
SSRG International Journal of Electronics and Communication Engineering Volume 10 Issue 8, 59-67, August 2023

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V10I8P106 © 2023 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Nature Inspired Data Placement Strategy in Distributed

Cloud Environment using Improved Firefly Algorithm

B. Prabhu Shankar1, H. Najmusher2, N. Rajkumar3, R. Jayavadivel4, C. Viji5, S. M. Nandha Gopal6

1,3,4,5Department of Computer Science & Engineering, Alliance College of Engineering and Design, Alliance University,

Bangalore, Karnataka, India.
2,6Department of Computer Science & Engineering, HKBK College of Engineering, Bangalore, Karnataka, India.

1Corresponding Author : prabu2000@gmail.com

Received: 09 June 2023 Revised: 13 July 2023 Accepted: 08 August 2023 Published: 31 August 2023

Abstract - The execution of scientific applications needs high-processing computers and requires massive storage. This

resulted in deploying applications in a distributed environment with high performance and extensive storage. Applications

processed in cloud platforms face intolerable delays due to data movement across the centres. Optimized distribution of

datasets among the global data centres has become an essential issue in the distributed cloud environment. This work proposes

an improved data placement called IFA Data Placement (IFA-DP) method for a heterogeneous cloud environment. An

effective and efficient optimal data placement strategy is proposed using a metaheuristic global optimisation firefly algorithm.

The metaheuristic behavior of fireflies finds a better optimal solution. The primary aim of this work is to reduce the response

time and execution cost, which is then proved by the simulation results. The access time of the Proposed IFA-DP is less by at

least 2s compared to the existing methods.

Keywords - Data placement, Firefly algorithm, Metaheuristic optimization, Cloud computing.

1. Introduction
With the advent of technology and the proliferation of

digital devices and systems, a massive amount of data is

being generated and accumulated at an unprecedented rate.

Practical insights from the raw data have urged the

researchers to find a proper data management architecture.

In contrast, improper data management will lead to

heavy traffic in processing data. Since the data size is

tremendously significant, the need of the hour is the storage

capacity and computing resources for processing

applications. Distributed cloud architecture provided a good

solution for this problem. Since datasets are stored in the

distributed cloud environment, I/O operations and

application processing using these datasets become a time-

consuming process.

The increasing volumes of data storage, ranging from

terabytes to petabytes and complex data structures, have

posed challenges in data management. The emergence of

cloud systems has provided a solution for handling such

data-intensive scenarios. Cloud systems support two types of

applications: data-intensive applications and computer-

intensive applications. The four layers of cloud architecture

are the Application, service, management, and infrastructure.

network architecture between the servers is different, and

correlations exist between the datasets accessed by the

processes.

Dataset placement is critical in determining a cloud

system’s performance and efficiency [1-4], particularly in

data-intensive applications. The distribution of datasets

across different storage resources in the cloud and managing

their processes can significantly impact performance [5].

The network traffic data locality concept was introduced

in the literature, where the data is moved to servers rather

than brought data to processing nodes. Later a property of

interest locality was used where only required parts of the

dataset are moved, not the whole dataset. Later dataset

grouping played a vital role in placing the datasets in the

appropriate data centre.

There is a need for the cloud platform to intelligently

place the dataset into the relevant data centres to ensure less

dataset movement across the data centres during execution

[6]. It is necessary to consider a heterogenous data centre

platform and data correlation for a reasonable data placement

strategy. Data placement methods are classified into static

data placement and dynamic data placement. All file’s

service time and access rate are required for static placement

algorithms. Dynamic data placement algorithms determine

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:prabu2000@gmail.com

B. Prabhu Shankar et al. / IJECE, 10(8), 59-67, 2023

60

the best placement of files across multiple disks based on

various factors such as data access patterns, workload

characteristics, and system constraints [7, 8]. When multiple

process requests for multiple datasets frequently, a

correlation exists between the datasets.

Few data correlation placement methods are discussed in

[9-12]. Replication effectively reduces data scheduling

overhead and has garnered significant research interest in

cloud computing and distributed systems [13]. The primary

necessity of data placement is 1. To effectively manage the

total cost of a storage system 2. Effective distribution of data

into different storage devices.

Data-intensive applications require a proper data

placement strategy to minimize data access costs and

mitigate service delays. The placement of runtime datasets

can be particularly challenging due to the dynamic nature of

these datasets. Additionally, transferring intermediate

datasets can pose bottlenecks when the storage and

computational capacity are limited.

 However, optimizing data placement in a cloud system

can be complex, especially considering factors like data

access cost, Providing data to a remote system, data query

pattern, and data centre storage capacity. Most existing data

placement techniques aim to store user’s datasets closer to

the data access requests. Finally, the goal is to minimize data

access latency and improve overall system performance.

The following are the primary contributions of this work:

1. Considering the data movement history, a model is

designed in a cloud computing environment for data

placement mapped to minimize response time.

2. The proposed model improves the Firefly Algorithm for

data placement. By placing the datasets with their

accessibility nature, the proposed IFA-DP minimizes the

data movement during the execution. In addition, one

potential contribution of the work could be developing a

pre-allocation strategy for datasets to data centres. This

strategy aims to prevent the grouping of datasets on a

single server, which can lead to access delays and

performance issues. IFA-DP assures less data movement

during execution and ensures storing of relevant data

locally.

