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Abstract - A significant purpose in detecting pervasive computing approaches is to improve the specificity and sensitivity of 

arrhythmia detection using electrocardiograms. Because ECG signals frequently propagate over distributed computer settings 

such as the medical Internet of things, noise is prevalent (medical IoT). In these distributed and widespread computing-aided 

methodologies, noisy electrocardiograms are common to false alarms. The fundamental goal of the machine learning-based 

arrhythmia detection algorithms discussed in this publication is to detect noise scope in electrocardiograms. The suggested 

approach determines whether or not the provided electrocardiograms are influenced by noise. In this regard, the approach 

takes advantage of the electrocardiogram's temporal and spectral characteristics. The performance of the suggested technique 

was evaluated using multifold cross-validation. In addition, a comparative study was performed comparing the average of 

peak Signal to Noise Ratio, respective standard deviation and filter sequence length obtained from filtering noise by FIR and 

IIR filters from raw ECG signals and the SLND-selected noisy ECG signals. 

Keywords - Electro Cardiogram (ECG), Baseline Wandering (BA), Powerline Interference (PLI), Weiner Filter (WF), Fourier-

transform (FT), FIR, IIR. 

 

1. Introduction 
ECG is the commonly used cardiology test for assessing 

heart performance, wherein the electrical readings provide 

significant inputs [1]. The electrodes' essential function is 

detecting small electrical changes resulting from the facets of 

repolarization and depolarization, wherein the 

electrophysiological pattern for the heart muscles is assessed 

at each level of the heartbeat conditions [1]. Many distinct 

observations result in outcomes from the tests. For instance, 

there is potential scope for measuring heart rate consistency, 

size, and placement of the heart function conditions. Even 

the evaluations about the performance of any implanted 

devices like pacemakers or other such regulating medical 

devices, too, can be assessed.  

The graph movements indicate the heart's function 

during the period wherein the medical devices are used to 

detect the heart rates by placing the device nodes over the 

skin's outer surfaces and the electrodes that are being 

observed. ECG (Electro Cardiogram) is the device used for 

garnering data as ECG signals constitute specific indicators 

as the common readings from the system, technically defined 

as Intervention Basic and Interference feed line. 

Information garnered from the readings of ECG devices 

can be efficient for measuring the abnormalities in the heart 

rhythms [2, 3] and more categorically in assessing the 

fundamental readings to guide any significant and detailed 

tests to be carried out [4]. As discussed in [5], the ECGs can 

be very resourceful for detecting damage to specific portions 

based on the myocardium resulting from myocardial 

infractions [5]. The other important aspect is digitally 

collecting information and the ECG data, which will be 

resourceful for automatically handling the ECG signal 

analysis [6]. 

Routine electrical line readings and the baseline drift [7] 

are the two distinct factors that signify the actual condition of 
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the readings from a patient record for whom the ECG records 

are tested. The interference power line results from streams 

due to the inaccuracies like the improper placement of the 

electrodes, unhygienic electrodes, or any loose contact over 

the machinery.  

The interference power line is usually 50 Hz. The basal 

movement results in the flexible impedance from electrode 

skin for the patient's response [8, 9]. Those two critical 

factors are vital in the clinical monitoring and ECG signal 

masks for patients' diagnoses. Despite the scope that 

applying a filter is feasible for reducing the noise power 

(stopband notch filter), it still does not suffice the 

requirement in handling the scale or frequency characteristics 

of the noise. Considering the constraints, the optimal signal 

focus on non-stationary processes remains the choice for 

handling noise reduction.  

Conventional models were only successful to an extent. 

Specific models like the adaptive filtering procedures have 

been considered for cancelling the non-static interference. 

Filtration is when the signal's noise ratio is eliminated or 

mitigated to the optimal extent [10, 11]. The other significant 

aspects of the filtering process are smoothing and prediction. 

Numerous approaches were proposed for addressing 

enhancements to the process using ECG adaptive and other 

novel range of techniques used for filtering [12]. The 

adaptive filtering process is generally based on the cardinal 

model essential for managing signals without statistical 

signal characteristics. 

One of the ECG process constraints is frequent 

interruption due to distinct noises and other disturbances. 

Earlier works have classified the interruptions [13-15] as BA 

(Baseline Wandering), PLI (Powerline Interference), and MA 

(Muscle Artifacts). Certain factors, like the subject 

movements of the respiratory activities, lead to BA, which 

manifests in slow wandering baselines resulting from facets 

like the body movements, which could be random.  

ECGs constituting the impact of MAs have a critical 

issue of muscular contraction artifacts. PLIs lead by 

electrical power leakage or inappropriate equipment handling 

conditions significantly impact ECG amplitudes and an 

indistinct set of isoelectric baseline conditions. It is 

imperative to address such conditions of noises leading to 

disturbances, as the ECG signal analysis interpretation might 

lead to misled or inaccurate insights for diagnosis.  

Introduction to the ECG and numerous other models are 

covered in section 1 of this document. The related work in 

ECG for noise detection has been investigated in section 2, 

and a variety of literature has been studied and presented. 

Materials and procedures are covered in Section 3. In an 

experimental study found in Section 4, the proposed and 

current models' performance is compared using several 

indicators. After the references, Section 5 concludes.  

2. Related Work 
A signal generally constitutes a specific noise factor 

resulting from distinct internal and external surrounding 

aspects. In biomedical solutions, reducing such noises to a 

greater extent is highly important to mitigate the 

interferences and increase detection accuracy for better 

diagnosis conditions. Numerous studies have highlighted the 

conditions leading to noise as muscle or motion-related 

interferences, baseline wander conditions, etc., which overlap 

the signal conditions [16]. 

