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Abstract - Accurately identifying Insulated Gate Bipolar Transistor switch failures is crucial for ensuring the dependability 

and durability of the 3Φ-Voltage Source Inverters. For the purpose of monitoring and diagnosing faults in three-phase 

inverters, signal processing is frequently utilized. The current study then uses an ANN approach to focus on the issue in 

variable load settings. The suitable Mother Wavelet is a Mother Wavelet with the greatest Energy to Shannon Entropy (ESE) 

ratio. An innovative technique with normalized characteristics is used to reduce the algorithm's complexity. The ReliefF 

algorithm is used to choose the best features. The most useful traits are used to instruct an ANN to detect errors. The suitable 

ANN structure is selected from a pool of training structures depending on accuracy. The recommended technique is novel in 

that it achieves OCFs in 3-VS Conditions of varying load by using the fewest features and the least amount of training data. To 

do this, extracted features are normalized before training an ANN. The data gathered shows that rank-based feature selection 

had improved the ANN classifier's accuracy.  
 
Keywords - 3Φ-Voltage source inverters, Artificial neural networks, Current signature analysis, Energy to shannon entropy, 

Open circuit faults, Relief. 

1. Introduction 

The large percentages of industry applications employ 

3Φ-Voltage Source Inverters (3Φ-VSIs). In order to keep the 

production process running smoothly, maintaining them is 

crucial. Power semiconductor switches Majority inverter 

problems originate from Insulated Gate Bipolar Transistors 

(IGBTs)[1]. Open Circuit Faults (OCFs) and Short-Circuit 

Faults (SCFs) are common problems with power switches. 

The much more serious defects, SCFs, are often separated by 

conventional protective components. OCFs are less prone to 

be extremely damaging than SCFs[2].  

Several academics have focused on identifying OCFs, 

which is crucial in the maintenance area. Yet, if a power 

switch is subjected to an OCF for an extended period of time, 

it may result in the failure of further components or even 

force an unplanned system shutdown. Because of these 

factors, the research community is becoming more interested 

in techniques for diagnosing OCFs in 3Φ-VSIs[3]. These 

Fault Diagnostic Techniques (FDTs) are often either data or 

circuit-driven.  

The primary and extensively used method for identifying 

IGBT-OCFs is Current Signature Analysis (CSA). It should 

be observed that the IGBT current signal is often noisy; thus, 

the fault information may be obscured. Traditional methods 

like Park's Vector Technique (PVT), Normalized DC Current 

(NDC) approach, and modified NDC method are difficult to 

use in these circumstances. The sensitivity of the diagnostic 

indicators and the quality of the current signal will be 

improved by the proper processing procedure[1]. In 2-level 

VSIs, certain research has taken into account all OCFs. In 

order to detect OCFs and current sensor disconnection 

problems in 2-level VSIs, the modified Park's vector 

approach, the application of the average current approach, as 

well as the Luenberger observer-based approach were each 

suggested. IGBT and current sensor defects in 3Φ-VSIs were 

simultaneously diagnosed using the Fast Fourier Transform 

(FFT) and an independent random functional link network 

[4, 5]. Line voltage deviations and phase voltage deviations, 

which are appropriate for current sensor faults having a 

constant current, were used to diagnose all OCFs as well as 

current sensor problems for 2-level VSIs. Despite the 

growing interest in rapidly identifying OCFs, 3-VSIs might 
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easily apply these techniques due to the different 

fundamentals[6, 7]. 

SP technologies are used in a number of methods to 

identify the IGBT-OCFs. The Support Vector Machine 

(SVM) is used to separate discontinuities in the current 

signal brought on by the fault after the Wavelet Transform 

(WT) has detected them. WT was combined with Artificial 

Neural Networks (ANNs) to automate the identification of 

OCFs in inverters[8].  

The WT-ANN approach was used [3] to locate OCFs in 

converters. A technique using ANN, feature analysis, and 

wavelet analysis was developed to identify single and double 

OCFs in the converter of wind turbine systems with 

synchronous generators[1]. For finding flaws, data-driven 

approaches frequently employ cutting-edge Signal 

Processing(SP) and Artificial Intelligence (AI) algorithms[9]. 

These techniques are not good for real-time online problem 

diagnosis since they need a lot of data and complicated 

calculations[10-13].  

