is also not considered

because it does not apply to all queries. For example, this

part is not considered for queries related to updating the

contents of documents. In summary, the time required for

encrypting the table name, column name, operand values and

time required for response time by the database management

User

User

Input Query

Ex: db.emp.find
({"sal":{"$gt":50000}}

If Query does not
contains any

conditions

If Query contains

any conditions

Check the
Datatype of

condition

variable

Convert Numeric

value to long

Generate
C = OPE_Encrypt(p)

Send Query with

Encrypted values

Convert NonNumeric

value to String

Generate
C = AES_Encrypt(p)

Send Query with

Encrypted values

NoSQL

Database

If the

Datatype is
- Int

- Double or

- Long

If the Datatype is

- String or Text

Decryption of keys and
values from output

document

Final

Output

Send The Query directly

Client / Intermediate Module

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

23

system is considered for performance evaluation. The queries

to be executed on CryptNoSQL can be categorized into three

groups.

1. Find() queries to Read the documents based on certain

conditions

2. Update queries which include addition or substitution

operations

3. Update queries which include multiplication or division

operations

Fig. 6 Processing of queries with update operation

In NoSQL database applications, data is queried more

often than inserted. Data insertion can occur through initial

bulk uploads or dynamically inserting individual documents

as needed. As a result, the performance of insertion

operations is not typically evaluated because they occur

infrequently and have minimal impact on the overall system

performance. In the following subsections, we will discuss

the query evaluation for find() and update() operations.

7.1. Reading Documents with Comparison Operators

In the first category, the find() method is used to select

or retrieve all documents or some documents based on

specific conditions on document variables. For example, a

query can retrieve documents of all employees where the

employee salary is greater than some threshold value. The

corresponding query is given below:

db.data.find({sal:{$gt:500000}})

This query retrieves all the documents of employees

with CTC greater than five lacs. In this proposed system, all

numeric values are encrypted with Order Preserving

Encryption, Paillier Cryptosystem and RSA Encryption to

Support comparisons and perform addition and

multiplication operations on documents.

In comparison, the operand value used in the query is

encrypted with OPE and table and column names are

encrypted with AES. The Processing time of the above query

includes the time required for encrypting the table name,

column name using AES and comparator value using OPE.

The table name and field name encryption is constant for all

types of queries and hence is not included in performance

analysis.

NoSQL

Data store

User

Input Query

Ex: db.emp.update

({ename:"John",

{$inc:{sal,10000}})

Check for

any $inc

or

$mul

operator

Convert

Numeric value

to long

Generate

C = Paillier(p) or

C = RSA(p)

Send Query with

Encrypted values

Accept the query

with C

 get encrypted sal

of emp (V)

 Homomorphic

multiplication

N = f (C * V)

Update sal of

emp as N

Convert Non-

Numeric value

to String

Generate

C =

AES_Encrypt(p)

or

Send Query with

Encrypted values

Executes updates

directly in DB

Send The update Query

directly

Yes

No

Server Module

Client /Intermediate module

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

24

We have generated three MongoDB databases

containing 100,000, 500,000, and 1,000,000 records,

respectively. We evaluated the processing time required to

execute a sample query on all three databases, and the results

are presented in Table 4. The corresponding graph is shown

in Figure 7.

Figure 7 illustrates that the response time does not

increase proportionally with the database size. Consequently,

there is a slight decrease in response time as the number of

documents in the database increases.

7.2. Updating Documents

Some update operations include replacing a property's

existing value with a new value or performing an operation

with existing value. In the first case, it is possible to replace

the other existing value with a new encrypted value using the

equality condition in the query.

