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Abstract - Sensor-assisted machine learning framework for renewable energy balancing in microgrids (MG). Integrating 

renewable energy sources into microgrid systems brings the challenge of managing renewable energy generation's 

intermittent and variable nature. The proposed framework leverages sensor technology to collect real-time data on energy 

generation, consumption, and grid conditions. Machine learning algorithms are then applied to analyze this data and optimize 

energy flow within the microgrid. The proposed machine learning models can use historical data to forecast renewable energy 

generation and demand, enabling proactive energy management (PEM). The framework also incorporates optimization 

techniques to allocate energy efficiently, considering storage capacity, load demand, and grid stability factors. The sensor-

assisted machine learning algorithm enhances microgrid systems' reliability, precision, fi-score, recall, and support by 

dynamically adapting energy generation and consumption based on real-time conditions. This framework represents a 

significant step towards achieving sustainable and resilient microgrid operations by maximizing the utilization of renewable 

energy resources. The optimized results by sensing the physical quantity achieved an accuracy of 70%. 
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1. Introduction 
Integrating renewable energy sources into microgrid 

systems has gained significant attention due to its potential 

for sustainable and resilient power supply. However, the 

intermittent nature of renewable energy generation poses 

challenges in maintaining a balance between energy supply 

and demand within microgrids[1]. A sensor-assisted machine 

learning framework for renewable energy balancing in 

microgrids is proposed to address this challenge[2]. This 

framework leverages sensor technology and machine 

learning algorithms to optimize energy flow and enhance the 

efficiency and stability of microgrid operations. The 

increasing deployment of renewable energy sources, such as 

solar photovoltaic (PV) and wind turbines, has led to a 

decentralized energy generation landscape. Microgrids, 

localized energy systems that can operate independently or in 

connection with the primary grid, offer a promising solution 

for integrating renewable energy sources. However, 

renewable energy's intermittent and variable nature 

challenges maintaining a stable and reliable power supply 

within microgrids. Challenges in Renewable Energy 

Balancing: Balancing the supply and demand of renewable 

energy in microgrids is essential to ensure efficient 

utilization of available resources and grid stability. Key 

challenges include the unpredictability of renewable energy 

generation, varying load demands, and the need for real-time 

decision-making. Traditional approaches, such as rule-based 

control and centralized management, often fail to adapt to the 

dynamic nature of renewable energy systems. Role of 

Sensors in Renewable Energy Balancing sensors enables 

real-time monitoring of energy generation, consumption, and 

grid conditions. They provide valuable data on solar 

irradiance, wind speed, temperature, and load demand. This 

real-time data allows for a better understanding and 

prediction of energy generation patterns, load profiles, and 

system performance. Machine Learning for Energy 

Balancing Machine learning algorithms can analyse vast 

sensor data, detect patterns, and forecast accurately. Using 

prior data, machine learning predicts renewable energy 

generation and demand for proactive energy management.  

These models optimise energy flow in real-time utilising 

sensor data for energy balance and machine learning 

algorithm Random forest; the framework aims to improve 

the reliability, precision, fi-score, recall of renewable energy 

generation and demand forecasting. Optimize energy flow in 

real-time based on predicted and observed data. Enable 

proactive decision-making for load management, energy 

storage, and grid stability. Maximize the utilization of 

available renewable energy resources and minimize reliance 

on the primary grid. The following machine learning 

algorithms are used in th proposed framework. 

http://www.internationaljournalssrg.org/
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1.1. Random Forest Algorithm  

The Random Forest Algorithm[3] combines numerous 

decision trees for a more accurate classification or regression 

model. This is how the algorithm operates: 

Step 1 : we will randomly choose some samples from the 

training data. 

Step 2 : Construct a decision tree whereby a random subset 

of characteristics is considered at each node, using 

the specified subset. 

Step 3 : A number of decision trees may be generated by 

repeating steps 1 and 2. 