The paper structure you described is as follows: Section

2, Literature Review, presents a comprehensive review of

existing literature. Section 3 presents the details of the

proposed data placement strategy.

Section 4 presents the results of simulations conducted

to evaluate the effectiveness of the proposed data placement

strategy. Finally, Section 5 summarizes the key findings of

the research.

2. Literature Review
Stork is an advanced data placement scheduler offering

comprehensive features for queuing, scheduling, managing,

and monitoring job placement in a distributed computing

environment. One of its key capabilities is the use of

checkpointing techniques, which automate the process of

saving the state of a job at specific intervals.

This ensures that if a job fails or needs restarted, it can

resume from the most recent checkpoint rather than starting

from scratch. Checkpointing provides a significant advantage

in data processing as it reduces the need for manual

intervention and improves overall job efficiency. Data

placement during runtime is also adapted by this system [1].

Shyamala Doraimani and Adriana [9] proposed that

Workload modelling plays a crucial role in data management

within science grids, particularly when preserving time

locality for data presaging. Time locality refers to the

concept that data accessed closely in time will likely be

reaccessed shortly. By understanding and leveraging this

property, workload modeling techniques can optimize data

placement and scheduling to improve overall system

performance.

Zhao et al. [14] proposed an algorithm to reduce load

balancing [15] and data movement between the data centers.

However, specific ineffective fragments (presumably

referring to data sets that cannot be efficiently stored in data

centres) are excluded from the coding process, likely to avoid

placing them in unsuitable locations.

To evaluate the fitness of each gene (placement), the

authors defined a fitness function that considers both the

dependency between data sets and the load balance across

data centres. This fitness function measures how well a

particular gene performs regarding efficient data placement.

The genetic algorithm optimizes the genes to minimize data

movement, aiming for an optimal solution that maximizes

efficiency and reduces unnecessary data transfers.

According to the results presented by the authors, their

proposed method outperformed other existing methods in

workload modelling and data management. A genetic

algorithm-based mathematical data placement technique was

developed by Wei Guo et al. in [16].

The population size (G), mutation rate (Pm), and

crossover rate (Pc) are all computed. Everyone’s fitness

value is obtained following the formation of the initial

population BG. F = 1/(Bt) represents the fitness value.

Individuals are ultimately selected using a roulette wheel

[17]. The selected matrix undergoes crossover and mutation.

[18, 19]. An individual (solution) in the population does not

adhere to the storage capacity requirements; it is abandoned

B. Prabhu Shankar et al. / IJECE, 10(8), 59-67, 2023

61

or considered infeasible. In their proposed method, Zhuo et

al. [20], in a distributed computing environment, map and

reduce tasks to bring together the key and values of the

original data and achieve data locality [21, 22].

The authors implemented CORP in Hadoop 2.4.0 to

evaluate the system’s performance. The authors proposed a

model for evaluating cost, effect, and variance from the

sample datasets. Finally, the model improves the process and

gradually reduces the execution time. CORP proposed model

proved in terms of average data transmission of the entire

distributed computing system.

Qing Zhao et al. [23] addressed the challenges of data

placement in heterogeneous cloud environments and

implemented new data placement techniques to store the data

in heterogeneous clouds. Firstly, the authors proposed data

dependency-based data clustering and recursive partitioning

methods to consider the volume of the dataset and place the

dataset in an optimal position. Secondly, the heuristic tree-to-

tree data placement techniques reduce unnecessary data

movement in high bandwidth channels. At last, Simulation

results proved that the proposed strategy minimizes the

amount of data transmission and execution time in a

heterogeneous cloud.

Lizheng Guo, in his work [24], implemented the Particle

Swarm Optimization (PSO) Algorithm to reduce the

transmitting time and total execution cost. The proposed

model described seems to involve Particle Swarm

Optimization (PSO) with crossover, mutation, and local

search algorithms for data placement in a cloud platform.

PSO is a metaheuristic optimization technique that takes

inspiration from the swarm behavior of particles. The final

simulation result was to gain optimal solutions compared to

existing CM-PSO and L-PSO methods, achieving less

computational time.

Manmohan Chaubey and Erik Saule, in their work [25],

investigated how dataset replication copes with the

inaccuracies of processing time. The primary objective is to

examine the problem you described involves scheduling

independent tasks in a parallel system to minimize the

makespan. However, the task execution times are only

known as a multiplicative factor. The problem is divided into

2 phases: the offline and the online.

Data placement takes place in the offline phase, and the

tasks are scheduled in the online phase. Therefore, three

different kinds of strategies were investigated at different

degrees of replication factors. There are I) no replication, II)

replication is everywhere, and III) replication is in groups.

The paper proposes approximation and theoretical lower

bound algorithms and investigates the trade-off between the

number of replicas and the guarantee on make span.

The algorithm proposed by Agarwal et al. [26] focuses

on dynamically migrating Frequently used data to be stored

in different subsets of a memory unit in an array format. The

main aim of this work is to transfer frequently used data to

load to active disks, and the rest of them can be shifted to

energy-saving mode. Yang et al. [27] proposed an approach

that helps the data placement in dynamic applications and

efficiently handles the energy in a dynamic cloud model. The

authors used a virtual machine for application encapsulation,

resulting in the schedule and migrating the data in live

applications[28].