Fig. 7 Response time comparison for query operation with OPE

Fig. 8 Encryption and processing time of updating a document with $inc operator

Fig. 9 Encryption and processing time of updating a document with $mul operator

101

236

427

0

50

100

150

200

250

300

350

400

450

One Lac Records Five Lac Records One Million

Records

R
es

p
o

n
se

 T
im

e

(i
n
 M

il
li

 S
ec

o
n
d

s)

0.55 2.25 14

71
115 129

165

227

0

100

200

300

256 bit 512 bit 1024 bit 2048 bit

$inc - Database Processing Time

(in Milli seconds)

Encryption Time Db Processing time

0.22 1.12 8
40

109 125
160

204

0

100

200

300

256 bit 512 bit 1024 bit 2048 bit

$mul - Database Processing Time

(in Milli seconds)

Encryption Time Db Processing time

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

25

Fig. 10 Storage size of NoSQL databases with different key sizes

Table 4. Processing time of executing find() with comparison in various database sizes

Processing time in milliseconds

Database with one

lac documents

Database with five

lac documents

Database with ten

lac documents

Number of records returned 55606 277846 556112

Average encryption time of OPE

(to encrypt comparator value)
6 6 6

Database processing time

(time taken for query execution by MongoDB)
95 230 421

Total time taken for find() query with

comparison
101 236 427

Table 5. Encryption and processing time of updating a document with Paillier encrypted field

Paillier encryption Key-size

256 Bit 512 bit 1024 bit 2048 bit

Encryption Time (in Milliseconds) 0.55 2.25 14 71

Db Processing time (in Milliseconds) 115 129 165 227

Table 6. Encryption and processing time of updating a document with $inc with RSA encrypted field

RSA encryption Key-size

256 bit 512 bit 1024 bit 2048 bit

Encryption Time (in Milliseconds) 0.22 1.12 8 40

Db Processing time (in Milliseconds) 109 125 160 204

Table 7. Storage overhead

 Key size of RSA and Paillier

 Unencrypted db 256 bit 512 bit 1024 bit 2048 bit

Storage size in (MB) 9.27 134 246 461 896

0

100

200

300

400

500

600

700

800

900

1000

Unencrypted

db

256 bit 512 bit 1024 bit 2048 bit

S
to

ra
g
e

S
iz

e
O

cc
u
p

ie
d

 b
y

C
o

ll
ec

ti
o

n
s

(i
n
 M

B
)

Key size of RSA and Paillier

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

26

In the latter case, existing value will generate new value.

Some of the operations to generate new value include adding,

subtraction or multiplication with new value. Paillier or RSA

cryptosystems with Additive or Multiplicative homomorphic

properties support these operations.

The performance of update operations is evaluated

against four NoSQL databases of One lac records encrypted

with 256-bit, 512-bit, 1024-bit and 2048-bit key encryption

with RSA and Paillier encryption systems. The document

already has different encrypted values using Paillier and RSA

to support additions and multiplications.

An example update query is implemented with two cases.

Case-1 : To increase an employee's salary by Rs.1,00,000-

00, the operand value is first encrypted using the Paillier

encryption scheme. The encrypted value is then transmitted

to the server module, which retrieves the corresponding

encrypted salary of the employee and performs a

homomorphic multiplication between them. The resulting

value is capped to the actual size of the salary field and

stored back into the database. Figure 8 and Table 5 provide

information on the processing times required for adding

Rs.1,00,000 to an employee's salary.

Case-2 : To triple an employee's salary, the operand value

of 3 is first encrypted using the RSA encryption scheme. The

encrypted value is then transmitted to the server module,

which retrieves the corresponding encrypted salary of the

employee and performs a homomorphic multiplication

between them. The resulting value is capped to the actual

size of the salary field and stored back into the database.

Figure 9 and Table 6 provide information on the processing

times required for multiplying an employee's salary by a

value of 3.

The Figure 8 and Figure 9 shows that, the processing

times of the NoSQL database are not increasing with

encryption key sizes of RSA and Paillier encryption. It

performs well with the increased key size and provides better

security.