The filtering process can be essential to attain noise-free 

signals. A correct method for filtering has to be handled 

effectively, as any gaps in the process might lead to an 

incorrect filtering model, which might distort the other signal 

conditions [17].  

From the literature review, it is evident that many 

studies from the past have focused on addressing noise 

elimination in ECG signals. In [18], the authors have 

proposed the solution as WF (Weiner Filter) designed for a 

stationary signal and to minimize the error rate. However, the 

non-stationary behaviour tendency of the ECG system makes 

the noise elimination conditions an ineffective solution. The 

other model discussed for the purpose is [19] and [20], 

wherein the methods focus on cancelling the signal noises 

like EMG, PLI, BW, and MA. However, in the further model 

discussed in [21], such effectiveness's accuracy rate is 

increased. Despite all such efforts, there is still considerable 

scope for denoise of non-cardiac ECG noises.  

The methods such as Wavelet transforms, as discussed 

in [22-24], are known for their effectiveness in denoise of 

ECG signals. Such noise reduction is executed in the 

frequency domain to achieve superior performance and 

determine the best threshold. 

 In [25], the efforts focus on the combination of DWT 

and NLM methods, in which the pattern of signal 

decomposition is executed at two distinct levels. The 

variances of co-efficiency for the first and second levels were 

observed in the ranges of higher frequencies and low-

frequency noise conditions that rely on the NLM method for 

address. The NLM methods have the approximation of co-

efficiency in the second-level conditions.  

In [26], the EMD method constituting ASMF (Adaptive 

Switching Mean Filter) has been discussed. The process 

adopted in the system uses three IMFs resulting from the 

decomposition process to eliminate the high-frequency 

noises and the reconstruction process. Signals are processed 

based on the ASMF method in terms of essential 
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enhancements. In [27], the method of EMD is known for 

combination with DWT and VMD in combination with 

DWT. 
  

In [22], the authors have discussed the prospect of an 

NLM filtering model, which can remove noises from the 

images. NLM is a parametric model that requires numerous 

parameters to be set. The value of such parameters needs 

more accurate analysis, as it directly impacts the results. 

Many of the earlier methods have attempted to de-noise ECG 

signals based on a distinct set of solutions discussed in [28-

32] for wavelet transformation and adaptive filtering 

technique discussed, weighted average models proposed in 

[33-37] EMD, and Independent Component Analysis [38]. In 

[39], authors have iterated on how many existing models 

have distinct noise-removal limitations. The adaptive filters 

proposed in [40] can lead to the signed regression algorithm 

filters and stabilized least-mean square conditions. However, 

there are complexities in attaining noise-signal references 

from a conventional system of ECG signal readings. New 

solutions that have focused on ECG-related studies have 

focused on novel solutions. In a comparative study, the 

researchers have focused on a huge scale of data collection-

oriented noise reduction [41, 42]. Tracking the data from 

ECG systems for monitoring the patients from ICU 

(intensive care units) was discussed in [43, 44]. It is 

imperative for more digital storage of readings for 

comparative analysis; there is a need for more effective 

solutions to address the noise issue in ECG readings. 

Numerous other studies focused on handling distinct models, 

as discussed in [45]. The EMD model constituting NLM is 

adapted to eliminate white and colour Gaussian noise 

conditions. The contemporary model “Denoising of 

Electrocardiogram (ECG) signal by using empirical mode 

decomposition (EMD) with non-local mean (NLM) 

technique (EMD+NLM)” [45]. 
 

3. Methods and Materials 
The methods and associated materials used in the 

proposed model have been explored in this section. The 

methods used to fulfil the objectives of the learning phase, 

such as the method of selecting features and optimizing those 

features to reduce the process complexity. The classifier 

trained by the corresponding optimal features and classifies 

the noise from the given electrocardiogram input is detailed 

in the following subsections. Figure 1 represents the SLND 

block diagram. 
 

3.1. Features 

The temporal features of the electrocardiogram signal, 

such as energy and zero-rate crossing, shall be considered to 

explore the signal's physical structure. The spectral-related 

feature can be obtained by morphing the signal of the time 

domain to the frequency domain. This phase of converting a 

signal from the time domain to the frequency domain can be 

done using Fourier transformation [46]. Further, the 

frequency domain's resultant signal shall be used as input to 

derive spectral features such as frequency and its 

components, density, flux, roll-off, and the centroid of the 

corresponding spectrum. However, concerning the 

electrocardiograms, random variables to analyze noise 

spectrum evince complexity compared to electrocardiogram 

signals. A random spectrum with no information shall be 

considered to determine the spectral features from the 

signals' static noise [47]. The static noise does not have any 

special or unexpected occurrences. Hence, a significant 

variance can appear between static noise signals and signals 

of electrocardiograms. The Fourier transformation 

decomposes the electrocardiogram signal, which results in 

the spectral structure, diversified frequencies, and 

magnitudes. The prediction of noise is more robust if 

temporal features such as MCC (Max-coefficient-

correlation), energy, index, and zero or null crossing rate 

(NCR or ZCR) are considered along with spectral-domain 

features GTCC (Gammatone-cepstral-coefficients) and 

MFCC (Mel-Frequency-Cepstral-Coefficients). 
 

