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Abstract - Magnetic Resonance Imaging (MRI) based brain cancer segmentation methods need the skull stripping algorithms 

as their pre-processing tool. Skull stripping is challenged by less accuracy and high time consumption; hence, an effective 

skull stripping method is needed for the medical world. In this research, a novel skull stripping method on brain MRI is 

proposed, which is named 'Skull Stripping in brain MRI using FHECE based enhancement, Fuzzy clustering and 

Morphological operations (SS_FFM)'. The contribution of this paper is the 'Fusion of Histogram Equalization and Edge-

based Contrast Enhancement (FHECE)'. The proposed SS_FFM method essentially segments the brain tissue region from the 

background and skull region of brain MRI. The FHECE method enhances the brain MRI using the novel approach of weighted 

fusion of Adaptive Histogram Equalization (AHE) and edge-based contrast enhancement. The proposed SS_FFM method is 

also empowered by a new concept, which is an integrated component based on the three binary clustered outputs along with 

the 'Tissue and skull ring connectivity detection'. The main advantage of this paper is the independent skull stripping against 

the 'Tissue and skull ring connectivity' characteristic. Segmentation Accuracy (SA) analysis reveals that the proposed SS_FFM 
method enhances the SA by 1.39% compared to the second-best method. The proposed method reduces the time consumption 

by 46.19% compared to the second-best SS-UNET method. Experimental results in terms of F Score and Segmentation 

accuracy prove the extended efficiency of the proposed method. Hence, it can be used as a tool for medical practitioners. 

Keywords - Brain skull segmentation, Fuzzy c means, MRI tissue region separation, MRI enhancement, Medical image 

processing.

1. Introduction  
Magnetic Resonance Imaging (MRI) is an advanced 

imaging technique in the medical field. MRI produces high-

quality images of various internal human body organs, 

including the brain, tissues, and so on [1, 2]. The MRI scan is 

used to detect the presence of a brain tumor. Magnetic 

Resonance Imaging (MRI) is the most common and preferred 

diagnostic mode for detecting brain tumors.  

Brain cancer is the main cause of cancer deaths, which 

residue a severe health threat and is mostly not curable. The 

beginning stage of brain cancer can be diagnosed accurately 

for disease management. Brain cancer symptoms are 

headache, nausea, seizure, or central neurological 
impairments emerge [3]. The brain cancer includes gliomas, 

meningiomas, and pituitary tumors.  

Skull stripping is the beginning step in the path of 

identifying abnormalities in the brain. Brain extraction is the 

process of eliminating the skull and non-brain tissues from 

brain MRI scans. The non-brain tissues include skin, neck, 

muscle, and eyeballs. In automatic brain tumor segmentation, 

the main complication is the occurrence of non-brain tissues; 

hence, skull stripping is much needed. The existing skull 

segmentation methods are manual segmentation, intensity-

based segmentation, atlas-based segmentation, surface-based 
segmentation, and hybrid segmentation [4, 5]. The brain 

images are acquired using different imaging limits on 

machines with different scan quality. The various brain 

structures have the same signal intensities, which often 

overlap. Domain-specific knowledge is needed for skull 

stripping. The challenge is on large datasets [4-7].  

The existing methods of skull stripping have less 

accuracy and less speed. The echoes can be seen in the tissue 

borders of brain images [6, 7], making small links connecting 

the skull and tissue regions. Major methods fail to eliminate 

the skull region that touches the tissue region. Hence, there is 
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a need for the new development in skull stripping in brain 

MRI images. The aforementioned issues motivated this 

research to propose a new method for skull stripping entitled 

'Skull Stripping in brain MRI using FHECE based 

enhancement, Fuzzy clustering and Morphological 

operations (SS_FFM)'. The contributions set with the 
proposed method are: 

 A new brain MRI image enhancement algorithm is 

described, namely 'Fusion of Histogram equalization and 

Edge-based Contrast Enhancement (FHECE).' 

 A new mechanism to detect the connectivity/attached 

status of skull and tissue region  

 Two individual essential techniques to attach and detach 

the status of skull and tissue regions using binary images 

of Fuzzy C Means (FCM) segmentation. 

 

In this work, the input is a noise-removed grayscale MRI 
brain image, and the result is a skull-removed image that 

includes the brain's tissue region.   