7.3. Storage Overhead

Encryption algorithms generate cypher text of more

length for a given plain text to ensure maximum security. In

CryptNoSQL, all the fields are encrypted to provide secure

processing of NoSQL data. This results in an increase in

storage size. Table 7 and Figure 10 show the storage size

occupied by four NoSQL databases, each with one lac

records encrypted with 256-bit, 512-bit, 1024-bit and 2048-

bit encryption.

8. Conclusion and Future Work

This work proposes a secure implementation of various

NoSQL operations, including updations. The work is

implemented as a proxy, which operates on the top of the

NoSQL database and takes care of the encryption and

decryption process while uploading documents into the

NoSQL database and while querying. The proxy is also

responsible for updating documents based on given criteria

without decryption.

This work provides a secure way of executing most of

the common operations on NoSQL databases without

decrypting the data on the server side. Hence it ensures that

no data leakages the while retrieving and querying also.

This work is suitable for NoSQL data models of Key-

value pairs and Documents based, and we will extend the

same work to other NoSQL database models, graph-based

and object-based models.

References
[1] N. Chandrakala, and B. Thirumala Rao, ―Migration of Virtual Machine to Improve the Security in Cloud Computing,‖ International

Journal of Electrical and Computer Engineering, vol. 8, no. 1, pp. 210-219, 2018. [CrossRef] [Google scholar] [Publisher Link]

[2] Suraj Krishna Patil, and Suhas B. Bhagate, ―Protecting Data in Relational Database Management System using Purpose and Role

Based Access Control,‖ International Journal of Computer Engineering in Research Trends, vol. 4, no. 8, pp. 336-340, 2017.

[Publisher Link]

[3] S. Ravichandran, and R. Rajkumar, ―Design and Development of Communication Salvage upon Encrypted Information in Cloud

Computing,‖ International Journal of Recent Engineering Science, vol. 6, no. 6, pp. 17-22, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[4] Raluca Ada Popa et al., ―CryptDB: Protecting Confidentiality with Encrypted Query Processing,‖ In Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles, pp. 85-100, 2011. [CrossRef] [Google Scholar] [Publisher link]

[5] Ameya Nayak, Anil Poriya, and Dikshay Poojary, ―Type of NoSQL Databases and Its Comparison with Relational Databases,‖

International Journal of Applied Information Systems, vol. 5, no. 4, pp. 16-19, 2013. [Google Scholar] [Publisher link]

[6] D. Shravani, ―Review of Literature on Web Services Security Architecture extended to Cloud, Big Data and IOT,‖ International

Journal of P2P Network Trends and Technology, vol. 6, no. 4, pp. 7-12, 2016. [Publisher Link]

[7] Mohammad Ahmadian et al., ―Secure NoSQL: An Approach for Secure Search of Encrypted NoSQL Databases in the Public Cloud,‖

International Journal of Information Management, vol. 37, no. 2, pp. 63-74, 2017. [CrossRef] [Google Scholar] [Publisher link]

http://doi.org/10.11591/ijece.v8i1.pp210-219
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Migration+of+virtual+machine+to+improve+the+security+in+cloud+computing&btnG=
https://ijece.iaescore.com/index.php/IJECE/article/view/10115
https://ijcert.org/ems/ijcert_papers/V4I8004.pdf
https://doi.org/10.14445/23497157/IJRES-V6I6P104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+Development+of+Communication+Salvage+upon+Encrypted+Information+in+Cloud+Computing&btnG=
https://ijresonline.com/archives/ijres-v6i6p104
http://dx.doi.org/10.1145/2043556.2043566
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Popa%2C+Raluca+Ada%2C+et+al.+%22CryptDB%3A+Protecting+confidentiality+with+encrypted+query+processing.%22+Proceedings+of+the+Twenty-Third+ACM+Symposium+on+Operating+Systems+Principles.+2011.&btnG=
https://dspace.mit.edu/bitstream/handle/1721.1/74107/cryptdb-sosp11.pdf?sequence=1&isAllowed=y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nayak%2C+Ameya%2C+Anil+Poriya%2C+and+Dikshay+Poojary.+%22Type+of+NOSQL+databases+and+its+comparison+with+relational+databases.%22+International+Journal+of+Applied+Information+Systems+5.4+%282013%29%3A+16-19.&btnG=
https://research.ijais.org/volume5/number4/ijais12-450888.pdf
https://ijpttjournal.org/asserts/year/2016/volume-27/IJPTT-V27P403.pdf
https://doi.org/10.1016/j.ijinfomgt.2016.11.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ahmadian%2C+Mohammad%2C+et+al.+%22SecureNoSQL%3A+An+approach+for+secure+search+of+encrypted+NoSQL+databases+in+the+public+cloud.%22+International+Journal+of+Information+Management+37.2+%282017%29%3A+63-74&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0268401216302262