3.2. Kolmogorov-Smirnov Test (KS Test) 

The KS-test statistics show differences between a 

distribution and a sample distribution. Report it as the 

disparity between two samples drawn randomly from the 

same or different sizes of the experimental distribution. To 

demonstrate how unlike the distributions of the two datasets 

are, the KS-test [48] employed a distance measure known as 

the KS-test (for the “Kolmogorov-Smirnov test”). Other 

distance measures automatically determine the degree of 

diversity in a distribution, but this metric does not require 

prior knowledge of the data distribution. The algorithmic 

procedure for conducting a KS test is also outlined below: 

𝑘𝑠_𝑡𝑒𝑠𝑡(𝑣1, 𝑣2) Begin //Two vectors are used as input.  

A primary function of the procedure is to foretell the 

sequential accumulation of vectors. Additionally, the 

cumulative ratios are shown as vectors matching the criteria. 

𝑝𝑟 = 0 

∀

𝑖=1
|𝑣𝑗|

{𝑒𝑖∃𝑒𝑖

∈ 𝑣𝑗}𝑏𝑒𝑔𝑖𝑛 

𝑝𝑟 =
𝑒𝑖

𝐴𝑔(𝑣𝑗)
+ 𝑝𝑟 

𝐶𝑅𝑣𝑗
← 𝑝𝑟 

 
𝑒𝑛𝑑 

// It has been foreseen that the 

summation of each vector's 

component will provide a specific 

ratio. 

Every component of a vector is taken 

in this iteration. 

In this illustration, the accumulated 

ratio of the predecessor element is 

shown in reiteration. 

refers to the sum of the values shown 

in the vector, 

the set 𝐶𝑅𝑣𝑗
consists of average 

proportions of all components 

present in vector𝑣𝑗  
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Later, the values arising from the absolute cumulative ratios of distances with the same vector index will be identified. 
 

max(| |,| |) ( ), ( )

( ) ( )1

CR CRv v c v c va ab i i b

c v CR c v CRi a v vi i ba b

 
 
 
  




  =

 

Begin 

 //values existed for each index 

ADCRva↔CRvb
← abs(ci(va) − ci(vb)) // represents the absolute distance between cumulative 

ratios expressed as sets. 

End 

 

Identify d-stat, which would be the highest value that is existed in  𝐴𝐷𝐶𝑅𝑣𝑎↔𝐶𝑅𝑣𝑏
 

The d-critic aimed at the KS table has been identified for 𝐴𝑔(𝑣𝑎), 𝐴𝑔(𝑣𝑏) provided for the degree of threshold probability 

𝑝𝜏  

If the d-stat depicted is greater than the d-critic presented, return 0//2 vectors are not distinct.  

Else return 1 //two vectors are distinct 

End 

Table 1. Description of the formulas and acronyms 

Medical IoT Medical Internet of Things 

ECG Electro Cardiogram 

BW Baseline Wandering 

PLI Powerline Interference 

WF Weiner Filter 

FT Fourier-Transform 

ASMF Adaptive Switching Mean Filter 

EMD Empirical Mode Decomposition 

NLM Non-Local Mean 

SLND 
Electrocardiogram Noise Detection 

and Quality Estimation 

ICU Intensive Care Units 

MCC Max-Coefficient-Correlation 

MFCC Mel-Frequency-Cepstral-Coefficients 

𝑣𝑎, 𝑣𝑏  Vectors 

𝐴𝑔(𝑣𝑎), 𝐴𝑔(𝑣𝑏) Aggregation 

𝐶𝑅𝑣𝑎
, 𝐶𝑅𝑣𝑏

 Cumulative Ratios 

𝑒𝑖 Element 

𝑝𝑟 Previous Element in Reiteration 

𝐴𝐷 The Absolute Distance 

𝑝𝜏 Threshold Probability 

WCs Weak Classifiers 

𝐷𝑡  Distribution 

ℎ𝑡: 𝑋 → {−1, +1} Hypothesis 

𝑃𝑎𝑛𝑑𝑁 Positive and Negative 

𝑡𝑓𝑖  Temporal-Feature 

SF Spectral Feature 

𝑛𝐺 N-grams 

𝑟𝑗 Record 
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3.3. The Classifier 

Adaboost is a collective learning approach optimized for 

boosting binary classifiers' accuracy. As a bonus, Adaboost 

employs an iterative approach to learn from the mistakes of 

weak classifiers and then correct those mistakes with more 

robust methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 SLND is shown as a block diagram

SLND 

Features Kalmogorov-smimov Test 

(KS Test) 

Electrocardiograms in digital 

format has to partition into two 

sets P, N 

Temporal Features that are 

simple in extraction & possess 

physical understanding 

Spectral features have attained 

by converting signal based on 

time into the domain of 

frequency by utilizing Fourier-

transform 

Identify d-critic from KS-Table 

aimed at specified degree of 

probability threshold 

The KS-Test is to evaluate the 

distributions of 2 vectors are 

similar or divergent 

Initially, the procedure estimates 

the aggregate values of vectors 

Then predicts cumulative-ratio of 

every entry of vectors 

Then find absolute distance of 

cumulative ratios corresponding to 

values 

Later find d-stat that will be a 

maximum value 

Further, it constructs two 

matrices tfMp, tfMn 

representing the temporal 

features of electrocardiograms 

listed in sets P, N 

Similarly, other two matrices 

sfMp, sfMn representing the 

spectral features of 

electrocardiograms listed in sets 

P, N 

Further, the proposed model 

identifies the optimal temporal 

features 

Perform KS-test on two sets pc, 

nc, to identify their distribution 

similarity 

A similar version of the process 

should apply on spectral features 

If d-stat represented is more than 

presented d-critic, then the 

distribution of 2 vectors is the 

same  
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Adaboost has evolved into the adaptive reinforcement 

method [49]. This classifier was made to include weak 

classifiers (WCs) or those that use a branching Boolean 

formula. Each weak classifier creates a false or true condition 

based on the input data. The other WCs will split false 

positives and negatives (the negatives). This procedure is 

repeated until all members of the WC are involved in the 

negotiations necessary to finish the challenge. The final 

results from the ranking method should include all 

information collected from these low-quality classifiers [50]. 