Section 2 explains the related works done in skull 

stripping. Section 3 describes the working methodology of 

the proposed method. Section 4 explains the discussion and 

analysis of the proposed skull stripping method with various 

analytic measures. Section 5 describes the conclusion of the 

analysis part.   

2. Related Works 
Faisan et al. [8] described an atlas-based method for 

skull segmentation. This method warps a binary image. The 

disadvantage is that there are theoretical problems with label 

image topology. Park et al. [9] described a cranial dissection 

method based on regional growth in MRI images. The 

downside is the erroneous transmission due to the masking 

operation. Somasundaram et al. [10] referred to a hybrid 

method for skull segmentation. The hybrid method combines 

the mean filter and the image contour detection algorithm. 
The disadvantage is the label variation in segmentation for 

the same intensity values. Liu et al. [11] depicted a clustering 

application for tissue segmentation. This algorithm segments 

the brain MRI data. Also, it exploits the feature and spatial 

information in the data. The drawback is that it is difficult to 

brain image segmentation without prior information. Payam 

et al. [12] put forth an approach for symmetric segmentation 

of three-dimensional objects. The weakness of this method is 

that the symmetric interaction reduces the dependency on the 

initialized methods. Iglesias et al. [13] described an 

agreement-based skull-stripping method. The framework is 

used to test unlabeled data. The demerit of this semi-
supervised algorithm is the unsuitableness for the bulk of 

scans.  

Wang et al. [14] explained a deformable surface-based 

method for skull segmentation. The deformable surface-

based method for skull-stripping uses a bulky number of 

images with the constraint setting. The disadvantage is that 

the less consistent outcome is generated for a fixed 

constraint. Speier et al. [15] depicted a skull segmentation 

technique for clinical data. Weakness is that it is incapable of 

walking around all the directions in the brain skull. Zhou et 

al. [16] described a method for skull segmentation using a 
vector machine-based technique. The method plans to create 

an online hybrid support vector classifier. The disadvantage 

is that the ending segmentation results have a high false rate. 

Uher et al. [17] described a 3D brain tissue segmentation 

method. This is a completely automatic process that 

evaluates brain tissue size using MRI scans. The Statistical 

region merging function is used for 3D image segmentation. 

For each segment, the factors are calculated. The drawback is 

that it can be applied only to U-Net architecture. Kalavathi 

[18] demonstrated a technique using multiple Otsu's 

thresholding technique for tissue segmentation. This 

technique chooses an optimal threshold value that supports 
segmenting WM, GM and CSF from MRI brain images. 

Otsu's thresholding technique has the drawback of being 

used to test a small volume of brain images. Lv et al. [20] 

referred to a surface-based method for T1-weighted images. 

This method works based on an integrated segmentation 

algorithm and 3D interpolation. The drawback is that the 

reconstruction is fast only for 3D T1-weighted MRI images. 

Chansuparp et al. [21] described an integrated method for 

skull stripping. This method is a combination of 

mathematical morphology and component labels. The 

drawback is that, in some situations, it is challenging to 
separate the cerebral region that curls up to the skull. A 

method for semi-supervised discriminative classification of 

MR brain images. The drawback is that tumor segmentation 

is difficult for huge data sizes. 

3. Proposed Methodology 
This paper proposes a new skull segmentation approach, 

namely SS_FFM. The main contribution of this paper is the 
FHECE algorithm that tunes the brain MRI image in an 

enhanced form with better contrast distribution. Another new 

procedure is proposed, a joined work on the three binary 

clustered outputs along with the 'skull and tissue inter-

connectivity detection'. Morphological operations are utilized 

to make skull stripping in MRI. Figure 1 depicts the overall 

work of the proposed SS_FFM approach. MRI brain image 

in the format of grayscale having the size of 512x512 is fed 

as input to the proposed method. The output image is the 

skull-stripped version, which consists only of the tissue 

region. Figure 2 reveals the building blocks of the proposed 
method in a detailed model. The proposed work is divided 

into four divisions:  

 FHECE-based MRI image enhancement  

 Segmentation using Fuzzy logic 

 Optimum segmented binary image detection 

 Tissue segmentation technique. 
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MRI brain images are normally set with highly varying 

contrast, and their edges are not much defined so that the 

edges between the skull and tissue region are not much 

exposed, which leverages the failure ratio in skull 

segmentation. Hence, the MRI brain images must be 

enhanced for a clear visual. 

