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Abstract - This paper addresses the critical need to achieve consistently stabilized output power in solar Photovoltaic (PV) 

systems, which is achieved through the implementation of Maximum Power Point Tracking (MPPT) mechanisms. Recent 

research findings consistently highlight the superiority of MPPT controllers employing Artificial Intelligence (AI) techniques 

over traditional MPPT methods. In response, this study proposes a novel approach that integrates Machine Learning (ML), 

specifically a Support Vector Regression (SVR) MPPT controller. The core objective is to rigorously benchmark the 

effectiveness of the suggested ML-based SVR MPPT controller against well-established AI-based MPPT counterparts. This 

comparative analysis spans vital performance indicators, including Mean Efficiency (ME), Settling Time (Ts), Rise Time (tr), 

Peak Time (Tp), and Percentage Overshoot (PO). Through meticulous investigation, this paper not only contributes to the 
ongoing evolution of modern MPPT techniques but also offers intricate insights into the distinct advantages of AI-based and 

ML-based strategies in significantly enhancing the overall performance and adaptability of MPPT controllers. This analysis 

employs a single junction Gallium Arsenide (GaAs) solar cell known for its elevated efficiency in constructing a 2KW solar 

panel. Additionally, an optimized DC-DC boost converter is integrated into the setup. The SVR tool is trained and tested using 

diverse temperature and irradiance data sets to detect the PV panel’s maximum power and voltage under specific conditions. 

The optimum DC-DC boost converter’s Duty cycle (D) control for MPPT is made by the detected values from the SVR 

algorithm. An energy-efficient GaAs cell-based PV system is enabled using the proposed ML-based SVR MPPT controller, 

which forces the PV panel to operate the detected Maximum Power Point (MPP). The proposed SVR algorithm offers better 

stability and operates at 96.6% of mean efficiency, irrespective of climatic changes. This work is further extended for 

comparison with Perturb and Observe (P&O) and Fuzzy Logic Control (FLC) to evaluate the effectiveness of the proposed 

work. 

Keywords - Artificial Intelligence, Efficiency, Machine Learning, MPPT, Support Vector Regression, GaAs. 

1. Introduction 
Global emissions of carbon dioxide from the burning of 

fossil fuels range a radical level after a few decades. So, 

developed countries have started investments to replace coal 

with renewable energy resources [1].  The most advanced in 

renewable energy resources is photovoltaics, which uses 

semiconductors to convert solar radiation into electricity. 
Researchers were seriously concentrating on increasing the 

efficiency of solar panels by considering the economic 

factor. MPPT system is an essential tool in photovoltaics to 

track the maximum PV power at all times, irrespective of 

climate changes. Several MPPT technologies are available in 

the PV market, each having its own merits and demerits. The 

most familiar traditional MPPT methods, such as P&O, 

incremental conductance, constant voltage, and short circuit 

current, are used. The AI-based MPPT controllers such as 

Fuzzy Logic Control, Artificial Neural Network control and 

ANFIS are listed in the literature. Recently, Machine 

learning-based MPPT controllers such as reinforcement 

learning, Random Forest methods, Decision Trees [14], and 

Support Vector Regression (SVR) algorithms [15] have been 

the most compatible methods to handle non-linear PV data. 

Machine Learning algorithms increase the accuracy and 

speed of the MPPT controller [2]. 

The new technologies must overcome the older methods 
of MPPT control in view of studying the past, updating the 

present and estimating future requirements. Recently, 
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regression techniques have been highlighted as an optimal 

tool for MPPT control because of their higher convergence 

stability and fast computing when compared with older meta-

heuristic techniques [3]. P&O [12] and the Incremental 

Conductance method [11] are the most familiar traditional 

MPPT controls. However, the settling time is too long during 
the dynamics in climate and also for sudden changes in load 

voltage. Also, the Artificial Intelligence (FLC and ANN) 

based MPPT controllers resolved the issues faced in 

traditional converters. However, the accuracy of FLC 

depends on the number of linguistic variables, number of 

iterations, and rule base selection, and it needs expert human 

participation to decide all these mandatory works. Similarly, 

the performance of ANN depends on the selection of layers 

and also neurons [4]. 