In this article, WC refers to the ideal qualities compatible 

with the binary classification, which is the focus of the 

proposed model. The process of sorting is an iterative one. 

Weak classifiers commonly use reinforcement learning, in 

which the centre region that did not correctly categorize 

repeats the previous classifier. Here the Week Classifier, 

which is used for each iteration, shall be referred to by the 

rating weight. With the completion of iterative WC calls, 

WC-scored records shall be completely streamlined. 

Regarding the predicted method, Adaboost uses each WC, 

indicating a specific n-gram number to rank the accuracy. 

Besides, the WC classification results would streamline 

discovering the polarity of specific records against the 

proposed method [51]. A WC and the like would be involved 

for each feature class, and each class of the appropriate 

features would learn about the noisy and qualified 

electrocardiograms. The mathematical model of the 

Adaboost classification is described in the following. Eq 1 

  (x1, y1), . . . . . , (xm, ym), here xi ∈ X, yi ∈ {−1, +1}  (1)       

Initialize: 𝐷1(𝑖) = 1/𝑚for D1(i) = 1/m  i = 1, . . . . . , m 

For   𝑡 = 1, . . . . , 𝑇 

• Use distribution to instruct hesitant learners 𝐷𝑡  

• Get a weak hypothesis ℎ𝑡: 𝑋 → {−1, +1} 

• Goal: Choose ℎ𝑡 with a small weighted error 

εt = Pri∼Dt
[ht(xi) ≠ yi]     (2)   

• Choose          αt =
1

2
In (

1−εt

εt
)                                     

• Update, for   i = 1, . . . . . , m 

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
       (3)                                                                                           

Where the normalizing factor is Zt  (chosen so that  Dt+1 

will be a distribution) 

The conclusion is given:  

H(x) = Sign(∑ αtht(x)T
t=1 )                                        (4)                              

3.4. Electrocardiogram Noise Detection and Quality 

Estimation 

Separate the supplied collection of electrocardiograms 

into two groups, P and N, with P representing the positive 

recordings (where the digitally defined signal is a valid ECG) 

and N representing the negative recordings (refers to the 

noisy ECG). 

Specifically, the proposed model generates two tables, 

𝑡𝑓𝑀𝑝 and 𝑡𝑓𝑀𝑛, that list the temporal properties of 

electrocardiograms according to the categories P and N. The 

spectrum properties of the electrocardiograms are similarly 

shown in Tables sfMp and sfMn. In the suggested model, the 

ideal temporal properties are determined by the following 

equation: 

∀

i=1
|tfMp|

{pci, nci∃pci ∈ tfMp ∧ nci ∈ tfMn}   (5)                                                                  

// Iterates until all the columns of both tables are 

processed, considering the column𝑝𝑐𝑖from the table 𝑡𝑓𝑀𝑝 
and the column 𝑛𝑐𝑖from the table 𝑡𝑓𝑀𝑛 as inputs to KS-test 

The function 𝑘𝑠 − 𝑡𝑒𝑠𝑡(𝑝𝑐𝑖 , 𝑛𝑐𝑖) invokes the vectors 

𝑝𝑐𝑖 , 𝑛𝑐𝑖as input parameters, which predicts the diversity 

between these two vectors. If diversity is found between 

these vectors, then the temporal feature 𝑡𝑓𝑖 representing these 

vectors shall be considered optimal. If not (no diversity 

found), then the feature 𝑡𝑓𝑖 is suboptimal. Hence discard the 

corresponding vectors 𝑝𝑐𝑖 , 𝑛𝑐𝑖 from the respective sets 𝑡𝑓𝑀𝑝 

and 𝑡𝑓𝑀𝑛. 

After the conclusion of the iterations in equation 5, the 

tables 𝑡𝑓𝑀𝑝, 𝑡𝑓𝑀𝑛 retain values for optimal features. A 

comparable form of the process shall apply to the spectral 

feature tables 𝑠𝑓𝑀𝑝, 𝑠𝑓𝑀𝑛, which results in the optimal 

spectral features. As discussed in the next section, the several 

phases determine the best n-gram characteristics, including 

both labels. 

3.5. Discovering N-Gram Features  

The features representing the columns of the resultant 

sets 𝑡𝑓𝑀𝑝, 𝑡𝑓𝑀𝑛𝑠𝑓𝑀𝑝, 𝑠𝑓𝑀𝑛 as input, it is utilized to find 

all possible distinct subsets, denoted by n-gram features in 

subsequent descriptions. The following discussion delves 

into the mathematical paradigm for discovering n-grams with 

dynamic sizes. 
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𝑛 − 𝑔𝑟𝑎𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑎𝐿) Begin   

𝑛𝐺𝑟 ← 𝑎𝐿 The standard set of 1-grams is 𝑎𝐿. The qualities indicated 

inside the set 𝑎𝐿 will thus be added to the set of n-grams, 𝑛𝐺. 