3.1. FHECE-Based MRI Image Enhancement 
This research designs a new step to enhance the contrast 

of the skull area of MRI images, namely FHECE. It contains 

the following three steps to do the enhancement: 

 Adaptive Histogram Equalization (AHE) 

 Edge-aware local contrast enhancement 

 Weighted Fusion of AHE and Edge-based contrast 

enhancement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 1 Overall diagram for the proposed SS_FFM approach 

Brain MRI image IP is set as input to the AHE and 

processes the histogram equalization separately to every 

small block. Figure 3(a) shows the input image. The built-in 

function of MATLAB, namely adapthisteq (), is applied here 

to get the AHE enhancement. The contrast-improved 

resultant image is noted as I_AHE and shown in Figure 3(b). 

This image lightens the less contrast regions; hence, the 

skull-ring region is brightened. This action differentiates the 
skull-ring region from both tissue and background regions.  

With the aid of the local mean and standard deviation 

calculations for each pixel, the Edge Aware Local Contrast 

(EALC) enhancement enhances contrast based on edge 

locations. Additionally, it adjusts the values of the pixels in 

accordance with the derived statistics.  

 Here, the standard deviation algorithm type, window 

size, and contrast gain factor are utilized to estimate the 

values of the pixels depending on the pixels around them. 
The EALC is implemented using the built-in function named 

'localcontrast()' of MATLAB, which is tuned by assigning 

the edge_threshold=0.4 and amount=0.001. The resultant 

enhanced image is noted as I_EALC and shown in Fig.3(c). 

In this output, a flattening process is applied by smoothing 

data while leaving strong edges unaltered.  

In Figure 3(c), the general brightness is maintained, and 

the variations in grey levels are better levelled. The minimum 

intensity amplitude of the strong edge is pointed out by the 

edge_threshold parameter, while the 'amount' notifies the 

smoothing amount. 

Weighted fusion technique is employed using both the 
I_AHEimage and the I_EALCimage to obtain an enhanced 

clarity image version, which obeys the subjective 

improvement, using Equation (1). 

     
   

 =      *     
   

 +       *      
   

                         (1)       

           ,           

 

In Equation (1), the term I_FUSE refers to the 'enhanced 

image by fusion', W_AHE refers the weight value related to 

AHE (let it be 0.34), W_EALC refers to the weight related to 

EALC output (let it be 0.66), H refers the height of the image 

and W refers the width of the image. Herein, both weights' 

integrated weight values are exclusively fixed as 1. The brain 

skull region benefits from the equalized output from I_AHE 

and the stabilized output from I_EALC. Figure 3(d) shows 

the final enhanced fused MRI that highlights the ring-type 
skull borders than the others, and the other benefit is that it 

does not possess over-enhancement and under-enhancement. 

Another essential gain is that the skull borders are defined 

visually better than the input image, which aids in having a 

better skull stripping output. 

3.2. Fuzzy Based Segmentation 
A notion called fuzzy logic is used to support 

information that is unclear or imprecise. Unlike the binary 

system, the fuzzy logic membership degree is set from 

completely false to completely true. The fuzziness range is 

configured to be between 0 and 1. The Fuzzy C Means 

(FCM) method clusters an image or segment an MRI image 
by assigning each data point to a cluster head based on its 

similarity to other points in the same cluster via the soft 

assignment. 
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Fig. 2 Basic building blocks of the proposed SS_FFM method
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Fig. 3 Demonstration of proposed FHECE-based enhancement, (a) 

input MRI, (b) AHE output, (c) edge-aware contrast enhancement, (d) 

Final FHECE-based skull region enhancement 

The I_FUSE image is the input to the fuzzy 

segmentation process. In the initialization stage of FCM, the 

2D image data is converted into 1D linear vector X that sets 

with the length corresponding to H * W. Because there are 

three different types of regions in the MRI image, viz. the 

background, skull, and tissue, the Total clusters h is set to 3 

in this instance. Herein, Membership matrix U_(i,j) is 

randomly settled, vector length l is fixed as H *W,  

maximum iteration p is set to 100, error level e is set to 

0.001, and the exponent term q is set to 2. The array of 
cluster heads is noted by C_j, where j is the cluster index. 