ML methods are utilized in [14] to identify 

abnormalities such as symmetrical and asymmetrical defects 

in a power system. An actual power system dataset is 

gathered for this research and splits into training and testing 

datasets with varying percentages.  

The suggested system's accuracy is great, and it is 

contrasted with other AI methods[14]. Yet, AI approaches 

for driving system fault diagnosis are developed to decrease 

the difficulty and quantity of problems and breakdowns 

caused by the usage of big measurement systems with the 

standard FDTs. Several AI techniques have been used to 

identify as well as identify defects in past years, and many 

proved to be effective. In particular, the authors of [15] 

suggested a strategy for identifying OCFs using the PVT 

current approach, and then they used the Fuzzy Logic (FL) 

technique to recognize malfunctioning VSI switches.  

The outcomes of this approach are contrasted with those 

of OCF's detecting techniques. A combinational logic-based 

and FL approach is suggested for fault identification [16]. 

This approach has certain advantages—it is easy to use and 

has a high degree of diagnostic accuracy—but it must be 

used with an intelligence redundancy engagement system. 

Also, the approach that is being provided can only be used to 

find OCFs. 

The numerous FDTs, including the time voltage 

criterion, switching time-domain OCF detection, asymmetric 

zero voltage switching, ANN and AI, histogram, harmonic 

frequency analysis, and the output voltage or current analysis 

are detailed in the research[2]. The overall method for defect 

diagnostic is applying several signal systems or mathematical 

operations to the measured output amount in order to extract 

any unique characteristics, such as voltage, current, as well 

as power. The numerous FDTs are divided into three major 

groups: harmonic frequency analysis, AI-based methods, as 

well as waveform analysis. For defect diagnosis as well as 

fault location identification, an ANN was created [17]. In the 

study, a multiclass ANN was suggested, with extremely 

careful consideration given to input/output design. Also, this 

method utilized the torque, voltage, and current signals 

(CSs). The outcomes showed how valuable and beneficial 

the FDTs are coupled with ANNs.  

The proposed approaches, however, are exceedingly 

sophisticated and have a very narrow range of applications 

since a very intricate mathematical model is needed to handle 

them. A stator current sensor-based ANN was also employed 

by the authors in [18, 19]. Comparing the proposed technique 

to the typical current sensors used in similar applications, its 

key benefit is that it is much faster. 

A crucial component of run-time predictive maintenance 

is fault analysis. The current study Current Signature 

Analysis of Open Circuit Fault Diagnosis (CSAOCFD), 

employs an ANN technique to concentrate on the problem 

under fluctuating load conditions.  

A Mother Wavelet(MW) that has the highest Energy to 

Shannon Entropy (ESE) ratio is chosen as the appropriate 

MW[19, 20]. A novel approach is employed using the 

normalized characteristics to decrease the algorithm's 

complexity. For selecting the optimal features, the ReliefF 

algorithm is employed.  

The most effective characteristics are utilized to teach an 

ANN to diagnose faults. Out of various trained structures, the 

appropriate ANN structure is chosen based on accuracy. The 

new aspect of the suggested strategy is that it uses the fewest 

features and the smallest amount of training data to diagnose 

OCFs in 3-VSI under situations of fluctuating load. Before 

training an ANN, extracted features are normalized to 

achieve this. The findings demonstrate that rank-based 

Feature Selection (FeaSel) has enhanced the accuracy of the 

ANN classifier. The main contribution of the suggested work 

is listed below. 

• To research a technique for fault diagnosis of single and 

multiple open switches in a 3Φ-VSI system that works 

with variable load. 

• To provide an MW that has the highest ESE ratio is 

chosen as the appropriate MW. 

• To ensure that selected features remain the same for all 

load circumstances after being extracted for a single load 

condition. 

• To provide a method for selecting the best features to 

train ANN techniques to improve performance in the 

3Φ-VSI fault diagnostic technique. 
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Fig. 1 The circuit diagram of 3Φ-VSI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Proposed current signature analysis of open circuit fault diagnosis in 3Φ-VSI 
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2. Materials and Methods 
The planned CSAOCFD is put into practice to produce 

signals for both healthy as well as faulty situations, and 

observations are kept for all circumstances. The circuit 

diagram of 3Φ-VSI is shown in Figure 1. The general layout 

of the test rig in operation with an Induction Motor (IM) is 

shown in Figure 2. A current sensor is installed to measure 

the 3Φ current Ip—IR, IY, and IB—described in Eq. 1. For 

every cycle of the CSs, five packets of CSA are performed 

once the CSs are transformed into digital form. 