The authors implemented algorithms to address specific

challenges in a dynamic cloud environment. Let us break

down the two algorithms (i) a Bin packing algorithm likely

used to determine the optimal allocation of applications or

workloads and (ii) an energy-aware heuristic algorithm that

optimises resource allocation and utilization in a dynamic

cloud environment by considering varying resource

demands.

3. Data Placement Strategy in Cloud
Cloud computing offers services over the Internet

through various applications and web-based tools [29] and its

different models, namely public cloud and private cloud.

While cloud computing has become increasingly popular for

various applications, it is essential to note that cloud

architectures alone may not always make optimal decisions

regarding data processing, storage, and management [30].

Cloud data management can be complex due to the large

volume of heterogeneous data and diverse data structures.

Different data types, such as structured, semi-structured, and

unstructured, pose challenges regarding organization,

processing, and analysis within the cloud environment.

The variety of data types requires careful consideration

of data storage mechanisms, access methods, and appropriate

data processing techniques to manage and analyze the data in

the cloud effectively. To overcome these challenges,

organizations often employ specialized data management

techniques, including data integration, preprocessing,

indexing, and analysis algorithms, to handle the diverse

nature of data in the cloud architecture. The data scheduling

architecture is shown in Figure 1.

In a cloud environment, processors or CPUs can be

heterogeneous, meaning they have different processing

capabilities or capacities. This heterogeneity can arise due to

variations in CPU clock speed, number of cores, cache size,

memory bandwidth, and other architectural differences [31].

The cost of executing a task can vary based on the

processor to which it is assigned and the diverse bandwidth

available within the cloud nodes. These complexities and

variations in cloud computing environments require careful

B. Prabhu Shankar et al. / IJECE, 10(8), 59-67, 2023

62

consideration and planning for efficient data storage,

processing, and management to ensure optimal performance

and cost-effectiveness.

Figure 1 shows different processes and the datasets d1

through d10. Frequently accessed datasets are placed in data

centres dc1 through dc4. Five different processes and ten

datasets are depicted in the figure, where each process can

execute successfully only with the availability of different

datasets. If the required datasets are placed in different

datasets, execution costs and time will be high. As shown in

the figure, placing the frequently accessed datasets together

in a data centre is wise. The proposed IFA-DP involves

placing the dataset in an appropriate data centre in three

stages. Stage 1 identifies the affinity degree of the datasets.

The second stage involves the grouping of frequently

accessed datasets together. Stage 3 focuses on correctly

placing grouped datasets in suitable data centres. This step is

critical to optimize data management and resource utilization

in a cloud or distributed computing environment. The

workflow architecture of the proposed method is depicted in

Figure 2.

Fig. 1 Data scheduling architecture

Fig. 2 Workflow of proposed IFA-DP

3.1. Affinity Degree Generation

IFA-DP mainly analyses node access and data

movement history. Based on the analysis found, the best data

placement strategy. One aspect of this analysis involves

calculating the affinity degree for the datasets. During the

execution of a process, if a dataset stays in a data centre

without movement, then the dataset gains the highest affinity

degree. The degree between the dataset and the data centre is

directly proportional, and there is the slightest possibility of

movement in the future. Affinity degree can be calculated

using equation 1.

𝐴𝐷𝑖𝑗=𝑓𝑛(𝑛𝑖𝑗/ 𝑡𝑜𝑡𝑎𝑐𝑐𝑒𝑠𝑠*(1-𝑀𝐿𝐸𝑖𝑗)) (1)

dc1

d2
d1

d3
d5 d4

dc2

dc3

d6
d7

d8

d10

d9

dc4

p1
p2

p3

p4

p5

Stage - 1

Affinity Degree Generation

Dataset Grouping

Data Placement

Stage - 2

Stage - 3

B. Prabhu Shankar et al. / IJECE, 10(8), 59-67, 2023

63

ADij is the affinity degree of dataset i with node j. nij

represents the total number of times node j has accessed

dataset i; the total number of times the dataset has been

accessed is given by totaccess. The history of access frequency

during a period t is defined as the ratio of the total number of

times dataset i was accessed by node j to the total number of

times dataset i was accessed. MLEij is the likelihood of

dataset movement in the future. MLEij is based on the history

of data movements.

3.2. Dataset Grouping

Initially, the access likeliness of the datasets is

identified, and then they are grouped to form a Data

Grouping Matrix (DGM). Access likeliness Alike of dsi and

dsj is the total number of processes that utilize dsi and dsj

datasets. Access likeliness of all the datasets can be

calculated using equations 2,3 and 4.

dsacci= ∑(𝑝1,𝑝2,… . 𝑝𝑛), (2)

Where 𝑝1,𝑝2,… . 𝑝𝑛 are the processes that access dsi.

dsaccj= ∑(𝑝1,𝑝2,… . 𝑝𝑛), (3)

Where 𝑝1,𝑝2,… . 𝑝𝑛 are the processes that access dsj.

