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Abstract - The excessive inundation of paddy fields and the consumption of groundwater, fertilizers, and insecticides have 

resulted in substantial unintended consequences. The trajectory of the weather patterns and the correlation between weather 

and harvests will determine these effects' unique character and scale. Considering the essential environmental concerns 

affecting paddy ecosystems, this study aims to give a predictive evaluation and outline the ecological implications of rice 

production and the influence of a changing climate on paddy cultivation in the Region of Interest (RoI). In addition to these 

realities, it is essential to foresee the climate's effect on paddy fields by employing forward-thinking solutions for dealing 

with the ever-changing weather patterns that may directly impact rice yields. Philosophy-wise, Machine Learning (ML) 

differs from most traditional statistics since it emphasizes forecasting rather than description. In this paper, the case study 

centred on the findings of geographic climate models is conducted using multiplicative Long-Short Term Memory (mLSTM). 

mLSTM is employed to evaluate the consequences of climatic or environmental changes on rice production in RoI, showing 

the novelty of the work. To assess the effectiveness of the proposed methodology, the predicted outcomes are compared with 

the actual results. Sustainable rice production is assured through reasonable and actionable guidelines in the face of 

mounting environmental challenges. 

Keywords - Agriculture, Paddy crop, Predictive models, Machine learning, Crop productivity. 

1. Introduction 
The farming sector, which is primarily dependent on 

the weather, will be hit particularly hard by climate science, 

making it one of the most immediately affected industries 

overall due to the effects of climatic change [1]. The term 

"climate change" describes any long-term shift from any 

known factors of the weather patterns caused by natural 

variation or by artificial influence. It is predicted that 

climate change will have significant implications for the 

ecological sustainability of underdeveloped nations [2], 

particularly their capacity to accomplish the United Nations 

Sustainability Progress Objective Those with lower 

incomes, particularly those in developing countries that rely 

heavily on agricultural production, are at risk due to climatic 

changes [3]. The specific repercussions on a region are 

determined by the current climate state of a nation, as well 

as other considerations such as geography, society, 

traditions, economy, and governance [4]. 

The globe's ecological and agricultural asset 

infrastructure is already struggling to cope with the 

increasing requirement for food due to rapid urbanization 

and rising spending strength in emerging nations [5], with 

extreme weather further compounding the problem. The 

climate crisis is one of the limited elements that may 

significantly alter a region's typical cropping strategy, the 

yield of crops, and agricultural productivity, as well as the 

yield from related sectors [6]. In addition, weather patterns 

in any given location may undergo unsociable hours due to 

the impact of climatic changes. The delayed seasonal 

rainfalls, unanticipated downpours, unusual weather, severe 

rainfalls, warming trends, heavy precipitation, catastrophes, 

floods, hurricanes, uneven rainfall distribution, and rapidly 

increasing sea levels are clear indicators of climatic changes 

[7]. Human actions, including releasing greenhouse 

emissions, cutting down trees, expanding cities, and 

developing new economies, are to blame for the current 

state of the global climate system [8]. Almost every aspect 

of the ecological and social realms is being influenced by 

climate science.  

Crop production variance is a metric to measure the 

consequences of climatic changes on farming [9]. From 
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among Indian provinces, Tamil Nadu state is one of the 

susceptible regions to climatic variability. However, as a 

bonus, it ranks among the states where certain relationships 

among economic development, agricultural productivity, 

and climatic sensitivity are powerful [10]. People in rural 

regions and those with lower incomes rely heavily on 

farming, poultry, and cattle for survival. Around seventy per 

cent of the province's residents live in farming and related 

industries [11]. Rice, sugarcane, and peanuts were chosen 

for the research because they are the region's three most 

widely grown cultivars. This is a dismal number when 

equated to India's and the globe's average food crop output 

[12]. Thus, it is clear that India's agricultural output must be 

significantly enhanced.  

This study aims to give a predictive evaluation and 

outline the ecological implications of rice production and 

the influence of a changing climate on paddy cultivation in 

the Region of Interest (RoI). Foreseeing the climate's effect 

on paddy fields is essential by employing forward-thinking 

solutions for the ever-changing weather patterns that may 

directly impact rice yields. Philosophy-wise, ML differs 

from most traditional statistics since it emphasizes 

forecasting rather than description. In this research, the case 

study centred on the findings of geographic climate models 

is conducted using multiplicative Long-Short Term Memory 

(mLSTM). mLSTM is employed to evaluate the 

consequences of climatic/environmental changes on rice 

production in RoI, showing the novelty of the work. To 

assess the effectiveness of the proposed methodology, the 

predicted outcomes are compared with the actual results. 