𝑡𝑛𝐺 ← 𝑛𝐺𝑟 Set 𝑡𝑛𝐺 is a clone as Set 𝑛𝐺𝑟. 

while(|𝑡𝑛𝐺| > 0)Begin While not being empty, set 𝑡𝑛𝐺 

∀

𝑖=1
|𝑡𝑛𝐺|

{𝑛𝑔𝑖∃𝑛𝑔𝑖 ∈ 𝑡𝑛𝐺}    Begin 

For every n-gram 𝑛𝑔𝑖 in the set, 𝑡𝑛𝐺 

∀

j=1
|tnG|

{ngj∃ngj ∈ tnG ∧ i ≠ j} Begin 

For every 𝑡𝑛𝐺set n-gram ngj Which isn't equal to n-gram 𝑛𝑔𝑖 

𝑛𝑔 ← {𝑛𝑔𝑖 ∪ 𝑛𝑔𝑗} Two n-grams 𝑛𝑔𝑖 , 𝑛𝑔𝑗 combine to form the new n-gram 𝑛𝑔, 

which represents 

𝑖𝑓(𝑛𝑔 ∉ 𝑛𝐺𝑟)𝑛𝐺𝑟 ← 𝑛𝑔 Add n-gram 𝑛𝑔 to the set 𝑛𝐺𝑟 with n-grams if it is absent 

from the set 𝑛𝐺𝑟 of n-grams. 

End 

// the loop of ∀

𝑗=1
|𝑡𝑛𝐺|

{𝑛𝑔𝑗∃𝑛𝑔𝑗 ∈ 𝑡𝑛𝐺 ∧ 𝑖 ≠ 𝑗} 

End 

// the loop of ∀

𝑖=1
|𝑡𝑛𝐺|

{𝑛𝑔𝑖∃𝑛𝑔𝑖 ∈ 𝑡𝑛𝐺} 

𝑖𝑓(|𝑛𝐺𝑟| > |𝑡𝑛𝐺|)    Begin If set 𝑛𝐺𝑟 size |𝑛𝐺𝑟| is larger than |𝑡𝑛𝐺| size, 

                     tn𝐺\𝑡𝑛𝐺 Empty the set N14𝑡𝑛𝐺 

𝑡𝑛𝐺 ← 𝑛𝐺𝑟 Add each of the set 𝑛𝐺𝑟 n-grams towards the empty set 𝑡𝑛𝐺. 

End condition N15 if(|𝑛𝐺𝑟| > |𝑡𝑛𝐺|) 

else if (|𝑛𝐺𝑟| ≡ |𝑡𝑛𝐺)𝑡𝑛𝐺\𝑡𝑛𝐺 Empty every set 𝑡𝑛𝐺 if both sets 𝑛𝐺𝑟, 𝑡𝑛𝐺have the same size. 

End // the loop while(|𝑡𝑛𝐺| > 0) 

The resulting set 𝑛𝐺𝑟 comprises all potential subsets of the set's𝑎𝐿 characteristics (column labels). The suggested technique 

then determines the n-gram attribute values as well as their confidence in both sets 𝑡𝐷+, 𝑡𝐷−, as shown below.

∀

𝑖=1
|𝑛𝐺𝑟|

{𝑛𝑔𝑖∃𝑛𝑔𝑖 ∈ 𝑛𝐺𝑟}      Begin 

// For each n-gram, ngi characteristic of 

the set, and 𝑛𝐺𝑟 

𝑓𝑣(𝑛𝑔𝑖) // is indeed an empty set that includes 

both negative as well as positive labels 

together with unique n-gram attribute 

values for said n-gram feature ngi. 

∀

𝑗=1
|𝑡𝐷+|

{𝑟𝑗∃𝑟𝑗 ∈ 𝑡𝐷+}      Begin 

// For every 𝑟𝑗 record in the 𝑡𝐷+ set 

𝑓𝑣(𝑛𝑔𝑖) ← {𝑣(𝑛𝑔𝑖)∃𝑣(𝑛𝑔𝑖) ⊆ 𝑟𝑗 ∧ 𝑣(𝑛𝑔𝑖)

∉ 𝑓𝑣(𝑛𝑔𝑖)} 

Values v(ngi) belong to a subset of the 

record rj of the positive label and do not 

exist in the set fv(ngi) of the n-gram 

feature ngi 
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End 

// of the loop ∀

j=1
|tD+|

{rj∃rj ∈ tD+} 

∀

j=1
|tD−|

{rj∃rj ∈ tD−}           Begin 

// for every record rj in the set tD− with 

negative records 

fv(ngi) ← {v(ngi)∃v(ngi) ⊆ rj ∧ v(ngi)

∉ fv(ngi)} 

v(ngi) subset of record values rjof the 

negative label and do not exist in the 

set fv(ngi) of the n-gram feature ngi 

End 

// the loop ∀

j=1
|tD−|

{rj∃rj ∈ tD−} 

End 

// of the loop ∀

i=1
|nGr|

{ngi∃ngi ∈ nGr} 

# Identifying both negative and positive confidence levels of every n-gram attribute values # 

∀

i=1
|nGr|

{ngi∃ngi ∈ nGr}     Begin 

// for every n-gram, ngiset feature nGr 

∀

j=1
|fv(ngi)|

{vj∃vj ∈ fv(ngi)} 

The individual n-gram feature values vj 

and ngi 

pc+ ←
1

|tD+|
( ∑ {1∃vj ⊆ rk)}

|tD+|

k=1

) 

Increase positive confidence in the n-

gram feature valuevj 

pc− ←
1

|tD−|
( ∑ {1∃vj ⊆ rk)}

|tD−|

k=1

) 

Move negative confidence of n-gram 

feature valuevj 

End 

/  //of the loop ∀

j=1
|fv(ngi)|

{vj∃vj ∈ fv(ngi)} 

End 

// of the loop ∀

i=1
|nGr|

{ngi∃ngi ∈ nGr} 
 

 

The resultant n-gram features of both temporal and 

spectral formats shall be used to train the classifier that 

classifies whether the given electrocardiogram is noisy. 