Sridhar Vemula et al. / IJECE, 10(5), 14-27, 2023

27

[8] Mamdouh Alenezi et al., ―An Efficient, Secure, and Queryable Encryption for NoSQL-Based Databases Hosted on Untrusted Cloud

Environments,‖ International Journal of Information Security and Privacy, vol. 13, no. 2, pp. 14-31, 2019. [CrossRef] [Google

Scholar] [Publisher link]

[9] G. Dumindu Samaraweera, and J. Morris Chang, ―SEC-NoSQL: Towards Implementing High Performance Security-as-a-Service for

NoSQL Databases,‖ arXiv e-prints (2021): arXiv-2107, 2021. [CrossRef] [Google Scholar] [Publisher link]

[10] Mahesh M. Baradkar, and Bandu B. Meshram, ―A Survey on Cloud Security: Infrastructure as a Service,‖ SSRG International Journal

of Computer Science and Engineering, vol. 6, no. 6, pp. 17-21, 2019. [CrossRef] [Publisher Link]

[11] Muhammad Ali Raza et al., ―Secure NoSQL Over Cloud using Data Decomposition and Queryable Encryption,‖ Intelligent

Technologies and Applications: Second International Conference, vol. 1198, pp. 409-421, 2020. [CrossRef] [Google Scholar]

[Publisher link]

[12] Richa Kunal Sharma, and Nalini Kant Joshi, ―Security and Privacy Problems in Cloud Computing,‖ International Journal of Computer

and Organization Trends, vol. 9, no. 4, pp. 30-39, 2019. [CrossRef] [Publisher Link]

[13] Rakesh Agrawal et al., ―Order Preserving Encryption for Numeric Data,‖ Proceedings of the 2004 ACM SIGMOD International

Conference on Management of Data, pp. 563-574, 2004. [CrossRef] [Google Scholar] [Publisher link]

[14] Vemula Sridhar, and K. Ram-Mohan Rao, ―Multi Keyword Search on Encrypted Text without Decryption,‖ Second International

Conference on Computer Networks and Communication Technologies: ICCNCT 2019, vol. 44, pp. 256-263, 2020. [Google Scholar]

[Publisher Link]

[15] N. Swetha, and S. Ramachandram, ―A Survey: Query Processing Techniques for Secure Cloud Databases,‖ International Journal of

Computer Engineering in Research Trends, vol. 2, no. 12, pp. 1257-1262, 2015. [Publisher link]

[16] K. Karuppasamy, F. Margret Sharmila, and Tharani, T., ―Survey on Cloud Security and Algorithms,‖ SSRG International

Journal of Computer Science and Engineering , vol. 6, no. 11, pp. 40-42, 2019. [CrossRef] [Publisher Link]

[17] Payal V. Parmar et al., ―Survey of Various Homomorphic Encryption Algorithms and Schemes,‖ International Journal of Computer

Applications, vol. 91, no. 8, 2014. [CrossRef] [Google Scholar] [Publisher link]