2. Related Works 
Carrão et al. [13] state that climate variability occurs 

globally throughout all temporal frames and results from 

ecological phenomena. Various time scales like inter-annual 

scaling, extended geological timeframes, and multi-decadal 

spontaneous climatic variability provide significant 

challenges to the accurate characterization of climatic 

disruption all across the world owing to human activities. 

Challinor et al. [14] present that for more than a significant 

duration of time that is usually decades or more, a region's 

or area's climate has been impacted if there is a substantial 

variation in observations of the sample estimate or 

unpredictability of the weather patterns for such a province 

or territory. Climate variation may result from ecological 

causes or long-lasting alterations to the atmosphere or soil, 

primarily attributable to human activity.  

Chen et al. [15] state that it is essential to remember 

that the United Nations Action Plan on Climatic Changes 

has limited scope for climate science, limiting the term to 

variations that can be traced back to human activities in 

some way. Parametric methods with explanatory variables 

rectify most problems affecting the Ricardian and 

agronomic approaches. Dastagir [16] presents frameworks 

with a long history of usage, and they have most recently 

been employed in research for assessing the impact of the 

climatic crisis on farming output in India, Asia and the 

Tanzanian region. The realistically attainable recursive least 

squares approach estimates panel predictor variables in three 

stages in several different types of panel research. Kim et al. 

[17] applied a model for evaluating the possible impacts of 

climatic variation on average production and the uncertainty 

of production in agribusiness in the United States and India. 

Droogers et al. [18] assert that climate variation would harm 

India's average rice cultivation and yield volatility. Several 

researchers have used the Probabilistic Maximum 

Estimation (PME) method to assess agronomic profiles by 

utilising data over the period. Hingane et al. [19] indicate 

that the complete variability predictions are commonly 

excessively confident in the accuracy of the estimated 

coefficients and hence advise against using them. 

Isik and Devadoss [20] found that a rise of just one to 

two degrees Celsius in temperature will reduce paddy grain 

productivity by 3 - 17 per cent throughout India. They are 

employing the InfoCrop framework. In contrast, yields are 

proportionally unaffected, mainly in the northern Indo-

Gangetic flatlands. Kittel [21] proposes a method that 

assesses the influence of climatic factors on agricultural 

yields or cropland assets by using the cross-sectional 

disparities between different types of farmland usage and 

climatic patterns. For the estimation of semi-Ricardian 

concepts in India, net income is employed as a substitute for 

the leasehold valuation of farmland because of a lack of 

information on land costs. Krause et al. [22] discovered that 

a predicted 2-degree Celsius increase in temperature and a 

7% increase in rainfall lessen agricultural income by 9%. 

Although research in India suggests that farmers would be 

negatively affected by climatic changes, the lack of such 

information and the failure to account for spatial analysis 

and temporal-reliant aspects, including soil characteristics, 

makes it difficult to provide reliable predictions. 

3. The Proposed Model 
We have formulated a novel multiplicative Long-Short 

Term Memory (mLSTM) model in this research. The 

presented mLSTM aims to analyze the consequences of 

climatic or environmental change on rice production in RoI. 

The anticipated results are associated with the initial 

outcomes to assess the presented approach's efficiency. 

Figure 1 depicts the diagrammatical representation of CDA 

with geographical attributes. 

3.1. Review on RoI 

The Cauvery Delta Area chosen as the RoI for research 

investigation, often known as CDA, can be found in Tamil 

Nadu's easternmost region. The Bay of Bengal surrounds it 

on its eastern side, the Palk Strait on its southern side, the 

Trichy district on its western side, the Perambalur and 

Ariyalur districts on its north-west side, the Cuddalore 
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district on its northern side, and the Puddukkottai district on 

its south-western side. The real RoI is 1.447 million 

hectares of cultivation land. Around 57 per cent of the total 

CDA is located in the former Tanjore district, which 

included the towns of present-day Nagapattinam, Thanjavur, 

and Thiruvarur district, with the remaining 43 per cent 

spread out among the present-day regions of Ariyalur, 

Pudukkottai, Trichy, and Cuddalore districts. Located at the 

10.00°N-11.30°N latitude and 78.15°E-79.45°E longitude, 

the CDA has a vast land mass that covers around 11 per cent 

of the state's cultivation area. More than four million people 

find gainful employment in agriculture due to the 95.6 cm of 

yearly monsoon rains[23]. Across this basin, the 

precipitation differs widely.  