Step 4 : Aggregate the predictions of all the decision trees to 

arrive at the predicted class label or value (through 

voting for classification or average for regression, 

respectively). 

To avoid overfitting, Random Forest combines 

numerous decision trees that were trained independently. The 

ensemble model's Diversity and precision are boosted by 

randomization in feature selection and data sampling. 

1.2. AdaBoost Classification 

AdaBoost [4] (Adaptive Boosting) is a repeated 

ensemble learning method that uses weak classifiers to make 

a robust classifier. Here is how the method works: 

Step 1 : Give each training example the same amount of 

weight.   

Step 2 : Use the weighted training data to teach a weak 

algorithm what to do and determine how wrong it is. 

Step 3 : Raise the weights of the misclassified examples to 

make them more likely to be picked in the next 

round. 

Step 4 : Repeat steps 2 and 3 for a set number of times or 

until you get the level of accuracy you want. 

Step 5 :  Put together the weak categories by giving those 

with better results more weight. 

Step 6 : Make predictions by adding up all the weak 

classifiers' guesses and weighting them by how well 

they did. 

AdaBoost focuses on the most complex cases in each 

cycle, improving the ensemble model's performance 

evaluation. A robust classifier can be constructed that 

accurately predicts the target variable by iteratively adjusting 

the weights and combining weak classifiers. 

1.3. Support Vector Machine Classification 

A strong machine-learning technique may be used for 

classification as well as regression. SVM [5] seeks to 

discover an ideal hyperplane that splits data into various 

classes with the greatest margin in the context of 

classification. An SVM classifier's equation is expressed as 

follows: 

The decision function is defined as,  

f(x) = sign(w^T * x + b)  

A data point's input characteristics are represented by x. 

w is the weight vector that governs the hyperplane's 

orientation. 

b is the bias factor that causes the hyperplane to shift. 

In order to identify the optimal values for w and b, SVM 

works to solve a convex optimisation problem. It works 

towards minimising the space that separates the hyperplane 

and the data points that belong to each category. Support 

vectors are the name given to the data points on the margin; 

they are essential in identifying the decision boundary. 

SVM is useful for dealing with complex decision 

boundaries, mainly when the data is not linearly separable. 

The kernel method may also translate the data into a higher-

dimensional space, allowing for nonlinear classification. 

2. Literature Review 
Recent years have witnessed rapid renewable energy and 

electric vehicle grid penetration. Despite their environmental 

benefits, their stochasticity makes profile prediction difficult. 

This article suggests a linearized energy management 

methodology to lower microgrid operating costs. 

 This model considers microgrid components, including 

renewable energy, energy storage, distributed generation, 

combined heat and power, and electric vehicle parking. The 

system's stochastic factors—load demand, electricity pricing, 

renewable energy supply profile, and electric vehicle 

availability in the parking lot—are controlled using machine 

learning and point estimate techniques [6, 7]. 

Renewable power generation has grown recently and 

will soon be necessary to provide environmentally 

sustainable and eco-friendly electricity[8]. Sustainable 

energy sources power microgrids. Due to weather patterns 

and seasonal fluctuations[9-11], DER integration is expected 

to cause intermittent power production. End-user power 

usage varies by season. Energy storage device functions 

depend on energy supply and load forecasts.  

This article discusses solar energy as a critical source 

and how solar irradiance varies by place and time. This 

article examines solar forecasting over one month. Knowing 

the source's availability may help load control if days of 

autonomy occur. Source forecasting uses Fuzzy Logic, ML, 

and DL. To build a dataset for a microgrid, irradiance, data, 

and other aspects are considered. This article summarises 

microgrids and source forecasting methods. This research 

compares the Root Mean Square Error (RMSE) levels of 

machine learning and deep learning methods[12, 13]. Waste 

management firms are major greenhouse gas emitters. Waste 

management companies must work with renewable energy 

sources to reduce this situation. Waste management 
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organisations need plenty of energy. However, many 

enterprises use local power generation, making microgrid 

research crucial.  