4. Experimental Study 
The experimental study intended to exhibit the 

significance of the proposed method SLND. The experiments 

have carried cross-validation of the proposed method SLND 

and contemporary model “Denoising of Electrocardiogram 

(ECG) signal by using empirical mode decomposition 

(EMD) with a non-local mean (NLM) technique 

(EMD+NLM)” [45] using benchmark dataset MIT-BIH [52]. 

The resultant cross-validation metric values of both methods 

have compared and scaled the performance of the proposed 

model SLND. The overall records constituted in the adopted 

corpus of electrocardiograms are 14423 (7802: qualified 

electrocardiograms and 6621: noisy electrocardiograms) 

Tenfold cross-validation has been performed on the 

dataset with qualified and noisy electrocardiograms.  
 

Concerning tenfold cross-validation, the dataset of both 

labels was partitioned into ten equal shares. On each cross-

validation fold, one share of the dataset has been used for 

testing, and the remaining nine shares have been used for 

training. 

4.1. The Performance Analysis 

4.1.1. Supervised Learning-Based Noise Detection  

The cross-validation metric values have been compared 

and analyzed the performance in Table 2. The results 

obtained for cross-validation metrics report the performance 

significance of the proposed method SLND over the 

contemporary method EMD+NLM. Metric-level details have 

been explored in the following description. 
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The cross-validation metric precision refers to the 

positive predictive value obtained from both methods 

through cross-validation: 0.88640.0098 (89%) and 

0.861580.014976502 (86.5%), respectively, order of SLND 

and EMD+NLM. The details of precision observed from 

each fold of the cross-validation are figured out in Figure 2. 

The values obtained for metric precision report the 

significance of the SLND with minimal deviation compared 

to the contemporary model EMD+NLM. 

The True Negative Rate that refers to specificity 

observed for SLND and EMD+NLM methods are 

0.9397±0.0061 (94%, and 0.9261±0.0095 (93%) from 

tenfold cross-validation. The specificity observed from each 

cross-validation fold has been briefed in Figure 3. The values 

obtained for metric specificity report the significance of the 

SLND with minimal deviation compared to the 

contemporary model EMD+NLM. 

The actual positive rate also refers to sensitivity 

observed from cross-validation performed on both methods 

SLND, EMD+NLM are 0.9532±0.00546 (95%) and 

0.9290±0.0086 (93%) in respective order. The details of the 

fold level sensitivity have been figured out in Figure 4. The 

values obtained for metric sensitivity report the significance 

of the SLND with better performance compared to the 

contemporary model EMD+NLM. 

 

Table 2. Values obtained for cross-validation metrics from SLND and EMD+NLM methods 

FOLD ID# 1 2 3 4 5 6 7 8 9 10 

PRECISION 

SLND 0.9062 0.8743 0.8812 0.8853 0.9023 0.884 0.8756 0.886 0.8827 0.8868 

EMD+NLM 0.8406 0.8364 0.8676 0.8508 0.8553 0.8792 0.8839 0.8729 0.8612 0.8679 

SENSITIVITY 

SLND 0.9405 0.9535 0.9599 0.9503 0.9474 0.9579 0.9563 0.9567 0.9553 0.9544 

EMD+NLM 0.9194 0.9376 0.9159 0.928 0.9472 0.9338 0.9271 0.9239 0.9306 0.9263 

SPECIFICITY 

SLND 0.9522 0.9321 0.9358 0.9395 0.9495 0.9381 0.9332 0.9391 0.9373 0.9398 

EMD+NLM 0.9137 0.9092 0.9307 0.9199 0.921 0.9365 0.9398 0.9338 0.9258 0.9304 

ACCURACY 

SLND 0.9483 0.9394 0.9441 0.9428 0.9487 0.9445 0.9407 0.9449 0.9432 0.9445 

EMD+NLM 0.9157 0.9186 0.9258 0.9225 0.9297 0.9356 0.9356 0.9305 0.9275 0.9292 

F-MEASURE 

SLND 0.9286 0.9023 0.9077 0.9116 0.9253 0.9102 0.9035 0.9118 0.9092 0.9125 

EMD+NLM 0.8756 0.8713 0.898 0.884 0.8869 0.9069 0.911 0.9023 0.8923 0.8981 

MATHEWS CORRELATION COEFFICIENT 

SLND 0.8847 0.8681 0.8783 0.8743 0.8862 0.8788 0.871 0.8795 0.8759 0.8783 

EMD+NLM 0.8158 0.8248 0.8354 0.8306 0.8479 0.8576 0.8568 0.8461 0.841 0.8439 

 

 
Fig. 2 The positive predictive values observed from cross-validation
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The cross-validation metric “prediction accuracy” 

denotes the ratio of correctly labelled records against the 

total number of records. The overall prediction accuracy 

observed for SLND and EMD+NLM is 0.9441±0.0028 

(95%) and 0.92707±0.0063 (93%). The detailed statistics of 

accuracy obtained from tenfold cross-validation have been 

explored in Figure 5.  