The rainfall due to the southwest monsoon typically hits 

the western part of the watershed, especially during the June 

to September months. 

In contrast, significant rainfall due to the northeast 

monsoon hits the eastern part of the basin during the 

October to December months of every year. Other than that 

window, precipitation is negligible. Most rainwater is stored 

in the multiple reservoirs built across the river, mostly filled 

during the southwest monsoon period. On the other hand, 

the northeast monsoon period provides an enormous amount 

of rainfall in CDA. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Geographical layout of RoI 

3.2. Climate Change Scenario 

As an initial process, this study intends to evaluate the 

influence of prospective paddy cultivation under distinct 

representative concentration pathways. This is accomplished 

by incorporating various climatic condition scenarios 

empirically developed using the MarkSim weather forecast 

generator in conjunction with mLSTM.  

The Intergovernmental Panel on Climate Change 

(IPCC) created a methodology to encapsulate these 

assertions inside a series of eventualities called 

Representative Concentration Pathways (RCPs).  

Potential strategic climatic evolution is modelled using 

the characteristics of every scenario. In addition, geological, 

crop, and climatic data are inputted to determine the water 

requirement for irrigation. 

We utilized the preexisting Decision Support System 

for Agrotechnology Transfer (DSSAT) v4.8 data-generating 

technique and the suggested mLSTM undertake a 

comparative investigation of the outcome of climatic 

conditions on rice crops in the concerned RoI. MarkSim 

generates foundational data for various climate change 

scenarios using morphological and environmental traits. 

Paddy crop types grown at different seasons in CDA are 

described in detail in Table 1[24]. In addition, periodic 

discussions and analyses of each variety's climate effects 

and crop productivity outcomes were conducted.  
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3.3. Crop Simulation Model 
Table 1. Crop types and their growing seasons 

Season Months 

Sornavari March/April to June/July 

Kar April/May to July/August 

Early Samba July/August to January/February 

Samba 
September/October to January/ 

February 

Late Samba 
September/October to January/ 

February 

Thaladi/Pishanam 
September/October to February/ 

March 

Navarai 
November/December to February 

/March 

3.4. mLSTM Description 

Models trained in specific river basins against statistical 

information are the most often used method for estimating 

the effects of climatic changes on hydrological ecosystems.  

However, any approach is unrealistic in light of climate 

change and other human factors since climatic shifts have a 

multiplicative effect on watershed features[25, 26]. 

Minimalistic approaches, incorrect parameterization 

adaptation, a significant decline in effectiveness when 

modelling at a regional level or massive dimension, and 

failure to account for dynamic ecological conditions are 

presently the most significant obstacles. Thus, in this 

research study, we incorporated mLSTM, a variant of 

LSTM, to overcome those obstacles. 

Since there might be gaps of undetermined length 

among crucial occurrences in a temporal data series, Short-

Term Long Memories (LSTM) networks excel at 

categorizing, analyzing, and predicting the target objectives 

based on historical and dynamical serial correlation.  

LSTMs were created as a unique model for various 

solutions, especially for the vanishing gradient issue that 

might arise during training standard Recurrent Neural 

Networks (RNNs). The core process of mLSTM has derived 

a hybrid construction incorporating the factorized hidden-to-

hidden transition of multiplicative-RNN (mRNNs) with the 

gating framework from LSTMs. 

The structure of mRNN was developed to facilitate the 

explicit goal of facilitating a temporal-based, input-reliant 

transition process. For ease of comprehension, an mRNN 

can be expressed in terms of the intermediate state Is, as 

shown in Equations (1) and (2). 

   [(        )  (          )]  (1) 

 ⃗⃗   [(        )  (        )]  (2) 

      Represents the diagonal matrix that changes depending 

on the input, 

    Is the matrix of hidden weights and their inputs, 

 ⃗⃗  , denotes the hidden vector at a time, t 

    , previously hidden state 

Because of the mRNN's complicated transitioning 

process, climate-oriented data may have difficulty adapting 

over the longer term if it is processed by the typical RNN 

components (units). Connecting the LSTM's gating 

components to the mRNN's Is (which is formulated in 

equation (1)) yields the sequence of the processes (from 

equations (3) to (6)), which combines the advantages of 

both structures and the diagrammatical representation is 

depicted in figure 2. 