This project aims to maximise waste management 

company efficiency by efficiently processing trash and 

integrating it into microgrids with little user intervention. A 

unique machine-learning approach achieves this. In this 

technique, an artificial neural network (ANN) predicts how 

much garbage may be provided to these businesses[14, 15]. 

The Lagrangian Algorithm processes and optimises the 

waste, considering renewable energy needs. This method 

allows user input and preferences. A support vector machine 

processes user inputs into the model. Active learning 

incorporates user input. A Warendorf waste management 

firm tested this approach. Thus, user input helps control 

microgrid energy consumption[16]. 

Wind and solar energy in microgrids reduce 

transmission expansion costs, improve power quality and 

lower prices. However, their volatility makes them 

problematic to use in microgrids. Time series analysis finds 

patterns and trends in historical data to understand energy 

demand and supply swings.  

Data can help estimate energy needs and improve 

microgrid operations. One-class SVMs estimate solar or 

wind unit capacity. Heuristic scheduling optimises electricity 

production. This heuristic architecture improves machine 

learning accuracy. Thus, the system efficiently manages 

renewable energy microgrids. Solar power affects voltage 

profiles and frequency responsiveness, while wind energy is 

unpredictable[17]. 

Modern power systems and microgrids need accurate net 

load forecasting (NLF) for effective operation and 

management. As microgrids integrate more renewable 

energy sources, classic statistical net load forecasting (NLF) 

methods fail to anticipate accurately. Machine learning (ML) 

models might improve statistical performance.  

This research compares six machine learning models-

artificial neural network, extreme gradient boosting, k-

nearest neighbours, random forest, recurrent neural network, 

and support vector regression—for prediction. To find the 

best short-term net load forecasting (STNLF) model.  

The University of Cyprus renewable integrated 

microgrid provided historical net load and weather data for 

the comparison investigation. All STNLF ML models have 

below 10% accuracy. The random forest model performed 

well with 4.32% normalised root mean square error. The 

findings show that STNLF machine-learning models can 

help renewable integrated microgrid operators manage and 

regulate their heterogeneous assets[18]. 

3. Methodology 
This effort first creates a database to establish an 

accurate microgrid model to balance renewable energy 

sources and electricity utilisation. Creating a standard model 

requires a few steps.  

Data Collection: Collect relevant data for training your 

Random Forest model. This may include historical energy 

generation data from renewable sources, sensor data such as 

weather conditions, energy demand data from the microgrid, 

and other relevant variables that may impact energy 

generation and consumption. 

Data Preprocessing: The data that has been gathered 

should undergo a procedure of cleaning and preprocessing. 

This procedure involves the administration of missing 

values, the normalisation or scaling of features, and the 

encoding of categorical variables if deemed necessary. It is 

recommended to partition the data into distinct sets for 

training and testing. 

Feature Engineering: Feature engineering extracts 

relevant features from data. Aggregating or modifying raw 

data may provide new features that capture crucial patterns 

or connections. 

Model Training: Train a Random Forest model. Random 

Forest predicts by combining many decision trees. It handles 

numerical and categorical features and resists overfitting. 

Model Evaluation: Assess the trained model's testing 

performance. Regression measures include MSE, MAE, and 

R-squared. 

Model Optimization: Tune the parameters and 

hyperparameters of the model to enhance its efficacy. Cross-

validation and grid search can be used to determine the 

optimal parameter settings. 

Deployment and Monitoring[19]: Once the model's 

performance is satisfied, deploy it in a production 

environment. Monitor and evaluate its performance to ensure 

it adapts well to changing conditions. 

Decision Support: Utilize the trained Random Forest 

model to make informed decisions about balancing 

renewable energy sources within the microgrid. It can 

provide predictions or recommendations on distributing 

energy from different sources based on real-time sensor data 

and historical patterns.  