The values obtained for metric accuracy report the 

significance of the SLND with better performance compared 

to the contemporary model EMD+NLM. The cross-

validation metric “F-measure” has been measured over the 

proposed and contemporary models among ten folds, as 

shown in Figure 6. In respective order, the average f-measure 

depicted for SLND and EMD+NLM are 0.91±0.008 (91%) 

and 0.8926±0.012 (89%). 

The detailed statistics of F-measure obtained from 

tenfold cross-validation have been explored in Figure 6. The 

values obtained for metric f-measure exhibit the significance 

of the SLND with better performance when compared to the 

contemporary model EMD+NLM. 
 

 

 
Fig. 3 The true negative rate obtained from cross-validation 

 
 

 
Fig. 4 The sensitivity observed from tenfold cross-validation 
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Fig. 5 Accuracy obtained from tenfold cross-validation 

 
Fig. 6 The f-measure observations from tenfold cross-validation 

 
Fig. 7 The Mathews Correlation Coefficient (MCC) observed from the tenfold cross-validation 
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The cross-validation metric MCC has been measured 

over the proposed and contemporary models among ten 

folds, as shown in Figure 7. The MCC observed for SLND 

and EMD+NLM are 0.8780.005 (89%) and 0.840.013 (84%) 

in the respective order. The detailed statistics of MCC 

obtained from tenfold cross-validation have been explored in 

Figure 7. The values obtained for metric MCC exhibit the 

significance of the SLND with better performance when 

compared to the contemporary model EMD+NLM. 

4.1.2. Filter Sequence-Based Denoising of Raw Signal and 

SLND Selected Signal 

Below, we detail the methodology used in this 

investigation and provide a high-level summary. 

ECG Data Loading: This research measures SNR at 

different filter orders. We used the data corpus “MIT-BIH 

ECG-ID”, which comprises 500 Hz ECG data [53-55]. Eight 

raw and processed databases are used. Denoising is 

implemented in Python. This study employed an 8-GB Intel 

Core i5 Windows machine. Per the data set, processing takes 

1 minute. 

Choose a low-order pass filter: FIR and IIR filter 

designs are used in this research. Each output sample is 

computed by weighing and adding the input samples. Output 

values and input points are used in IIR filters. The term 

“recursive” refers to the fact that these filters recur [56]. The 

Python and Scipy library is used to apply these filters [57]. 

The filter level is raised by one after each repetition, up to 

100. 

ECG Signal Filtering: The peak power of the 

electrocardiogram signal occurs between 0.5 and 45 Hz, with 

a frequency range from 0.05 to 150 Hz. There is a 0.67–5 Hz 

P wave, a 10–50 Hz QRS complex, and a 1–7 Hz T wave. 

There is interference in some frequency bands. ECG artefacts 

and noise levels [58-60] include muscle noise from 5 to 50 

Hz, respiratory noise from 0.12 to 0.5 Hz, and electrical 

sounds from  50 to 60 Hz. Filtering the heart's electrical 

activity can be used for diagnosis or monitoring. Diagnosis 

occurs between 0.05 and 150 Hz [61]. 0.5 - 40 Hz [62] is the 

sampling rate of the following series. Eight groups of raw 

ECG signals are filtered, all at 500 Hz, with 10,000 samples.  

According to the data, the Butterworth low passband 

filter's Passband corners frequency (Wp) is 40 Hz. In 

comparison, the Stopband corners frequency (Ws) is 60 Hz, 

the Passband ripple (Rp) is 0.1 dB, and the Stopband 

attenuation (Rs) is 30 dB. 

The SNR response of filter designs in diagnostic and 

monitoring ECG frequency ranges was investigated in this 

work. Constant filter parameters are used to compare filter 

designs. The monitoring Frequency Range (40 Hz Passband, 

60 Hz Stopband) and Diagnostic Frequency Range are the 

filter settings (Passband corners frequency at 150 Hz, 

Stopband corners frequency at 160 Hz). Evaluate SNR: The 

signal-to-noise ratio (SNR) is stated in decibels and is the 

ratio of signal power (insightful data) to noise power 

(unsolicited signal) Eq 6, Eq 7. 

Table 3. Comparative study of peak SNR observed from diversified FIR filters during continuous monitoring of raw as well as SLND selected 

signals

FIR FILTER'S PEAK SNR 

Filter 
Mean of the Peak SNR (dB) SD Respective Filter Sequence 

Raw Signal SLND Signal Raw Signal SLND Signal Raw Signal SLND Signal 

Kaiser Window 6.0367 8.0367 1.3704 0.7798 25 17 

Hanning 

Window 
5.2224 7.2214 1.0839 0.6813 4 2 

Maximally Flat 4.5363 6.5362 1.3307 0.8013 17 10 

Constrained 

Least Square 
4.8134 5.8133 1.3383 0.7013 24 14 

Rectangular 

Window 
6.1661 8.165 1.3726 0.5751 25 18 

Hamming 

Window 
5.3503 7.3494 1.0671 0.7051 3 1 

Equiripple 8.0792 10.0789 1.3203 0.8059 8 5 

Least Square 6.3361 8.3348 1.3204 0.8223 10 6 

Bartlett Window 5.2216 7.2214 1.0831 0.7371 4 2 

Blackman 

Window 
5.2221 7.2213 1.0831 0.8142 4 2 
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Table 4. Comparative study of peak SNR of raw and SLND selected signals observed from diversified IIR filters during continuous monitoring of raw 