FCM method clusters the MRI based on equations from 

Equation (2) to Equation (4). 
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Herein, Cluster head C_j is computed using Equation 

(2), the distance d_(i,j) is computed using Equation (3), and 

the membership value is calculated using Equation (4). High 

similar data points hold higher membership values towards 

the related cluster head than dissimilar cluster heads. The 

objective function finds out the convergence level of iteration 

using the error level e.  

3.3. Optimum Segmented Binary Image Detection 
Due to the fact that there are three clusters, or the image 

comprises three binary images, the FCM output image is 

labelled with three distinct values, such as 1, 2, and 3. The 

main goal of this work is to select the most supportive binary 

image out of the three images that correspond to the tissue 

item. 

The first binary image corresponding to the label 1 is 

extracted from the I_FCM image using Equation (5). 

     
   

 = {
          

   
   

                     
                      (5)    

          ,            

 

Herein, the terms I_BIN1^(i,j) refer to the binary image 

based on label 1. Equation (5) focuses the background by a 

value of 0, while the foreground object is focused by a value 
of 1. The second binary image I_BIN2^(i,j) in the same 

model can be created using the label value 2 from the I_FCM 

image. The third binary image, I_BIN3^(i,j), is generated via 

the I_FCM image using a label value of 3. In the I_BIN1 

image, the tissue region is exposed in a highly varying form, 

and in the I_BIN2 image, the tissue region is exposed as a 

texture form with many holes and blank spaces. However, 

the  I_BIN3 image consists of only the skull and background 

regions. Here, the tissue region is exposed through the pixels 

that are represented by zeros. The concealed tissue region is 

similarly evenly dispersed with only a few foreign objects 
and holes. The aforementioned characteristics of the I_BIN3 

picture can help to promote a highly confident tissue region 

detection. The unique characteristic of the I_BIN3 is that it 

produces less intensity than the other two binary images, 

namely I_BIN1 and I_BIN2. 

The mean intensity μ_1  related to the I_(BIN1 ) image 

is computed using Equation (6) and Equation (7). 

          ,                                              (6) 

 

      = {
         

                   
                                    (7) 

 

          ,           
 

Herein, the term        refers to the function to 

compute the eligibility of the pixel to participate in the    

calculations and     refers to the Foreground pixel count in 

IBIN1 image. In the same model, the mean intensity    related 
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to        image is computed. Also, the mean intensity 

   related to        is computed. The tissue region's highly 

supported binary image consistently yields the lowest mean 

value. This rationale is based on the idea that a binary image 

supported by a tissue region will always have a large number 
of zeros in the tissue regions and a large number of ones in 

the background and skull regions. This circumstance results 

in the lowest intensity because the background data range is 

constantly very close to the intensity value of zero. Thus, the 

mean value is drastically decreased. The minimum mean 

value    is found among the three mean values, such as   , 

   and   .  

3.4. Fuzzy Based Segmentation 
By identifying the largest object in the "Minimum range 

grey level binary image," namely      , this section employs 
a novel model to determine connectivity between the ring 

structure and the tissue region. The        the image presents 

the tissue region by zeros. The ring-connectivity-status 

detection algorithm requires the tissue representation by   ; 

hence, the        image is converted to the 'inverted form 

    ' using Equation (8) by subtracting each pixel by  . 

    
   

          
   

                                      (8) 

          ,            

 

At present, the tissue region is depicted by 1s rather than 

0s. The inverted image I_INV. The whole connected 

components of the I_INV image are found, and the area 

property of each of them is calculated. Afterwards, the 

maximum area providing the connected component is found 
using morphological operations and stored in an individual 

binary image I_BIG. The subtraction process between the 

I_INV and I_BIG images reveals that the difference is high 

for the disconnected ring object while it is less for the 

connected ring object model. The subtracted binary image is 

noted as I_SUB^(i,j).  