In Fig 1, the proposed using sensors, microgrids, and 

machine learning to balance renewable energy entails 

gathering real-time data from sensors to enhance a 

microgrid's performance[20]. Machine learning algorithms 
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analyse this data to anticipate energy production, use, and 

storage trends. These forecasts are used by the microgrid's 

control system to dynamically balance energy production and 

demand, maximising the usage of renewable resources and 

lowering costs[21,22]. With this strategy, energy efficiency 

is improved, non-renewable resource dependence is 

decreased, grid resilience is increased, and environmental 

sustainability is promoted. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Framework for the proposed methodology 

4. Design and Implementation 
4.1. Dataset Description and Data Preprocessing  

The dataset combines several renewable energy 

applications categorized into Agriculture, City/Community, 

College/University, Commercial, Hospitals/Healthcare, 

Military, Multi-Family Buildings, Public Institutions, 

Research Facilities, Schools, and Water Treatment/Utility. 

The Microgrid Database is a data collection effort sponsored 

by the U.S. Department of Energy and maintained by ICF 

Inc. The database contains a comprehensive listing of 

microgrid installations throughout the country[23]. 

4.2. Datasets Distribution  

In Figure 2, To comprehensively understand the dataset 

distribution for renewable energy applications, let us 

examine each category individually. 

The analysis of the dataset distribution could provide 

helpful information into the diverse applications of 

renewable energy across multiple sectors, the extent of its 

implementation, its geographical spread, and its effects on 

energy consumption, carbon emissions, and cost reduction. 

Including these statistics would enhance comprehension of 

sustainable energy adoption patterns and the potential 

advantages they offer across various implementation 

domains. 

Data Cleaning: During this procedure, we correct for 

things like missing data, extreme values, and background 

noise. Finding and fixing outliers, filling in missing data, and 

reducing noise via smoothing and filtering are all possible. 

Data Integration: Integration unifies data from diverse 

sources and formats. This may entail fixing errors, 

combining duplicates, or standardising data. 

4.3. Distribution of Microgrid Projects by Operational Year 

Figure 3 shows the Distribution of Microgrid Projects by 

Operational Year. The distribution of microgrid projects by 

operational year varies depending on geographical location, 

funding availability, and project timelines. While some 

microgrid projects may have been operational for many 

years, others are still in the planning or implementation 

phase. The growing interest in microgrids has also led to 

increasing operational projects in recent years, reflecting the 

global shift towards decentralized and sustainable energy 

systems. 

4.4. Total Capacity Vs Solar Capacity 

The total capacity of a microgrid refers to the maximum 

amount of power that the microgrid can generate, store, and 

distribute to meet the energy needs of its local area. The solar 

capacity vs total capacity is shown in Figure 4. This capacity 
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can be a combination of various energy sources, such as 

solar, wind, batteries, and conventional generators. Solar 

capacity, however, refers to the portion of the microgrid's 

total capacity derived from solar energy. It represents the 

maximum power generated by solar panels installed within 

the microgrid. 

 
Fig. 2 Distribution of microgrid projects by primary application 

 
Fig. 3 Distribution of microgrid projects by operational year 

 
Fig. 4 Total capacity vs Solar capacity 
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The ratio of total capacity to solar capacity in a 

microgrid can vary depending on several factors, including 

geographical location, energy demands, available resources, 

and system design. In some microgrids, especially those 

located in regions with ample sunlight, solar capacity can be 

the dominant source, providing a significant portion or the 

majority of the total capacity. These microgrids rely heavily 

on solar energy to meet the energy needs of the local 

community. However, in other cases, where solar resources 

are limited or insufficient to meet the energy demands, the 

total capacity of the microgrid may include a larger share of 

other energy sources like wind, batteries, or conventional 

generators. Solar capacity may represent a smaller portion of 

the overall capacity. 

It is important to note that microgrid configurations can 

vary greatly, and the optimal mix of energy sources, 

including solar capacity, will depend on each microgrid 

project's specific requirements and constraints[24]. Factors 

such as cost, reliability, environmental considerations, and 

local regulations also play a role in determining the balance 

between total capacity and solar capacity in a microgrid. 