Alike(i,j) = dsacci∩ dsaccj (4)

DGM is formed from the Access likeliness values of the

dataset. The values in the DGM represent the total number of

times the datasets have been accessed together. Clustered

DGM (CDGM) is formed from DGM by grouping similar

values. DGM is converted to CDGM using the Bond Energy

Algorithm (BEA). This clustered matrix helps to decide the

placement of dataset groups. When the datasets are, the

process is repeated until all the datasets are grouped. Finally,

highly associated sub-matrices are identified as optimal

submatrices from CDGM.

3.3. Data Placement Strategy with Improved Firefly

Algorithm

3.3.1. Conventional Firefly Algorithm

The Firefly Algorithm was proposed by Yang [27] at the

University of Cambridge. The Firefly Algorithm is a

population-based optimization algorithm inspired by the

behavior of fireflies. Fireflies move towards brighter

fireflies, simulating the attraction between fireflies based on

their relative brightness. The behavior of fireflies in the

algorithm can be linked to two main hypotheses observed in

the natural world. In optimization terms, this can be

interpreted as the fireflies being attracted to promising

solutions considered “better” in the objective function. The

second hypothesis suggests that fireflies use their flashes to

attract potential prey. In the context of the Firefly Algorithm,

this can be understood as fireflies moving towards brighter

fireflies, representing the search for better solutions that can

potentially overcome the current solution’s drawbacks. By

leveraging these principles, the Firefly Algorithm aims to

iteratively improve the population of potential solutions by

simulating fireflies’ movement and attraction behaviour.

Yang introduced the following conditions in the Firefly

Algorithm: (1) The brightness of a firefly represents the

quality or fitness of a potential solution. The attraction is

negatively correlated with the Euclidean distance squared.

(2) Fireflies exhibit random movements to investigate the

search area. This randomness ensures a degree of global

exploration and helps to prevent the algorithm from

becoming stuck in local optima. Using these conditions, the

Firefly Algorithm iteratively updates the positions of fireflies

in the search space, with each firefly adjusting its position

based on the attractiveness of other fireflies and

incorporating random movements. Through this iterative

process, the algorithm aims to converge towards better

solutions and optimize the given objective function. It is

worth noting that the specific implementation details of the

Firefly Algorithm, such as the parameter settings, movement

rules, and termination conditions, can vary depending on the

problem at hand and the preferences of the algorithm

designer.

Algorithm 1. Firefly Algorithm

Begin

 Generate the initial population of fireflies (xi, i = 1 to n)

 Calculate light intensity I for each firefly based on its

fitness

Set parameters (MaxGeneration , γ , α)

Repeat for t = 1 to MaxGeneration:

 For each firefly i = 1 to n:

 For each firefly j = 1 to n:

 If Ij > Ii: # Brighter fireflies attract

 Calculate distance r between fireflies i and j

 Calculate attractiveness via exp (-γ * r^2)

 Generate random movement factor β

 Update the position of firefly i

 Evaluate new fitness and update light

intensity Ii

Rank fireflies based on light intensity.

end

The brightness of a maximization problem can be

proportional to its objective function’s value. Similar to how

the fitness function in genetic algorithms is constructed,

other kinds of brightness can also be defined. Algorithm 1

depicts the basic firefly Algorithm.

Initially, the data placement is mapped with the Firefly

algorithm. In the workflow model, the data centers

represented as DC = dc1, dc2, dc3, …., dcm and a dataset

represented as DS= ds1, ds2, ds3…dsn.

B. Prabhu Shankar et al. / IJECE, 10(8), 59-67, 2023

64

The proposed mapping is as follows:

1. In the data placement problem, the number of dimensions

in the optimization problem (d) can be mapped to the

number of datasets (n).

2. The location of each firefly (xi) in the Firefly Algorithm

can be mapped to a possible solution to the data placement

problem.

3. Intensity (I) to the fitness of data scheduling solutions.

4. The attraction of low-intensity fireflies to those with

higher intensity can be mapped to changing non-optimal

data schedules to more optimal schedules in the data

placement problem [32].

Finally, new solutions are obtained, and light intensity is

updated. The best-fitting fireflies are chosen for the

subsequent iteration. The best firefly is chosen as the most

appropriate solution.

Figure 3 shows how the low-intensity firefly moves

towards the high-intensity firefly. Moreover, obtain a new

solution in the proposed model. Figure 4 illustrates the

general architecture of the proposed data placement method

(IFA-DP). Assuming that data placement and scheduling

problem with a total of m data centres and n tasks, and we

have a population of fireflies with a maximum population

size of maxp, we can associate each firefly in the initial

population with a possible solution in the data placement and

scheduling problem, each firefly’s location is defined as a

vector of d members.

The Firefly xi = {1,2,2,3,1,4,3} represents scheduling.

Datset1 is accessed by task 1, dataset 2 and 3 are accessed by

task 2; dataset 4 is accessed by task 3, dataset 5 is accessed

by task 1and so on. Calculate the fitness of the initial

population by defining intensity i for fireflies at position xi.

Determine the brightness attraction.

Considering fireflies i and j, firefly i should move

towards firefly j if ith fitness is more significant than jth

firefly. The conventional Firefly Algorithm is enhanced by

selecting k random positions of low-intensity firefly and

replacing the positions with the corresponding positions of jth

firefly. Thus, ith firefly with low intensity moves towards

with high intensity of jth firefly. R denotes the distance

between the ith and jth.