Because the geometry of the largest component is nearly 

identical to the foreground object of I_INV, the I_INV image 

and the I_BIG image cancel each other out in major pixels 

when applied to the connected skull model. The subtracted 

image I_SUB contains the skull object since it has more 
values of 1s than the threshold in the disconnected skull 

model, which cancels only the tissue region and not the skull 

region. Simply said, the I_SUB image for a connected model 

has fewer 1s than the threshold th, whereas the I_SUB image 

for a disconnected model has more 1s than the threshold th. 

The skull-connected status SCS is detected via Equation (9) 

and Equation (10). 

S = ∑ ∑     
       

   
    
                                                     (9) 

 

SCS = {
         
               

                                                (10) 

Equation (9) computes the sum of all 1s in the I_SUB 

image and sets it in S. Equation (10) sets 1 in SCS for the 

skull-connected status and sets 0 for skull disconnected 

status. The tissue separation process is expressed using two 

cases. They are: 

 Skull and tissue disconnected model (i.e., case 1)  
 Skull and tissue connected model (i.e., case 2). 

3.4.1. Case 1: (Skull & Tissue Disconnected Model) 

The largest object image, I_BIG, already represents the 

tissue region. Thus, no additional steps are required to 

segment the tissue region if the skull's connected status is 

zero. It needs only the following pre-processing steps to 

leverage the tissue section's segmentation quality. 

 Morphological filling process. 

 Morphological hole-filling process. 

 Morphological closing process. 

 Morphological background filling process. 

Morphological filling is employed in the image I_BIG to 
fill the isolated interior pixels, and the output is noted as 

I_MF, which is shown in Figure 4(d). The I_MF image has 

undergone the morphological hole-filling process to fill the 

holes, eliminating the island-like structures in the tissue 

region. The output is noted as I_MH and shown in Figure 

4(e). The morphological closing operation is progressed in 

the I_MH image to reduce the size of small background 

objects while maintaining the overall shape of the larger 

foreground objects. The 'disk' type structuring element with 3 

length diameter is utilized here to apply the closing 

operation. The output is noted as I_MC and shown in Figure 
5(f). Morphological filling is employed over the image I_MC 

to fill the background data by 1s. The background-filled 

image is noted as I_BF, and shown in Figure 5(g) shows the 

background-filled image. 

3.4.2. Case 2: (Skull & Tissue Connected Model) 

The middle range gray level binary image I_BMID is 

utilized here to separate the tissue region. The biggest object 

in the I_BMID image is found and stored as I_BIG. Assume 

a pixel [i,j] in the I_BIG image, and afterwards, a sequence 

of ten pixels in the left direction is taken out using Equation 

(11). 

       
  =     

     
 ,                                           (11)                                                                           

 

In Equation (10), the term         means the Left 

directional sequence of 10 pixels. The summing process is 

applied in         array, and the result is stored as  

       . The sequence of    pixels in the right direction is 

found using Equation (12).  
 

        
  =     

     
                                           (12) 

 

The summing process is applied in         
  array, and 

the results are stored as          . The sequence of    

pixels in the top direction is found using Equation (13). 
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  =     

     
                  (13) 

 

The summing process is applied in       
  array, and 

the results are stored as        . The sequence of    pixels 

in the bottom direction is found using Equation (14). 

       
  =     

     
                                               (14) 

The summing process is applied in        
  array, and 

the results are stored as         . 

The corresponding        pixel is considered the 
"connected pixel" in the course of the connective line of the 

skull and tissue if any of the four "sum oriented data" in any 

direction is less than the threshold value of 4. As a result, 

that pixel is changed to 0, which signifies the elimination of 

the connection between the tissue region and the skull. It can 

be described using Equation (15). 

    
   

 {

                            
                               

    
   

                                                 

                  (15)                                                           

 

The connection between the skull and tissue region is cut 

off during the entire procedure that corresponds to every 

single pixel. Afterwards, the connection-eliminated I_BIG 

image is processed by morphological operations such as 

image filling, holes filling, closing operation and background 

filling to refine the tissue image. 

The connection between the skull and tissue region is cut 

off during the entire procedure, corresponding to every pixel. 

Afterwards, the connection-eliminated I_BIG image is 
processed by morphological operations such as image filling, 

holes filling, closing operation and background filling to 

refine the tissue image.  

 

3.5. Skull Removal Process 

Equation (16)'s adding procedure is used to combine two 

images, such as     and     to create the binary tissue 

segmented image     . 