 ̂  [(      )  (        )]   (3)  

      ( )[(      )  (        )]   (4) 

      ( )[(      )  (      )]   (5) 

      ( )[(      )  (      )]   (6) 

    ( ) represents the sigmoidal (logistic) function, and 

It, Ot, ft represent the input, output, and forget gates 

subsequently. 

In each trial, we ensured that the Is dimensionality was 

equivalent to that of ht. Using Is with all base components, 

our model has almost twice as many recurrent inter-state 

weights as LSTM while retaining the equivalent sum of ht. 

This structure aims to merge the input-reliant adaptability of 

mRNNs, the latent state control, and the long-term memory 

capacity of LSTMs. 

 The complicated changes that emerge from the 

factorized     may be further simplified to regulate with the 

intervention of LSTMs' gating components. Furthermore, 

more input-reliant transition patterns are possible with 

LSTM components than with standard mRNNs attributed to 

the prevalence of ft and sigmoid inputs. 

Instead of being trained to recreate the data, the 

architecture's key component receives supervised training. 

This means that constructing an abstract model of the feed is 

not the primary concern.  

The novel aspect of this structure is the training 

processes, which rely on Hessian-free tuning rather than a 

conventional methodology like back-propagation. Although 

this strategy is effective, we are conscious of other gated 

networks trained using such a level of procedures. 
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3.5. Predictive Assessment Measures 

Rice is adaptable and may be cultivated in many 

different environments and temperatures. Humidity, solar 

irradiance, and precipitation all have a role in determining 

paddy yield, either directly via their effects on the plant's 

physiology throughout the grain-making phase or indirectly 

via creating an environment conducive to the growth of crop 

pests. 

Therefore, the climatic scenarios were constructed 

using several elements, including all the primary 

components that significantly affect rice cultivation, which 

is precisely depicted in figure 3. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Structure of mLSTM

 
Fig. 3 Primary impactful components of p addy crop 
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Very high temperatures stunt the development of plants. 

In addition, changes in tillering, seedling development, and 

ripeness were affected by temperature fluctuations, which 

may further impact grain production. After implantation, the 

growth rate is affected by temperature, which is 

approximately linear between 20 and 35 degrees Celsius. 

Eventually, the tillering velocity and the absolute growth 

rate are somewhat influenced by temperature.  

The relative importance of seasonal versus annual 

precipitation was evaluated to comprehend the spatial 

variability of rainfall. The unpredictability was examined 

using the annual mean, maximum (max), and minimum 

(min) ambient temperature data.  

The number of NPIkelet plants produce rises with 

decreasing temperatures during the initial growing period. 

The average mass of grains seems to be influenced by the 

ambient temperature it experiences before ripening. Figure 4 

shows the ideal temperatures for a rice crop at various 

phases of development. Rice is very vulnerable to frost, 

which may cause several issues, including germination 

failure, a slowdown in the emergence of the seedlings, 

retardation, darkening of the leaves, deterioration of the 

NPIke length and apex, imperfect panicle activity, a lag in 

inflorescence, excessive NPIkelet mortality, and uneven 

ripening. 

During paddy cultivation, the amount of sunlight a crop 

needs changes at each stage. Minimal differences in 

agronomic traits are seen when crops are shaded during the 

growing season. Conversely, shading strongly affects the 

density of NPIkelets during the reproductive stage. As a 

result of a drop in the proportion of loaded NPIkelets, grain 

production is drastically reduced before maturity. The most 

significant impact of solar radiation on crop productivity 

occurs during vegetative development. During dry weather, 

the sun's rays are most potent in the temperate zone. As a 

result, parched crop yields are often lower than their moist 

counterparts. 

 

 

 

 

 

 

 

Fig. 4 Ideal temperatures of paddy crop in varied growing stages 

A little breeze during rice's growth cycle boosts grain 

output by increasing volatility in the canopies because that 

is where most of the paddy crops' photosynthesis occurs. 

The photosynthesis rate rises as air velocity rises. Low wind 

speeds are adequate because winds faster than 0.9 meters 

per second have little impact on boosting the photosynthetic 

process. The paddy stalks get desiccated when the breeze is 

dry. 