Fig. 3 Proposed firefly movement

Fig. 4 Proposed data placement strategy using improve firefly algorithm

v2

v1

v4

v2

v3

v2

v4

v3

v1

v3

v2

v3

v1

v4

v3

v1

v4

v2

v3

v2

v4

xi xi new(xi)

Affinity Degree Generation

Node Access & Data

Movement History
Data Affinity Degree

Dataset Grouping

Access Likeliness
DGM

C-DGM

Improved Firefly Algorithm

Data Placement

B. Prabhu Shankar et al. / IJECE, 10(8), 59-67, 2023

65

The three stages of the proposed system are shown in the

figure above. The first stage is the affinity degree generation

stage, which involves calculating the affinity degree of the

datasets using the previous data movement and node access

history. Stage two involves finding the access likeliness of

the datasets that resulted in grouping and clustering the

similarly valued data. Finally, the clustered data is

significantly placed in the appropriate data centres using the

proposed improved Firefly Algorithm.

4. Results and Discussion
Simulations followed by the execution of actual

applications are performed in the Cloud Sim framework.

Metrics used to evaluate the proposed system are execution

cost and access time. The proposed method IFA-DP is

compared with existing methods Data-g Rouping – Aware

(DRAW) data placement scheme [33] and MADP [34].

Parameters for the simulation are tabulated in Table 1.

Details of the simulation analysis are described in the

following sections. Utility values are also compared in this

experiment.

Table 1. Simulation parameters

Entity Quantity

Data Centre 1

Hosts in DC 500

Ram Capacity 16/64 GB

Processing Elements 4/8

Processing capacity of

Processing Element
90/120/150/225 MIPS

Process length/instructions 600000 to 200000000 MI

Data set size 100 to 700 in steps of 100

Figure 5 compares the average response time for

existing DRAW, MADP, and proposed IFA-DP for different

scales of datasets. It is evident from the figure that the

proposed IFA-DP shows less response time for all dataset

scales. The response time of DRAW and MADP seems to be

similar for most of the dataset scales.

Table 2. Comparison of an average response time of different dataset

scales for DRAW, MADP, and proposed IFA-DP

No of Datasets DRAW MADP IFA-DP

100 2 1.5 0.5

200 1.7 1.8 1

300 2.1 3 2

400 3.5 2.5 2.3

500 2.2 3.3 1.5

600 3.6 2.6 1.8

700 3 2.4 1

Fig. 5 Comparison of an average response time of different dataset

scales for DRAW, MADP, and proposed IFA-DP

It is proven from Figure 6 that two solutions are

obtained for each dataset scale. The goal solution is 2 for

dataset scale 100,200, and 500. The goal solution is 1 for 700

datasets. The utility function used in the data placement and

scheduling problem can obtain a balanced solution for

arbitrary scales of datasets.

Table 3. Comparison of utility value for different ranges of datasets

No of Datasets Solution 1 Solution 2

100 0.2 0.6

200 0.3 0.7

500 0.3 0.8

700 0.98 0.65

Fig. 6 Comparison of utility value for different ranges of datasets

0

0.5

1

1.5

2

2.5

3

3.5

4

100 200 300 400 500 600 700

A
v
er

ag
e

R
es

p
o

n
se

 T
im

e(
s)

No of Datasets

DRAW MADP IFA-DP

0

0.2

0.4

0.6

0.8

1

1.2

100 200 500 700

U
tl

it
y
 V

al
u
e

No of Datasets

Solution 1 Solution 2

B. Prabhu Shankar et al. / IJECE, 10(8), 59-67, 2023

66

Fig. 7 Comparison of data access cost vs Storage capacity

Table 4. Comparison of data access cost vs Storage capacity

Storage Capacity DRAW MADP IFA-DP

1 0.93 0.92 0.85

1.1 0.94 0.88 0.9

1.2 0.94 0.96 0.92

1.3 0.96 0.98 0.89

1.4 0.97 0.96 0.91

1.5 0.98 0.92 0.86

Figure 7 in comparing data access costs, the proposed

IFA-DP (Firefly Algorithm-based Data Placement) technique

outperforms existing data placement techniques. The cost

values associated with data access are normalized. The

reason might be that the proposed IFA-DP focuses on

placing frequently accessed data items together in the data

center. Thus, the performance of IFP-DP is superior to

DRAW and MADP in terms of data access cost.

5. Conclusion and Future Enhancement
This cloud computing era challenges data storage and

management since the available data is diverse, complex, and

heterogeneous. Data placement is an important aspect that

makes cloud computing possible. This paper addresses the

data scheduling problem by proposing a nature-inspired data

placement approach in a cloud system. The contribution of

the work is as follows:

The affinity degree of the datasets is identified from

which datasets are grouped using access likeliness. Finally,

the grouped datasets are placed in the appropriate data

centres using an improved Firefly algorithm.The proposed

IFA-DP is compared with two existing data placement

methods: DRAW and MADP. Simulation results prove that

the proposed IFA-DP excels DRAW and MADP regarding

response time and data access cost. Data access cost for IFA-

DP is less for all the storage capacity comparing DRAW and

MADP. Our future work will focus on replicating frequently

accessed datasets for better response time. In addition, load

balance can be investigated in further research.