    
   

  {           
   

       
   

    

                                               
                       (16)                                                               

 

In Equation (15), the term '     'means the inverted 

form of       image. The adder image       is the final 

enhanced skull removed from the image.  

Equation (17) is used to create the final "intensity 

projected tissue segmented image" by projecting the input 

image's intensity information onto the       image's places of 

1s.  

   
   

 ={              
   

      

                                 
                                  (17) 

 

In Equation (17), the term       refers to the tissue-

segmented intensity image. Here, the intensity of the    

image is used to fill the tissue region, while zeros are used to 

fill the other spaces. Figure 5(h) and Figure 5(i) respectively 

exhibit the        and       images. Thus, the proposed SS-
FFM approach successfully makes the skull stripping 

process.  

4. Discussion and Analysis 
The proposed SS_FFM approach is analyzed using the 

three databases such as Kaggle Brain Tumor Image Dataset 

(KBTD_DS), Brain Images of Tumors for Evaluation 
Dataset (BITE_DS), and Figshare Brain Tumor Dataset 

(FBTD_DS). Figure 4 shows the sample images from the 

three databases. The first row in Figure 4 demonstrates the 

FBTD_DS database samples, the second row shows the 

BITE_DS database samples, and the third row depicts the 

KBTD_DS database samples. 

The three existing approaches listed below are used for 

analysis purposes. 

 Morphological Image Processing based Skull Stripping 

(SS_MIP)  

 Multistable Cellular Neural Networks based Skull 
Stripping (SS_MCNN) 

 3D U-Net based Skull Stripping (SS_UNET). 

Mean Square Error (MSE) analysis is used to assess the 

effectiveness of the proposed SS_FFM skull stripping 

procedure. By computing the error values, it evaluates the 

homogeneity property between the segmented and actual 

skull areas.  

 

 
Fig. 4 Demonstration of sample database images 
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Fig. 5 Mean Square Error (MSE) analysis chart 

The three existing approaches listed below are used for 

analysis purposes. 

 Morphological Image Processing based Skull Stripping 

(SS_MIP)  

 Multistable Cellular Neural Networks based Skull 

Stripping (SS_MCNN)  

 3D U-Net based Skull Stripping (SS_UNET). 

 

Mean Square Error (MSE) analysis is used to assess the 

effectiveness of the proposed SS_FFM skull stripping 
procedure. By computing the error values, it evaluates the 

homogeneity property between the segmented and actual 

skull areas. 

 

Figure 5 shows the MSE analysis results. The average 

MSE of SS_MIP, SS_MCNN, SS_UNET and the proposed 

methods are 0.4380, 0.3719, 0.2329 and 0.1182. The 

proposed SS_FFM method provides a lower MSE value of 

0.1182. Hence, it is declared the best skull-stripping method 

for the existing versions. The proposed method yields the 

lowest MSE value of 0.0934 for the BITE_DS database; 
therefore, the BITE_DS database is called the best supportive 

database for skull stripping. 

 

The FScore is a metric used for evaluating the 

effectiveness of image segmentation. FScore measure is 

influenced by the two parameters, Precision and Recall. 
 

Table 1. FScore analysis for skull segmentation 

Data 

base 
Image 

FScore 

SS_ 

MIP 

SS_ 

MCNN 

SS_ 

UNET 

Pro 

posed 

KBTD 

_DS 

KBTD1 0.932 0.948 0.963 0.974 

KBTD2 0.930 0.944 0.961 0.971 

KBTD3 0.931 0.946 0.962 0.973 

BITE 

_DS 

BITE1 0.931 0.947 0.962 0.974 

BITE2 0.932 0.948 0.964 0.976 

BITE3 0.933 0.949 0.965 0.977 

FBTD 

_DS 

FBTD1 0.929 0.944 0.961 0.973 

FBTD2 0.928 0.942 0.960 0.971 

FBTD3 0.930 0.945 0.962 0.975 

 
Fig. 6 Time-taken analysis 

Table 1 shows the FScore analysis for skull 

segmentation. The proposed SS_FFM method has the highest 

FScore value of 0.977 for the BITE_DS database. It proves 

the efficiency of the proposed method than the existing 

method. The average FScore values of the databases like 

KBTD_DS, BITE_DS and FBTD_DS corresponding to the 

proposed method are 0.9731, 0.9760 and 0.9734. This 

analysis ranks the BITE_DS database as the best supportive 

database, and it ranks the FBTD_DS database as the 

secondary best database. Time Taken (TT) analysis is 
depicted in Figure 6. This analysis is done based on 100 test 

images from each database.   
 