[18] Pascal Paillier, ―Public-Key Cryptosystems based on Composite Degree Residuosity Classes,‖ International Conference on the Theory

and Applications of Cryptographic Techniques, vol. 1592, pp. 223-238, 1999. [Google Scholar] [Publisher link]

[19] Xin Zhou, and Xiaofei Tang, ―Research and Implementation of RSA Algorithm for Encryption and Decryption,‖ Proceedings of 2011

6th International Forum on Strategic Technology, vol. 2, 2011. [CrossRef] [Google Scholar] [Publisher link]

[20] T. ElGamal, ―A Public Key Cryptosystem and A Signature Scheme Based on Discrete Logarithms,‖ IEEE Transactions on Information

Theory, vol. 31, no. 4, pp. 469-472, 1985. [CrossRef] [Google Scholar] [Publisher link]

[21] Alexandra Boldyreva et al., ―Order-Preserving Symmetric Encryption,‖ Advances in Cryptology-EUROCRYPT 2009: 28th Annual

International Conference on the Theory and Applications of Cryptographic Technique, Proceedings 28, pp. 224-241, 2009. [Google

Scholar] [Publisher link]

[22] Sridhar Vemula, Ram Mohan Rao Kovvur, and Dyna Marneni, ―Algorithms for Implementing Repeated Homomorphic Operations on

Restricted Data Type Ranges,‖ 2023 Somaiya International Conference on Technology and Information Management (SICTIM), pp.

106-111, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[23] [Online]. Available: https://github.com/MoAhmadian/SecureNoSQL

[24] M. Purna Chary, Srinivasa S. P. Kumar, B., and T. RamDas Naik, ―A Survey on Implementation of Column-Oriented NoSQL Data

Stores (Bigtable and Cassandra), ‖ International Journal of Computer Engineering in Research Trends, vol. 2, no. 8, pp. 463-469,

2015. [Google scholar] [Publisher Link]

[25] Sridhar Vemula, Ram Mohan Rao Kovvur, and Dyna Marneni, ―Secure E-Voting System Implementation using CryptDB,‖ SN