as well as SLND selected signals 

IIR FILTER'S PEAK SNR 

Filter 
Mean of the Peak SNR (dB) SD Respective Filter Sequence 

Raw Signal SLND Signal Raw Signal SLND Signal Raw Signal SLND Signal 

Chebyshev type II 4.5514 5.3859 1.3266 0.6102 11-15 8-11 

Butterworth 4.7234 5.5585 1.2326 0.8597 3-5 1-3 

Chebyshev type I 5.0908 5.9333 1.1075 0.9191 3-6 1-4 

Elliptic 5.0908 5.9311 1.1076 0.8252 2-5 1-3 

 

Table 5. Comparative study of peak SNR observed from diversified FIR filters during diagnosis mode of raw as well as SLND selected signals 

FIR FILTER'S PEAK SNR 

Filter 

Mean of the Peak  

SNR (dB) 
SD 

Respective  

Filter Sequence 

Raw signal SLND Signal Raw Signal SLND Signal Raw Signal SLND Signal 

Kaiser Window 6.284 7.2899 0.9326 0.7925 7 6 

Bartlett Window 5.5039 6.385 1.0315 0.8766 9 7 

Rectangular 

Window 
6.368 7.3242 0.9248 0.7578 7 5 

Constrained Least 

Square 
5.846 6.8993 1.0602 0.8791 5 4 

Equiripple 11.6343 13.3797 1.1167 0.9491 4 3 

Maximally Flat 5.4553 6.5477 1.0487 0.8491 15 12 

Hamming Window 5.4718 6.3484 1.0425 0.8332 13 10 

Least Square 7.4526 8.6454 1.104 0.9161 4 3 

Hanning Window 5.4744 6.2961 1.0382 0.8405 11 9 

Blackman Window 5.4561 6.5483 1.0844 0.889 4 3 

 

Table 6. Comparative study of peak SNR observed from diversified IIR filters during diagnosis mode of raw as well as SLND selected signals 

IIR FILTER'S PEAK SNR 

Filter 

Mean of the Peak  

SNR (dB) 
SD 

Respective  

Filter Sequence 

Raw Signal SLND Signal Raw Signal SLND Signal Raw Signal SLND Signal 

Chebyshev type II 5.4321 6.4104 1.0466 0.8374 5-11 3-10 

Elliptic 5.4175 6.2849 1.0969 0.8999 1-3 1 

Chebyshev type I 5.4617 6.2821 1.0514 0.8943 1-4 2 

Butterworth 5.4562 6.4388 1.0471 0.8591 2-5 1-3 

 

SNR =
Psignal

Pnoise
= [

Asignal

Anoise
]

2

  (6) 

SNRdB = 10 log10( SNR)  (7) 

For each portion of the signal, several filters are 

successfully compared. The difference between the raw and 

processed signals is used to derive the random noise. 

Provided Electrocardiogram signal − Provided Filtered 

Signal = interference. Evaluating the SNR of different 

filtering models is now feasible since the denominator, i.e., 

the random noise, is consistent throughout all filtration 

methods. 

Recurrent the process to maximum 100th filter in 

sequence: The method is recurrent for all filters in the 

sequence of maximum 100th filter after SNR has been 

assessed for the lowest feasible ordered filter. As a result, a 

link between SNR and filter order is discovered.  
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Find the peak SNR for a particular filter and the 

appropriate Filter Sequence: SNR results for all sequences of 

filters up to 100 are retained in an array. The array values are 

studied to identify SNR transition with filter order. Peak 

SNR solution is achieved at the filter sequence where SNR 

changes through lesser than 10-2 units.  

Remaining Process Filters: The abovementioned steps 

are recurrent for all preferred filters, SNR, and filter 

sequence, and peak SNR is procured in diagnosis mode. 

Performance of the Low Pass Filter During 

Continuous Monitoring of Raw and SLND Selected Signals 

Tables 3 and 4 show the average peak SNR diversified 

sets of electrocardiogram signals and the filtration sequence 

length. 

Performance of the low Pass Filter During Diagnosis Mode 

of Raw and SLND Selected Signals 

Tables 5 and 6 show the average peak SNR diversified 

sets of electrocardiogram signals and the filtration sequence 

length. 

5. Conclusion 
This research provides a different technique for 

classifying supplied input electrocardiograms as qualified or 

noisy, reducing false alarms in machine learning-based 

arrhythmia diagnosis. The noise localization has been 

enhanced using a classification procedure that learns from 

the best temporal and spectral characteristics chosen using a 

KS-Test distribution diversity measure.  

The classification procedure was performed using the 

Adaboost approach, which was trained using the chosen 

optimum features. The suggested technique achieves high 

accuracy in distinguishing between qualified and noisy 

electrocardiograms. The suggested method's performance 

was scaled using multifold cross-validation and empirical 

filtration by a sequence of IIR and FIR filters applied on both 

raw signals as noisy signals detected by the SLND.  

The approach, however, is confined to determining the 

noise scope in electrocardiograms. Soft-computing 

approaches will be used in future studies to eliminate noise 

from electrocardiograms. The other potential research 

component will employ wavelet parameters to identify weak 

noise signals in electrocardiograms. 
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