𝐼𝑝 = {

𝐼𝑅 = 𝐼𝑚 sin(𝜔𝑠𝑡 +  𝛷)

𝐼𝑌 = 𝐼𝑚 sin(𝜔𝑠𝑡 +  𝛷 −
2𝜋

3
)

𝐼𝐵 = 𝐼𝑚 sin(𝜔𝑠𝑡 +  𝛷 + 
2𝜋

3
)

   (1) 

Where 𝐼𝑚 is the maximum current amplitude. P is a 

phase like R, Y and B. In 3Φ-VSI, the OCF is produced 

artificially. With an OCF, variations in CSs are seen under 

various switch and load situations. To eliminate undesired 

signals, these load CSs are filtered. The filtered CSsIRf, IYf, 

and IBf, as provided in Eq. 2, are employed for feature 

extraction. 

    𝐼𝑝𝑓 =

{
 

 
𝐼𝑅𝑓 = 𝐼𝑚 sin(𝜔𝑠𝑡 +  𝛷)

𝐼𝑌𝑓 = 𝐼𝑚 sin(𝜔𝑠𝑡 +  𝛷 −
2𝜋

3
)

𝐼𝐵𝑓 = 𝐼𝑚 sin(𝜔𝑠𝑡 +  𝛷 + 
2𝜋

3
)

        (2) 

The Discrete Wavelet Transform (DWT) extracts 

features from the filtered current signal. Using Eq. 3 and Eq. 

4, the Detailed Coefficients (DC) and Approximate 

Coefficients (AC) are determined. 

𝐷𝐶𝑝𝑓 = ∑ 𝐼𝑝𝑓(𝑖) × ℎ(𝑛−𝑖)    
𝑚
𝑖=0    (3) 

𝐴𝐶𝑝𝑓 = ∑ 𝐼𝑝𝑓(𝑖) × 𝑔(𝑛−𝑖)      
𝑚
𝑖=0   (4) 

Where n is the shifting parameter, and m is the total 

sample size in one packet of the current signal. The High 

Pass Filter as well as Low Pass Filter coefficients are 

denoted by the letters ℎ(𝑛−𝑖) and 𝑔(𝑛−𝑖) respectively.  

The MW with the highest ESE ratio is the most 

appropriate MW. The feature like Minimumpf (minpf), 

Maximumpf (maxpf), Kurtosispf, Skewnesspf, RMSpf, and 

Shannon Entropy (SEpf) values of the 𝐷𝐶𝑝𝑓 are calculated. 

The best features are chosen using the ReliefF algorithm. The 

selected features are normalized using Eq. 5.  

𝑁𝑜𝑟𝑚Self_PF = 
max (𝑆𝑒𝑙𝑓𝑝𝑓)

max (𝑆𝑒𝑙𝑓𝑝𝑓)
  (5) 

Where, Self_PF is one of the selected features from 

minpf, maxpf, Kurtosispf, Skewnesspf, RMSpf, and SEpf using 

the ReliefF algorithm. The most beneficial characteristics are 

utilized to guide an ANN in fault detection. The best ANN 

structure is chosen based on accuracy from a pool of training 

structures. 

3. Experiment Facilities and Instrumentation 
The most crucial component in the training of ANN is a 

significant collection of real data with the actual problematic 

situations. It was discovered through the experimental 

design. A visual representation of the experimental setup is 

shown in Fig. 3. IGBTs are safeguarded against faults using 

the protection circuits. An IM may run at various operating 

speeds with a variable frequency drive. While choosing an 

IM, the motor speed range is carefully considered. 

The CSAOCFD system records 09 defective conditions 

and one in good condition at varied speeds. Fig. 4 shows the 

few samples taken at 1200 rpm for various faulty states.  

CSs acquired from a current signal is recorded and 

stored using a Digital Storage Oscilloscope (Tektronix 

manufacture TBS 1064, 60 MHz, 4 channels, measurement 

accuracy: vertical 3%, from 10 mV/div to 5 V/div). These 

signals are subjected to DWT analysis before being taken 

into account as data input for ANN processing. The input 

used for the experiment is displayed in Table 1. 