There is a statistically significant correlation between 

sunlight intensity and crop yield. Poor radiance during 

the rainy season is often attributed to lousy rice harvests in 

the RoI.  

The ideal humidity level for paddy blossoming is 

between 70 and 80 per cent. Low levels of humidity (less 

than 40 per cent) prevent blossoming. The reduction of 

pigmentation and the subsequent acceleration of vegetative 

growth are relied on by low humidity levels. A water deficit 

may decrease production at any growth phase. Rice plants 

are especially vulnerable to water shortages during the 

divisional minimization stage or through crowning. 

Reduced yield results from a high rate of dryness imposed 

by moisture stress during heading. Until sterility has taken 

hold, the crop will never recover. However, production may 

not be affected by a moisture deficit in the vegetative 

growth phase. The proportional drop in grain production 

that occurs when paddy crops are immersed at various 

stages of development depends on the paddy crop's 

maturity. 

3.5.1. Paddy Productivity Index (PPI) 

Both climatic (precipitation events, warmth, humidity 

levels, and intensity of solar irradiation) and agronomic 

(seedlings, geographical data, and action plans) variables 

influence crop yield (covering the use of fertilizers, 

pesticides, and water management). Differentiating the 

effects of non-meteorological elements, especially 

technological inputs, may be difficult. The observed 

productivity was matched with the countdown linear 

relation over a specific time to investigate the rhythm of 

patterns and measure the annual growth depending on 

technology sources. To figure out the technological 

effectiveness in productivity (  ) for this analysis which is 

expressed in equation (7). 

   (    )       (7) 

Wherein δ and φ are experimental coefficients and tn = 

1, 2 reflect the years 2020 and 2021 for rice production. The 

Paddy Productivity Index (PPI) has been employed to 

standardize the dataset, which is further supported by 

extracting some proportion of the technological-centric 

productivity from the productivity gains (actual results). The 
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annualized PPI after normalization is expressed in equation 

(8) for any given nth agricultural year. 

     
[     ] 

[  ]
⁄        (8) 

Where    represents factual productivity per year, and 

   is the scientific pattern of productivity for any given n
th

 

year. 

3.5.2. Normalized Precipitation Indicator 

The NPI's ease of use and effectiveness has made it a 

popular drought gauge. It aids in detecting and tracking 

droughts using just the most basic data sources: seasonal 

rainfall records from the last few decades. Furthermore, 

numerical value replacement aids in evaluating unusual or 

excessive precipitation, allowing for the investigation and 

assessment of weather patterns in different climatic regimes. 

As opposed to competing indicators, NPI excels in three key 

areas: (a) empirical stability, (b) the ability to represent both 

short- and long-durative dryness, and (c) the ability to 

conduct water stress vulnerability assessments.The long-

term observation recordings could be fitted to likelihood 

function-based simulators, and after that, they could be 

transformed into a standard curve. The NPI is indicative of 

the set of reference deviations that being a perspective, 

deviates from the lengthy norm (usually a mean) and 

expresses as,  

     
(    ̅)

 ⁄  (9) 

where   ,  ̅ and σ are precipitation in the nth year, the 

long-term average, and the standard deviation of average 

rainfall, respectively. 

3.5.3. Circadian Temperature Variation 

Circadian Temperature Variation (CTV = maximum– 

minimum temperature) influences crop development and 

harvest success. Documentary records and climate 

sensitivity predict significant shifts in CTV. We used CTV 

and NPI because they are valuable indices for gauging the 

effect of climatic variability on agricultural output. 

4. Performance Validation 
We used DSSAT v4.8 and mLSTM to analyze potential 

changes in rice harvests associated with climatic change. A 

DSSAT model estimated crop development and production 

by examining physical and morphological factors. mLSTM 

is an advanced ML technique that predicts agronomical 

factors based on temporal attributes.The yearly average 

future climate projections using mLSTM and DSSAT are 

shown in Figures 5a and 5b for two climate scenarios, 

respectively. Both methods forecast a progressive rise in the 

yearly minimum temperature in the RoI. Minimum 

temperatures are projected to rise to 11.6°C (in RCP 4.5) 

and 11.3°C (under RCP 8.5) through mLSTM experiments 

and to around 10.4°C (under RCP 4.5) and 11.1°C (under 

RCP 8.5) via DSSAT trials, over the period 2020–2070. 