Computer Science, vol. 2, no. 217, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.4018/IJISP.2019040102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Alenezi%2C+Mamdouh%2C+et+al.+%22An+efficient%2C+secure%2C+and+queryable+encryption+for+NoSQL-based+databases+hosted+on+untrusted+cloud+environments.%22+International+Journal+of+Information+Security+and+Privacy+%28IJISP%29+13.2+%282019%29%3A+14-31&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Alenezi%2C+Mamdouh%2C+et+al.+%22An+efficient%2C+secure%2C+and+queryable+encryption+for+NoSQL-based+databases+hosted+on+untrusted+cloud+environments.%22+International+Journal+of+Information+Security+and+Privacy+%28IJISP%29+13.2+%282019%29%3A+14-31&btnG=
https://www.igi-global.com/article/an-efficient-secure-and-queryable-encryption-for-nosql-based-databases-hosted-on-untrusted-cloud-environments/226947
https://doi.org/10.48550/arXiv.2107.01640
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dumindu+Samaraweera%2C+G.%2C+and+J.+Morris+Chang.+%22SEC-NoSQL%3A+Towards+Implementing+High+Performance+Security-as-a-Service+for+NoSQL+Databases.%22+arXiv+e-prints+%282021%29%3A+arXiv-2107.%5D+AES.&btnG=
https://arxiv.org/pdf/2107.01640
https://doi.org/10.14445/23488387/IJCSE-V6I6P103
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=325
https://doi.org/10.1007/978-981-15-5232-8_35
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bukhari%2C+Faisal.+%22Secure+NoSQL+Over+Cloud+Using+Data+Decomposition+and+Queryable+Encryption.%22+Intelligent+Technologies+and+Applications%3A+Second+International+Conference%2C+INTAP+2019%2C+Bahawalpur%2C+Pakistan%2C+November+6%E2%80%938%2C+2019%2C+Revised+Selected+Papers.+Vol.+1198.+Springer+Nature%2C+2020.&btnG=
https://link.springer.com/chapter/10.1007/978-981-15-5232-8_35
https://doi.org/10.14445/22492593/IJCOT-V9I4P306
https://ijcotjournal.org/archive/ijcot-v9i4p306
https://doi.org/10.1145/1007568.1007632
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agrawal%2C+Rakesh%2C+et+al.+%22Order+preserving+encryption+for+numeric+data.%22+Proceedings+of+the+2004+ACM+SIGMOD+international+conference+on+Management+of+data.+2004&btnG=
http://rsrikant.com/papers/sigmod04.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi+Keyword+Search+on+Encrypted+Text+Without+Decryption&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-37051-0_29
https://ijcert.org/ems/ijcert_papers/V2I1283.pdf
https://doi.org/10.14445/23488387/IJCSE-V6I11P108
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=359
https://doi.org/10.5120/15902-5081
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Parmar%2C+Payal+V.%2C+et+al.+%22Survey+of+various+homomorphic+encryption+algorithms+and+schemes.%22+International+Journal+of+Computer+Applications+91.8+%282014%29&btnG=
https://research.ijcaonline.org/volume91/number8/pxc3895081.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Paillier%2C+Pascal.+%22Public-key+cryptosystems+based+on+composite+degree+residuosity+classes.%22+International+conference+on+the+theory+and+applications+of+cryptographic+techniques.+Springer%2C+Berlin%2C+Heidelberg%2C+1999.&btnG=
https://link.springer.com/content/pdf/10.1007/3-540-48910-X_16.pdf
https://doi.org/10.1109/IFOST.2011.6021216
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+and+implementation+of+RSA+algorithm+for+encryption+and+decryption&btnG=
https://ieeexplore.ieee.org/document/6021216
https://doi.org/10.1109/TIT.1985.1057074
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+public+key+cryptosystem+and+a+signature+scheme+based+on+discrete+logarithms&btnG=
https://ieeexplore.ieee.org/document/1057074
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Boldyreva%2C+A.%2C+Chenette%2C+N.%2C+Lee%2C+Y.%2C+%26+O%E2%80%99neill%2C+A.+%282009%29.+Order-preserving+symmetric+encryption.+In+Advances+in+Cryptology-EUROCRYPT+2009%3A+28th+Annual+International+Conference+on+the+Theory+and+Applications+of+Cryptographic+Techniques%2C+Cologne%2C+Germany%2C+April+26-30%2C+2009.+Proceedings+28+%28pp.+224-241%29.+Springer+Berlin+Heidelberg.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Boldyreva%2C+A.%2C+Chenette%2C+N.%2C+Lee%2C+Y.%2C+%26+O%E2%80%99neill%2C+A.+%282009%29.+Order-preserving+symmetric+encryption.+In+Advances+in+Cryptology-EUROCRYPT+2009%3A+28th+Annual+International+Conference+on+the+Theory+and+Applications+of+Cryptographic+Techniques%2C+Cologne%2C+Germany%2C+April+26-30%2C+2009.+Proceedings+28+%28pp.+224-241%29.+Springer+Berlin+Heidelberg.&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-01001-9_13
https://doi.org/10.1109/SICTIM56495.2023.10105118
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Algorithms+for+Implementing+Repeated+Homomorphic+Operations+on+Restricted+Data+Type+Ranges&btnG=
https://ieeexplore.ieee.org/document/10105118
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Implementation+of+Column-Oriented+NoSQL+Data+Stores+%28Bigtable+and+Cassandra%29&btnG=
https://ijcert.org/ems/ijcert_papers/V2I802.pdf
https://doi.org/10.1007/s42979-021-00613-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Secure+E-Voting+System+Implementation+Using+CryptDB&btnG=
https://link.springer.com/article/10.1007/s42979-021-00613-9