It is important to note that the specific capacity 

distribution in microgrids can vary significantly based on 

local conditions, available resources, energy demand 

patterns, and project objectives. Therefore, the distribution of 

total capacity by primary application in microgrids can differ 

from one project to another. 

Sensor data: Install sensors throughout the microgrid to 

capture real-time data on solar radiation, wind speed, 

temperature, energy usage, and battery levels. 

Data Monitoring and Analysis: Monitor and analyze the 

sensor data to understand the microgrid's energy production 

and consumption patterns. Identify periods of high renewable 

energy generation and peak demand. 

Load Management: Based on the analysis, implement 

load management strategies to balance the energy supply and 

demand. This can involve adjusting the operation schedules 

of energy-intensive processes or implementing demand 

response programs to incentivize energy usage during high 

renewable energy availability periods. 

Energy Storage and Distribution: Utilize batteries or 

pumped hydro storage to store extra renewable energy during 

high production. Stored energy may be sent during low 

renewable energy output or high demand to sustain supply. 

Predictive Analytics: Utilize advanced analytics 

techniques to forecast renewable energy generation, demand 

patterns, and storage requirements. This enables proactive 

planning and optimization of the microgrid operation. 

Feedback and Control: Continuously monitor the 

microgrid's performance and use feedback loops to adjust 

system parameters and improve energy balancing. This 

feedback and control mechanism ensures that the microgrid 

operates optimally and efficiently. 

Evaluate machine learning model: The evaluation 

measures include accuracy, precision, recall, F1-score, and 

AUC. Cross-validation and train-test splits may also evaluate 

model performance on unseen data to prevent overfitting or 

underfitting.

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 5 Total capacity distribution by primary application 
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Fig. 6 Flow chart of the machine learning models working 
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Precision: Precision is the proportion of accurately 

predicted positive samples out of all anticipated class 

samples. In rare incidents or circumstances with serious 

repercussions, it reduces false positives.  

Higher precision means fewer false positives and greater 

model confidence in optimistic predictions. Precision 

evaluates a model's positive prediction accuracy. Divide the 

number of true positive (TP) forecasts by the total of TP and 

FP predictions. Precision formula: 

Precision = TP/(TP+FP). 

Recall:  It indicates the proportion of positive results 

correctly discovered. Recall=TP/(TP+FN) 

F1-Score/F1-Measure: The maximum F1 score is 1. The 

harmonic mean of accuracy and recall ensures that each 

measure contributes equally to the outcome. The F1 score is 

particularly useful for imbalanced datasets when each class 

has a different number of samples. It analyses a model's 

ability to make accurate positive predictions and minimise 

false positives and negatives. 

F−score=(2×Precision×Recall)/(Precision+ Recall) 

Table 1. Precision, recall, f1-score accuracy of SVM classifier 

Support Vector Machine Classification 

 Precision Recall F1-score Support 

Agriculture 0.00 0.00 0.00 2 

Airport 0.00 0.00 0.00 1 

City/Community 0.50 0.14 0.22  

College/University 1.00 0.29 0.45 17 

Commercial 0.59 1.00 0.74 69 

Hospitals/Healthcare 0.27 0.23 0.25 13 

Military 0.00 0.00 0.00 6 

Multi-Family 0.00 0.00 0.00 3 

Public Institution 0.00 0.00 0.00 1 

Research Facility 0.00 0.00 0.00 4 

Schools 0.00 0.00 0.00 6 

Water Treatment/Utility 0.00 0.00 0.00 2 

 
 