References
[1] Tevfik Kosar, and Miron Livny, “A Framework for Reliable and Efficient Data Placement in Distributed Computing Systems,” Journal

of Parallel and Distributed Computing, vol. 65, no. 10, pp. 1146-1157, 2005. [CrossRef] [Google Scholar] [Publisher Link]

[2] Huan Liu, and Dan Orban, “GridBatch: Cloud Computing for Largescale Data-Intensive Batch Applications,” 2008 Eighth IEEE

International Symposium on Cluster Computing and the Grid (CCGRID), Lyon, France, pp. 295-305, 2008. [CrossRef] [Google

Scholar] [Publisher Link]

[3] Ewa Deelman et al., “The Cost of Doing Science on the Cloud: The Montage Example,” SC ’08: Proceedings of the 2008 ACM/IEEE

Conference on Supercomputing, Austin, Tx, USA, pp. 1-12, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[4] T. Kosar, and M. Livny, “Stork: Making Data Placement a First-Class Citizen in the Grid,” 24th International Conference on Distributed

Computing Systems, Tokyo, Japan, pp. 342-349, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[5] Ewa Deelman, and Ann Chervenak, “Data Management Challenges of Data-Intensive Scientific Workflows,” 2008 8th IEEE

International Symposium on Cluster Computing and the Grid (CCGRID), Lyon, France, pp. 687-692, 2008. [CrossRef] [Google

Scholar] [Publisher Link]

[6] S. Veerapandi, R. Surendiran, and K. Alagarsamy, “Enhanced Fault Tolerant Cloud Architecture to Cloud-Based Computing using Both

Proactive and Reactive Mechanisms,” DS Journal of Digital Science and Technology, vol. 1, no. 1, pp. 32-40, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[7] Lili Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the Placement of Web Server Replicas,” Proceedings IEEE INFOCOM

2001,Conference on Computer Communications, Twentieth Annual Joint Conference of the IEEE Computer and Communications

Society (Cat. No.01CH37213), Anchorage, AK, USA, vol. 3, pp. 1587-1596, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[8] K. R. Pattipati, and J. L. Wolf, “A File Assignment Problem Model for Extended Local Area Network Environments,” International

Conference on Distributed Computing Systems, Paris, France, pp. 554-561, 1990. [CrossRef] [Google Scholar] [Publisher Link]

[9] Shyamala Doraimani, and Adriana Iamnitchi, “File Grouping for Scientific Data Management: Lessons from Experimenting with Real

Traces,” HPDC ’08: Proceedings of the 17th International Symposium on High Performance Distributed Computing, Boston, pp. 153-

164, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[10] Gilles Fedak, Haiwu He, and Franck Cappello, “BitDew: A Programmable Environment for Large-Scale Data Management and

Distribution,” SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, Austin, TX, USA, pp. 1-12, 2008.

[CrossRef] [Google Scholar] [Publisher Link]

0.75

0.8

0.85

0.9

0.95

1

1 1.1 1.2 1.3 1.4 1.5

D
at

a
A

cc
es

s
C

o
st

Storage Capacity

DRAW MADP IFA-DP

https://doi.org/10.1016/j.jpdc.2005.04.019
https://scholar.google.com/scholar?q=A+framework+for+reliable+and+efficient+data+placement+in+distributed+computing+systems&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0743731505001012
https://doi.org/10.1109/CCGRID.2008.30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GridBatch%3A+cloud+computing+for+largescale+data-intensive+batch+applications&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GridBatch%3A+cloud+computing+for+largescale+data-intensive+batch+applications&btnG=
https://ieeexplore.ieee.org/abstract/document/4534231
https://doi.org/10.1109/SC.2008.5217932
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+cost+of+doing+science+on+the+cloud%3A+the+Montage+example&btnG=
https://ieeexplore.ieee.org/document/5217932
https://doi.org/10.1109/ICDCS.2004.1281599
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stork%3A+making+data+placement+a+first-class+citizen+in+the+grid&btnG=
https://ieeexplore.ieee.org/document/1281599
https://doi.org/10.1109/CCGRID.2008.24
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+management+challenges+of+data-intensive+scientific+workflows&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+management+challenges+of+data-intensive+scientific+workflows&btnG=
https://ieeexplore.ieee.org/document/4534284
https://doi.org/10.59232/DST-V1I1P105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhanced+Fault+Tolerant+Cloud+Architecture+to+Cloud-based+Computing+using+Both+Proactive+and+Reactive+Mechanisms&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhanced+Fault+Tolerant+Cloud+Architecture+to+Cloud-based+Computing+using+Both+Proactive+and+Reactive+Mechanisms&btnG=
https://dsjournals.com/dst/DST-V1I1P105
https://doi.org/10.1109/INFCOM.2001.916655
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+Placement+of+Web+Server+Replica&btnG=
https://ieeexplore.ieee.org/document/916655
https://doi.org/10.1109/ICDCS.1990.89263
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+File+Assignment+Problem+Model+for+Extended+Local+Area+Network+Environments&btnG=
https://ieeexplore.ieee.org/document/89263
https://doi.org/10.1145/1383422.1383429
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=File+Grouping+for+Scientific+Data+Management%3A+Lessons+from+Experimenting+with+Real+Traces&btnG=
https://dl.acm.org/doi/10.1145/1383422.1383429
https://doi.org/10.1109/SC.2008.5213939
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Programmable+Environment+for+Large-Scale+Data+Management+and+Distribution&btnG=
https://ieeexplore.ieee.org/document/5213939