The proposed approach consumes less time when 

compared to the SS_MCNN and SS_UNET approaches. It 

consumes a little higher point in time than the least 

performance method, namely SS_MIP. However, the 

performance of the proposed method is much higher than the 

SS_MIP. Hence, the tiny time variation between the 

proposed and SS_MIP methods can be thought of as an 
acceptable one. Therefore, it can be spelt that the proposed 

SS_FFM method absorbs a reasonable time for skull 

segmentation. The overall time consumption of the proposed 

approach is 21.5 sec; meanwhile, the next-best method, 

namely SS-UNET, occupies 39.96 sec for segmenting the 

skull region. The proposed method reduces the time 

consumption by 46.19% compared to the second-best SS-

UNET method. 
 

The PSNR metric determines the similarity between the 

segmented and ground-truth images.  
 

 
Fig. 7 PSNR analysis chart 
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Table 2. Segmentation Accuracy analysis 

Methods 
Segmentation Accuracy (%) 

KBTD-DS BITE-DS FBTD-DS 

SS_MIP 93.41 93.96 93.68 

SS_MCNN 94.77 95.32 95.08 

SS_UNET 96.60 97.10 96.89 

SS_FFM 97.92 98.48 98.23 

 

 
Fig. 8 Performance ranking analysis 

Figure 7 depicts the PSNR analysis chart. The proposed 

SS_FFM method achieves the highest PSNR than the 

existing method. The PSNR value for the proposed SS_FFM 

method is 58.427 db, the highest. Average PSNR results 
corresponding to FBTD-DS, BITE-DS and KBTD-DS are 

57.285, 58.106 and 57.081. The BITE-DS dataset is noted as 

the best dataset to prop up the skull-stripping methods due to 

its highest average PSNR value of 58.106. 

The performance of skull stripping for the proposed and 

existing method is examined using the segmentation 

accuracy. 

Table 2 exhibits the segmentation accuracy evaluation. 

The average segmentation accuracy for the proposed and SS-

UNET methods is 98.21% and 96.86%; hence, the proposed 

approach is honored as the top, and the SS-UNET method is 
noted as the next-best approach. The proposed method 

improves the segmentation accuracy by 1.39% compared to 

the next-best method, namely SS-UNET. 

Figure 8 shows the performance ranking analysis chart. 

The rank is allocated based on the performance efficiency in 

MSE, PSNR, FScore and segmentation accuracy. The 

proposed SS_FFM method is determined as the best method 
for skull segmentation, and therefore, it has an index value of 

4.   

The proposed work solves the issues of the existing 

methods, such as high time consumption and less accuracy. 

Moreover, it is a reliable work in brain skull stripping. It 

solves the high hardware conversion cost issue due to its less 

complex architecture. It also solves the tissue segmentation 

problem when interconnected between the skull and tissue 

regions.  
 

5. Conclusion 
This paper develops a new skull-stripping algorithm to 

segment the brain skull region of MRI images. The main 

contribution of this work is the FHECE algorithm, which can 

enhance the contrast of the brain MRI image. The proposed 

SS_FFM method generates top-grade performance quality in 

skull segmentation and robustness against scaling, accuracy, 

and time complexity. Standard analytic metrics prove the 

efficiency of the proposed method in terms of segmentation 

accuracy, FScore, time taken, etc. The SS_UNET method is 

noted as the second-best for skull segmentation. This 

analysis is evidence for the best support of the BITE_DS 

database than the other two databases. The average 
segmentation accuracy, FScore and time taken values for the 

proposed SS_FFM method are 98.21%, 0.974 and 21.5 sec, 

respectively, whereas those metrics for the next-best method 

are 96.86%, 0.962 and 39.96 sec. When compared to the 

existing methods, the proposed SS_FFM method is stated as 

the best method for tissue removal and skull segmentation. 
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