According to different climatic variability patterns, the 

yearly minimum temperature will shift from 1.0 to 2.1 

degrees Celsius to 0.8 to 1.7 degrees Celsius. Similarly, 

figures 6a and 6b for two climatic scenarios forecast a 

progressive rise in the yearly maximum temperature in the 

respective RoI. Maximum temperatures are projected to rise 

to 39.5°C (in RCP 4.5) and 39.8°C (under RCP 8.5) through 

mLSTM experiments and to around 38.9°C (under RCP 

4.5), and 39.1°C (under RCP 8.5) via DSSAT trials, over 

the period 2020–2070. According to different climatic 

variability patterns, the yearly maximum temperature will 

shift from 1.3 to 2.2 degrees Celsius to 0.9 to 1.6 degrees 

Celsius. 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 5 Future minimum temperature prediction under two concerned climatic scenarios (RCP 4.5 and RCP 8.5) 
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Fig. 6 Future maximum temperature prediction under two concerned climatic scenarios (RCP 4.5 and RCP 8.5) 

There are three distinct growth seasons in the CDA: the 

rainy season (November–February), the post-monsoon 

(March–June), and the subsequent rainy climate (October–

November). We separated our estimates of the climate 

predictions into three distinct seasons based on the various 

possibilities. The effect of potential temperature increases 

on rice production is evaluated under different settings, with 

other factors held constant when possible. Minimal 

temperature-centric normalized deviations should be 

included for best-predicting results. Consequently, the 

expected change in the outcomes of each scenario over a 

year is shown in figures 7(a) to 7(d). There is a significant 

upward pattern in the temperature variations throughout the 

vegetative stage (March–June), accompanied by a decrease 

during the winter months (November–February). These 

findings provide evidence that small changes in 

environmental conditions lead to increased rice production. 

The rationale is that there may be insufficient accumulated 

temperatures in the RoI under examination. A decrease in 

rice output of 0.23 per cent has been linked to just a modest 

temperature rise of 0.8 degrees Celsius. 

While other parameters are held constant, it is 

discovered that a decrease in rainwater is correlated with a 

rise in crop productivity. In contrast, a rise in precipitation is 

linked to decreased crop yield. Figure 8 displays the 

outcomes of an examination of precipitation variability. If 

annual precipitation increases by 10% or 20% over the next 

five decades, rice output will drop by 4.23 and 13.32 per 

cent, respectively. Similarly, we have included potential 

future precipitation decreases in our analysis. A 10% and 

20% reduction in rainfall throughout the paddy vegetative 

stage would improve grain productivity by 6.18% and 

18.26%, respectively. This may be because we incorporate 

additional rainfall predictor variables for October and 

November into our empirical model, considering that 

rainfall in these months might negatively impact paddy crop 

production as it reaches maturity. Therefore, the study 

should focus on regions wherein changes in rainfall patterns 

will significantly affect crop needs. 

While the initial rainy season receives the most rainfall, 

the overall amount of precipitation that occurs throughout 

the monsoon season (October and November) and further 

will peak in the second month of that wet season and then 

progressively decrease in the third month. As a consequence 

of the climatic shift, it is expected that the rainy season will 

increase precipitation while the dry period (March–June) 

will remain drier. Even during second dry periods, the 

highest and lowest temperatures and the most intense solar 

irradiation will be experienced. Consistent with prior 

research findings, RCP 8.5 has the most significant 

emissions of greenhouse gases since all the climatic 

variables were created more often under this scenario than 

under RCP 4.5 scenarios. 

Figure 8 depicts the estimated rainfall distribution, 

showing significant geographical and temporal variance 

expected to reduce progressively throughout the 2060s. The 

worst drop in precipitation occurred within the RCP 8.5 

projections, which spanned from 2050 to 2065. 

However, projections for future precipitation show a 

broad range, from 950 mm to 885 mm. Precipitation in 

August and September seemed to have a relatively 

insignificant effect on rice production. However, rainfall in 
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October and November had a statistically significant 

adverse effect on rice production, which differed from 0 at 

the 1% significant level. The findings imply that a 3 per cent 

precipitation increase without any temperature shift will 

reduce annual rice production by ~1%. This is to be 

anticipated and is probably owing to the premise that the 

crop yield is at its peak during harvest in October and 

November. The rains before the commencement of 

harvesting affect rice productivity adversely. While 

monsoon rains typically occur between July and September, 

a variation in their timing to September and October will 

severely impact rice production and crop quality. 