4. Results and Discussion 
Understanding the sensor data related to non-stationary 

signals is crucial. Multilevel analysis using DWT makes it 

feasible to do this. DWT is a frequently used method to 

gather data in the time and frequency domain. For each of the 

sample conditions listed in Table 1, the 𝐷𝐶𝑝𝑓 feature 

extracted is compared.  

The change in 𝐷𝐶𝑝𝑓 values have been mirrored by the 

change in CSs under various defective conditions. Fig. 5 

compares and illustrates it. It has been noted that DWT is 

used to investigate the abrupt rise and decrease in CSs in the 

frequency domain. DWT helps to locate and isolate unusual 

fault features. It is crucial to choose the right SP approach 

and the right features in order to extract usable information 

from nonlinear signals. The following often-used 

characteristics may be retrieved from the extracted features 

of CSs: minpf, maxpf, Kurtosispf, Skewnesspf, RMSpf, and 

SEpf. The DWT is used to extract the necessary features from 

CSs. 
Table 1. Input conditions for pilot experimentation 

Conditions IGBTs 

Healthy Condition All IGBTs Healthy 

Single Switch OCFs T1, T2, T3, T4, T5 and T6 

Double Switch OCFs T1-T3, T1-T6 

Phase OCFs T1-T4 
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DWT's time and frequency domain application 

efficiently displays the fault existing impulse. As indicated in 

Fig. 6, several MWs are tried at various levels to choose the 

optimal wavelet and level based on the highest ESE. The 

comparison of every MW taken into account is made at 

various stages of decomposition depending on the ESE ratio. 

The energy contained in a signal decreases as the degree of 

signal breakdown rises, as is evident for all MWs considered. 

As level one provides the most data for choosing wavelets 

and features, it is taken into consideration.  

With the use of DWT, several MW types, including 

Daubechies (DB), Coiflet, Symlet, HARR, DMEY, 

Biorthogonal, and Reverse Biorthogonal, are taken into 

account throughout the analysis. The maximum ESE ratio is 

used to determine the appropriate amount of MW. For all 

wavelets considered, this ratio is greatest at level 1. Fig. 7 

compares and plots the average ESE for each MW and for 

each fault class. Fig. 7 makes it obvious that DB2 and SYM2 

have greater ESE ratios. Each wavelet's mathematical 

function is identical; therefore, anyone may be used. Hence, 

level 1 of DB2 MW is chosen for analysis. More DB2, as 

well as SYM2 systems, have higher average ESEs.  

The DB2 wavelet is chosen as an appropriate MW, as 

previously stated. The knowledge from the output signal is 

examined using the 18 statistical features gathered. The 

RelifF technique is used to optimize the FeaSelon rank basis. 

The sample CSs for a defective condition at 1200 rpm is 

considered to provide the research's major aspects. All 

mother wavelets at level 1 clearly exhibit excellent ESE 

ratios. The explanation for this fact is that knowledge is more 

important than entropy at the early stages of signal 

decomposition. This is the rationale behind selecting level 1 

for comparison. The ReliefF method is used to improve the 

rank basis feature. The rank 1 feature that is noticed is 

Kurtosispf. As a result, all signals' Kurtosispf features are 

discovered using DB2 at level 1. According to Fig. 8, the 

efficacy of the Kurtosispf feature when taken alone is 18.9%. 

Combined with the top seven ranked features for the fine 

Gaussian SVM classifier, as shown in Fig. 8, it improves up 

to 90.7%. It is obvious that the top seven features are all that 

is required to get the best efficiency for the fine Gaussian 

SVM classifier used in this implementation. With the help of 

Eq. 5, which is now known as Eq. 6, the Kurtosispf  

characteristic is normalized before being used as an input to 

train ANN 

𝑁𝑜𝑟𝑚Kurtosis_PF = 
max (Kurtosis𝑝𝑓)

max (Kurtosispf𝑝𝑓)
  (6) 

An ANN is trained using the 𝑁𝑜𝑟𝑚Kurtosis_PF 

parameters as inputs. The 𝑁𝑜𝑟𝑚Kurtosis_PF values for 

various defective situations for 3Φ current are calculated. 

Table 2 displays the different ANN architecture 

combinations that were taken into consideration. Tan 

sigmoid activation function and the Levenberg-Marquardt 

method approach have been employed for learning. The 

quantity of the training data, the neurons in the input, hidden, 

and output layers, as well as the initial weight given to the 

input signals, all play a role in choosing the optimum 

structure. 