Table 2. Precision, recall, f1-score accuracy of random forest classification 

Random Forest Classification 70% 

 Precision Recall F1-score Support 

Agriculture 1.00 0.50 0.67 2 

Airport 0.00 0.00 0.00 1 

City/Community 0.40 0.43 0.41 14 

College/University 0.58 0.41 0.48 17 

Commercial 0.79 0.93 0.85 69 

Hospitals/Healthcare 0.50 0.54 0.52 13 

Military 0.86 1.00 0.92 6 

Multi-Family 0.67 0.67 0.67 3 

Public Institution 0.00 0.00 0.00 1 

Research Facility 0.00 0.00 0.00 4 

Schools 0.67 0.33 0.44 6 

Water Treatment/Utility 1.00 0.50 0.67 2 

Accuracy   0.70 138 

Macro Avg 0.54 0.44 0.47 138 

Weighted Avg 0.66 0.70 0.67 138 
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Accuracy: The maximum F1 score is 1. The harmonic 

mean of accuracy and recall ensures that each measure 

contributes equally to the outcome. The F1 score is 

particularly useful for imbalanced datasets when each class 

has a different number of samples. It analyses a model's 

ability to make accurate optimistic predictions and minimise 

false positives and negatives.  

Support: When talking about a dataset's "support," we 

refer to the number of examples that fall under each class. It 

is essential for social groups' inequalities since it clarifies 

how such groups are distributed. The dataset is kept constant 

for the following investigation while the models and 

classifiers change. 

5.1. Tools and Programming Language Used for CNN 

Model Training 

 Anaconda with Visual Studio Code simplifies data 

science development. Data scientists and machine learning 

practitioners love it because it simplifies Python environment 

setup and maintenance, has excellent code editing, and 

allows interactive data analysis using Jupyter Notebooks.  

The Tables 1-3 describes the analysis of microgrid 

dataset analysis concerning sensor data. Random Forest, 

Support Vector Machine (SVM) Classification, and 

AdaBoost Classification are crucial for accurate and efficient 

decision-making. Each model achieved 70%, 57% and 54%, 

respectively, as shown in Fig 7. 

Table 3. Precision, recall, f1-score accuracy of random adaboost classification 

AdaBoost Classification 

 Precision Recall F1-score Support 

Agriculture 0.00 0.00 0.00 2 

Airport 0.00 0.00 0.00 1 

City/Community 0.00 0.00 0.00 14 

College/University 0.00 0.00 0.00 17 

Commercial 0.53 1.00 0.70 69 

Hospitals/Healthcare 0.00 0.00 0.00 13 

Military 0.86 1.00 0.92 6 

Multi-Family 0.00 0.0 0.00 3 

Public Institution 0.00 0.00 0.00 1 

Research Facility 0.00 0.00 0.00 4 

Schools 0.00 0.00 0.00 6 

Water Treatment/Utility 0.00 0.00 0.00 2 

Accuracy   0.54 138 

Macro Avg 0.12 0.17 0.14 138 

Weighted Avg 0.30 0.54 0.39 138 

 
 

 
Fig. 7 Accuracy machine learning models comparision 
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6. Conclusion 

Random Forest is an ensemble learning method that 

combines multiple decision trees to make predictions. It 

excels at handling large datasets with high-dimensional 

features and provides robustness against overfitting. SVM 

Classification, on the other hand, is decisive in dealing with 

both linear and non-linear data by creating optimal decision 

boundaries. It works well with small to medium-sized 

datasets but might suffer from scalability issues.AdaBoost 

Classification is an ensemble technique that iteratively 

improves the model's performance by emphasizing 

misclassified data points. It is efficient and versatile for 

various datasets, including those with imbalanced classes. 

However, it can be sensitive to noisy data. The accuracy of 

each model in microgrid sensor data analysis depends on 

Rigorous model evaluation and hyperparameter tuning are 

essential to identify the most suitable model for a given 

microgrid scenario is random Support Vector Machine 

achieved 70% accuracy compared to Random Forest and 

AdaBoost Classification. An ensemble of these models or a 

combination of their outputs can often yield even better 

results by leveraging their strengths and compensating for 

their weaknesses. 
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