B. Prabhu Shankar et al. / IJECE, 10(8), 59-67, 2023

67

[11] Marcel Chibuzor Amaechi, Matthias Daniel, and Bennett E O, “Data Storage Management in Cloud Computing using Deduplication

Technique,” SSRG International Journal of Computer Science and Engineering, vol. 7, no. 7, pp. 1-7, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[12] Zheng Pai et al., “A Data Placement Strategy for Data-Intensive Applications in Cloud,” Chinese Journal of Computers, vol. 33, no. 8,

pp. 1472-1480, 2010. [Google Scholar] [Publisher Link]

[13] Dharma Nukarapu et al., “Data Replication in Data Intensive Scientific Applications with Performance Guarantee,” IEEE Transactions

on Parallel and Distributed Systems, vol. 22, no. 8, pp. 1299-1306, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[14] Zhao Er-Dun et al., “A Data Placement Strategy Based on Genetic Algorithm for Scientific Workflows,” 2012 8th International

Conference on Computational Intelligence and Security, Guangzhou, China, pp. 146-149, 2012. [CrossRef] [Google Scholar] [Publisher

Link]

[15] Nishu Rana, and Pardeep Kumar, “Random Walk-Based ACO Load Balancing Algorithm for Cloud Computing Environment,”

International Journal of P2P Network Trends and Technology, vol. 8, no. 6, pp. 8-15, 2018. [Publisher Link]

[16] Wei Guo, and Xinjun Wang, “A Data Placement Strategy Based on Genetic Algorithm in the Cloud Computing Platform,” 2013 10th

Web Information System and Application Conference, Yangzhou, China, pp. 369-372, 2013. [CrossRef] [Google Scholar] [Publisher

Link]

[17] Thomas Back, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms,

Oxford University Press, 1996. [CrossRef] [Google Scholar] [Publisher Link]

[18] Melanie Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998. [Google Scholar] [Publisher Link]

[19] Kalyanmoy Deb et al., “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary

Computation, vol. 6, no. 2, pp. 182-197, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[20] Zhuo Tang et al., “A Data Skew Oriented Reduce Placement Algorithm Based on Sampling,” IEEE Transactions on Cloud Computing,

vol. 8, no. 4, pp. 1149-1161, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[21] Mohammad Javad Abbasi, and Mehrdad Mohri, “Scheduling Tasks in the Cloud Computing Environment with the Effect of Cuckoo

Optimization Algorithm,” SSRG International Journal of Computer Science and Engineering, vol. 3, no. 8, pp. 1-9, 2016. [CrossRef]

[Google Scholar] [Publisher Link]

[22] Neha Thakkar, and Rajender Nath, “Discrete Artificial Bee Colony Algorithm for Load Balancing in Cloud Computing Environment,”

International Journal of P2P Network Trends and Technology, vol. 8, no. 6, pp. 1-7, 2018. [Publisher Link]

[23] Qing Zhao, Congcong Xiong, and Peng Wang, “Heuristic Data Placement for Data-Intensive Applications in Heterogeneous Cloud,”

Journal of Electrical and Computer Engineering, vol. 2016, pp. 1-8, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[24] Lizheng Guo et al., “A Particle Swarm Optimization for Data Placement Strategy in Cloud Computing,” Information Engineering and

Applications, pp. 946-953, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[25] Manmohan Chaubey, and Erik Saule, “Replicated Data Placement for Uncertain Scheduling,” 2015 IEEE International Parallel and

Distributed Processing Symposium Workshop, Hyderabad, India, pp. 464-472, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[26] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi, “Big Data and Cloud Computing: Current State and Future Opportunities,”

EDBT/ICDT ’11: Proceedings of the 14th International Conference on Extending Database Technology, Uppsala, pp. 530-533, 2011.

[CrossRef] [Google Scholar] [Publisher Link]

[27] Xin-She Yang, “Firefly Algorithms for Multimodal Optimization,” Stochastic Algorithms: Foundations and Applications, pp. 169-178,

2009. [CrossRef] [Google Scholar] [Publisher Link]

[28] S. Veerapandi, R. Surendiran, and K. Alagarsamy, “Live Virtual Machine Pre-copy Migration Algorithm for Fault Isolation in Cloud

Based Computing Systems,” DS Journal of Digital Science and Technology, vol. 1, no. 1, pp. 23-31, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[29] Michael Armbrust et al., “A View of Cloud Computing,” Communications of the ACM, vol. 53, no. 4, pp. 50-58, 2010. [CrossRef]

[Google Scholar] [Publisher Link]

[30] Peter Mell, and Timothy Grance, “The NIST Definition of Cloud Computing,” Thesis, National Institute of Standards and Technology,

2011. [Google Scholar] [Publisher Link]

[31] Eduardo Pinheiro, and Ricardo Bianchini, “Energy Conservation Techniques for Disk Array-Based Servers,” ICS ’04: Proceedings of

the 18th Annual International Conference on Supercomputing, pp. 68-78, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[32] B. Prabhu Shankar, and S. Chitra, “Optimal Data Placement and Replication Approach for SIoT with Edge,” Computer Systems Science

and Engineering, vol. 41, no. 2, pp. 661-676, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[33] B. Prabhu Shankar et al., “Energy-Efficient Data Offloading using Data Access Strategy-Based Data Grouping Scheme,” SSRG

International Journal of Electronics and Communication Engineering, vol. 10, no. 5, pp. 28-37, 2023. [CrossRef] [Publisher Link]

[34] T. V. V. Satyanarayana et al., “A Secured IoT-Based Model for Human Health through Sensor Data,” Measurement: Sensors, vol. 24, p.