From the observable results of figure 9, it is evident that 

there is a rise in solar irradiance in the upcoming decades, 

with the highest incremental shift occurring as in the RCP 

8.5 scenario. There is a correlation between the quantity of 

precipitation and the rise in solar radiation; heavy rainfall is 

associated with decreased solar irradiance. Wet-season 

productivity is 30–40% worse than dry-season productivity. 

In the rainy season, reduced production was attributed to 

reduced incoming solar irradiance rather than the 

persistence of the average temperature in CDA. 

Figures 9 and 10 demonstrate the findings of the 

various correlations between annual NPI and CTV. For the 

pertinent RoI, we find a significant correlation between 

annual NPI and CTV of 0.78 (R
2
) at a significance level of 

0.03. Based on this data, it is concluded that 9.15% and 

12.42% of the variation in rice output in CDA, respectively, 

can be attributed to anomalies in rainfall patterns (NPI) and 

temperature (CTV). On the other hand, for samba rice, the 

correlation was less, representing just 0.28% and 0.24% of 

the CDA's natural variation. Correlations were also at an all-

time low, especially during the growing and harvesting 

stages of the Navarai crop season. 

Though long-term NPI readings might provide some 

insight into the frequency and severity of dry and wet 

periods in the CDA, they may not indicate a clear pattern. 

Our observations showed that March through June were the 

most susceptible to drought and lower precipitation. CTV's 

decline can be attributed to the fact that lower temperatures 

are rising at a faster rate than higher temperatures. 

Maximum temperatures have also risen over time, albeit 

slower than minimum temperatures. This has led to a 

decline in CTV throughout the late samba season. Our data 

suggest a declining pattern of CTV due to a more rapid rise 

in winter temperatures than in summer ones. Increasingly 

rapid reductions in winter monsoon intensity correlate to 

ever-higher maximum temperature rise rates. 

For the years 2020–2070, there will be a substantial and 

considerable linear relationship (R2 value at P 0.03) 

between the productivity of periodic rice crops (Sornavari, 

kar, early samba, samba, late samba, thaladi, and navarai) 

and the year in CDA (Table 2). 

The profitability of paddy cultivation was maximum in 

the dry area out of all the ecological systems. Mild 

temperature increases of 1.2 °C and 1.8 °C are observed to 

enhance yields by 3.13% and 4.18%, respectively. Although 

higher temperatures might boost rice output, increased 

evapotranspiration will raise the need for more irrigation. 

 

 
 

 
Fig. 7 Minimal temperature-centric normalized anomalies 
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Fig. 8 Predictive assessments on rainfall 

 
Fig. 9 Predictive assessments on solar radiations 

 
Fig. 10 Predictive assessments using NPI and CTV indicators 

Table 2. Analysis of various rice crop productivity 

Rice Crop Productivity R
2
 

Sornavari 1.632+(ti x 0.0413) 0.71 

Kar 1.711+(ti x 0.0301) 0.74 

Early Samba 1.612+(ti x 0.0358) 0.69 

Samba 1.805+(ti x 0.0601) 0.84 

Late Samba 1.523+(ti x 0.0531) 0.71 

Thaladi/Pishanam 1.432+(ti x 0.0243) 0.65 

Navarai 1.389+(ti x 0.0289) 0.62 

 

5. Conclusion 
This research examined the effects of climatic 

variations on paddy crop production on a broader 

cumulative scale by employing time-series data. We applied 

the mLSTM, and DSSAT approaches in RCP 4.5 and RCP 

8.5 to assess the impact in two discrete cases. The research’s 

outcomes suggest that climate factors, such as precipitation 

and temperature, are crucial in determining rice harvests. A 

substantially noteworthy difference exists between the mean 

highest temperature from March to June and July to 

September and the mean lowest temperature from October 

to December. In addition, rice production and precipitation 

in October and November have a strong inverse correlation. 

To obtain complete knowledge on the subject of changing 

climate and rice production, scientific investigations in the 

future will have to concentrate on data analysis in various 
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scenario settings. These findings could be utilized by 

cultivators, scientists, and regulators to better plan for and 

respond to changing climates in the rice-producing 

economy. In future, hybrid deep learning-based models can 

be designed to improve the paddy crop productivity 

prediction performance. 
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