 In ANN training, 7000 samples are taken into account, 

of which 1600 samples are from good conditions, and 5400 

samples are from problematic situations. The samples are 

divided as follows: 50% of the whole sample is used for 

ANN training, 25% of the total sample is used for ANN 

testing, and the remaining 25% is used for ANN cross-

validation. Machine Learning Models (MLMs) can ensure 

the best efficiency since they evaluate multiple models, 

starting with the most basic ones. 
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Fig. 4 Three-phase current waveform during healthy and faulty conditions 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Detail coefficients during healthy and faulty conditions 

Fig. 6 MW comparison at several levels 
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Fig. 7 Comparison of mother wavelet at different levels 

 

 

 

 

 

 

 

 

Fig. 8 Ranking-based feature selection using the ReliefF algorithm 
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Table 2. Evaluation of ANN structure 

 

 

 

                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 9 Variation of MSE in the training of ANN 

A technique for evaluating MLMs called cross-

validation involves training several MLMs on portions of the 

available input data but instead evaluating them on the 

complementary portion of the data. To identify overfitting 

and MLM failure to generalize, use cross-validation. The 

three primary components of ANN architecture are input, 

hidden, and output layers. The three inputs for comparing the 

proposed structures are still as follows. The number of 

concealed layers is controlled by accuracy. So, the choice of 

the number of concealed layers 5, 10, 15, 20, and 25 is based 

on trial and error. During ANN training, the learning rate 

varies between 0.01 and 0.04. There are 1800 epochs taken 

into account. Table 3 displays the various testing and training 

structures that were considered.  

Figure 9 illustrates how the ANN performed while 

training for structures 3-20-6 with a learning rate of 0.02. At 

1250 epochs, an MSE of 0.049 was found. ANNs are trained, 

tested, as well as validated using MATLAB software. The 

method for three-phase VSI fault detection and diagnostics 

has been given. For the purpose of classifying faults, the 

features are extracted using DWT, and their normalized 

values are then put into neural networks. Here are lists of 

effectiveness as well as assessment measures. A technique is 

effective if it can identify the faulty switch. The 

implementation and testing of various fault detection and 

diagnosis systems hamper performance under fluctuating 

load conditions. The simulation results, displayed in Figure 

10, demonstrate the system's accuracy in detecting open 

circuit failures under varied load conditions. This system has 

a remarkable ability to accurately classify faults under 

various load circumstances. It is advantageous to set as few 

thresholds and tolerances as feasible to create a generally 

applicable procedure.  

The effectiveness of a neural network depends on how 

well it has been trained. The mean square error and hidden 

node count will determine how long it takes to train the 

neural network. The longer it takes to train the neural 

network, the more hidden nodes there are. For the selection 

of concealed nodes, there is no specific mathematical word. 

Consider the neural network trained if there is a smaller error 

between the target and the actual output. The difficulty of 

detecting the detection parameter, the complexity of the 

mathematical processes, and the decision-making process all 

affect the amount of work needed to execute an algorithm. 

The CSAOCFD method has a significant implementation 

effort. 
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Fig. 10 Accuracy of open circuit fault at different speeds in RPM

5. Conclusion 
A new protection algorithm is proposed in the system to 

enhance the performance, reliability, safety, and efficiency of 

3Φ-VSIs. In order to prevent the traditional or catastrophic 

breakdown and to increase the reliability, efficiency, and 

performance of the power inverter, a new method for 

detecting defects in 3Φ-VSIs has been introduced. This is 

one of the best approaches with characteristics like ageing 

systems, high-reliability requirements, and cost 

competitiveness. The relevance of preventive and condition-

based maintenance, online monitoring, system problem 

detection, and diagnosis is also growing. 3Φ-VSIs faults 

have been identified using the Daubechies wavelet transform 

of phase currents to demonstrate its efficacy and the faults 

have been classified using a neural network. The framework 

for detecting and diagnosing open circuit defects served as 

the foundation for developing neural networks. The average 

level of diagnostic accuracy has increased to about 95%. 

Also, the system displayed a trained, structured neural 

network system that can identify and isolate any of the nine 

defects. It can be concluded that the suggested model-based 

fault diagnostic strategy combined with machine learning 

techniques reliably and effectively detects the faults 

occurring in 3Φ-VSIs. 
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