100516, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.14445/23488387/IJCSE-V7I7P101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+Storage+Management+in+Cloud+Computing+Using+Deduplication+Technique&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+Storage+Management+in+Cloud+Computing+Using+Deduplication+Technique&btnG=
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=406
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Data+Placement+Strategy+for+Data-Intensive+Applications+in+Cloud&btnG=
http://cjc.ict.ac.cn/quanwenjiansuo/2010-8/zp.pdf
https://doi.org/10.1109/TPDS.2010.207
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+Replication+in+Data+Intensive+Scientific+Applications+with+Performance+Guarantee&btnG=
https://ieeexplore.ieee.org/abstract/document/5661771
https://doi.org/10.1109/CIS.2012.40
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=data+placement+strategy+based+on+genetic+algorithm+for+scientific+workflows&btnG=
https://ieeexplore.ieee.org/document/6405885
https://ieeexplore.ieee.org/document/6405885
https://ijpttjournal.org/archives/ijptt-v8i6p402
https://doi.org/10.1109/WISA.2013.76
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+data+placement+strategy+based+on+genetic+algorithm+in+the+cloud+computing+platform&btnG=
https://ieeexplore.ieee.org/document/6778667
https://ieeexplore.ieee.org/document/6778667
https://doi.org/10.1093/oso/9780195099713.001.0001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evolutionary+algorithms+in+theory+and+practice%3A+evolution+strategies%2C+evolutionary+programming%2C+genetic+algorithms&btnG=
https://academic.oup.com/book/40791
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+introduction+to+genetic+algorithms&btnG=
https://mitpress.mit.edu/9780262631853/an-introduction-to-genetic-algorithms/
https://doi.org/10.1109/4235.996017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+fast+and+elitist+multiobjective+genetic+algorithm%3A+Nsga-ii&btnG=
https://ieeexplore.ieee.org/document/996017
https://doi.org/10.1109/TCC.2016.2607738
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Data+Skew+Oriented+Reduce+Placement+Algorithm+Based+on+Sampling&btnG=
https://ieeexplore.ieee.org/document/7563838
https://doi.org/10.14445/23488387/IJCSE-V3I8P101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+secured+IoT-based+model+for+human+health+through+sensor+data&btnG=
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=157
https://ijpttjournal.org/archives/ijptt-v8i6p401
https://doi.org/10.1155/2016/3516358
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Heuristic+Data+Placement+for+Data-Intensive+Applications+in+Heterogeneous+Cloud&btnG=
https://www.hindawi.com/journals/jece/2016/3516358/
https://doi.org/10.1007/978-1-4471-2386-6_123
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Particle+Swarm+Optimization+for+Data+Placement+Strategy+in+Cloud+Computing&btnG=
https://link.springer.com/chapter/10.1007/978-1-4471-2386-6_123
https://doi.org/10.1109/IPDPSW.2015.50
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Replicated+Data+Placement+for+Uncertain+Scheduling&btnG=
https://ieeexplore.ieee.org/document/7284345
https://doi.org/10.1145/1951365.1951432
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+Data+and+Cloud+Computing%3A+Current+State+and+Future+Opportunities&btnG=
https://dl.acm.org/doi/abs/10.1145/1951365.1951432
https://doi.org/10.1007/978-3-642-04944-6_14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Firefly+algorithms+for+multimodal+optimization&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-04944-6_14
https://doi.org/10.59232/DST-V1I1P104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Live+Virtual+Machine+Pre-copy+Migration+Algorithm+for+Fault+Isolation+in+Cloud+Based+Computing+Systems+&btnG=
https://dsjournals.com/dst/DST-V1I1P104
https://doi.org/10.1145/1721654.1721672
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+view+of+cloud+computing&btnG=
https://dl.acm.org/doi/10.1145/1721654.1721672
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+NIST+Definition+of+Cloud+Computing&btnG=
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf
https://doi.org/10.1145/1006209.1006220
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+conservation+techniques+for+disk+array-based+servers&btnG=
https://dl.acm.org/doi/10.1145/1006209.1006220
https://doi.org/10.32604/csse.2022.019507
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+Data+Placement+and+Replication+Approach+for+SIoT+with+Edge&btnG=
https://www.techscience.com/csse/v41n2/45179
https://doi.org/10.14445/23488549/IJECE-V10I5P103
https://www.internationaljournalssrg.org/IJECE/paper-details?Id=439
https://doi.org/10.1016/j.measen.2022.100516
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+secured+IoT-based+model+for+human+health+through+sensor+data&btnG=
https://www.sciencedirect.com/science/article/pii/S2665917422001507