The SVR algorithm is highly sensible to predict the 

unknown parameters (IMPP & VMPP) from the known data set 

irradiance (IG), real temperature (Tr), PV voltage (Vpv) and 
PV current (Ipv). SVR algorithm trains (75%) and tests (25%) 

the input known data set and converts it to a model database 

to predict the unknown output parameters. The converter is 

the most essential tool in a Photovoltaic system to operate it 

in an MPP irrespective of climate changes. The selection of 

converter depends on the output voltage requirements such as 

DC-DC buck, DC-DC boost, and DC-DC buck-boost, which 

are listed in the literature. The single junction higher 

efficiency Gallium Arsenide (GaAs) solar cells are utilized to 

construct the 2KW PV panel with an optimum DC-DC boost 

converter to control the Duty cycle (D). The DC-DC boost 
converter is carefully designed by considering the dynamics 

in climate conditions, load line criteria and Resistance at 

MPP [6]. GaAs solar cells generate up to 1.072V at Standard 

Test Conditions under air mass 1.5 global spectrum (Area = 

100cm2 and irradiance = 1000W/m2, 25°C). It consumes less 

space because of its higher PV voltage, and it gains 

efficiency up to 29.1% [5]. 

The research gap is defined by the selection of higher 

efficiency thin-film GaAs solar cells, the modified DC to DC 

boost converter and SVR MPPT control. The GaAs solar 

cells-based PV systems have been introduced and 

successfully implemented by Atla devices (USA), but they 
are not familiar with the global PV market [19]. In this work, 

more importance is given to increasing the efficiency of the 

overall system in the selection of solar cells and MPPT 

controllers. Also, the existing traditional MPPT methods, 

such as P&O [18] and Incremental Conductance [18], exhibit 

prolonged settling times during dynamic climate conditions 

and sudden changes in load voltage. AI-based controllers 

(FLC and ANN) are struggling with some of the challenges, 

like introducing complexities related to the determination of 

linguistic variables [13, 20], iterations, and rule bases, and 

requiring expert human intervention. This reliance on human 
expertise leads to a constraint on the adaptability and 

autonomous decision-making capabilities of these systems.  

The study emphasizes the importance of choosing an 

appropriate converter, particularly highlighting the careful 

design considerations related to climate dynamics, load line 

criteria and resistance at the MPP, as shown in Figure 8. The 

research concentrates on the potential findings using GaAs 

solar cell and Machine Learning SVR model to enhance 
accuracy, reduce settling time, minimize output parameter 

errors, and increase overall system efficiency. The work has 

been divided and organized into sections; section 2 includes 

PV system specifications and optimum DC-DC boost 

converter, section 3 provides the methodology and working 

procedure of SVR algorithm MPPT controller for PV system, 

section 4 deals with simulation and results discussion with 

the comparative analysis of P&O, FLC and SVR algorithm 

based MPPT control for a Photovoltaic system. The 

conclusion of this work is summarized in section 5. 

2.  Insight of Solar PV System  
The higher efficiency GaAs solar cells are used to 

construct 2KW solar panels, as given in Table 1. The 

Machine Learning-based SVR model is proposed to control 

the Duty cycle of the optimum DC-DC boost converter. 

2.1. Depiction of GaAs Solar Cell-Based PV Panel 

Over the past few years, much research has been 

conducted in developing the micro-thin film solar cell 

because of its reduced weight, which is particularly 

important for space applications. Thin film light-absorbing 

semiconductor solar cell structures such as Cadmium 

Telluride (CdTe), amorphous Silicon (a-Si), Copper Indium 
Diselenide (CIS) and Gallium Arsenide (GaAs). The 

competition between silicon and gallium arsenide increases 

in terms of lightweight, flexibility and efficiency [7].  

Among the other light-absorbing semiconductors, the 

GaAs come from the III/V compound semiconductor family, 

leading the global solar system market because of their 

unbeatable efficiency. The scientific model of GaAs solar 

cells is developed using a single diode equivalent circuit 
model, and it is used to obtain the performance 

characteristics for different temperatures, irradiance levels, 

series resistance, and shunt resistance values. The 

mathematical modelling of the semiconductor materials is 

done using the MATLAB platform in m-file. The practical 

one-diode equivalent circuit model of solar cells is shown in 

Figure 1. 

 

 

 

 

 

 
 

Fig. 1 Equivalent circuit model of a solar cell 

Ideal Cell 

I
L
 I

d
 I

sh
 

R
sh
 

R
s
 

I 

V 



S.V. Kirubakaran & S. Singaravelu / IJECE, 11(1), 39-52, 2024 

41 

The generation of internal current within the solar cell is 

Photon current (IL) or light-generated current, and this 

current does not depend on the open circuit voltage. 

Applying Kirchhoff’s current law to the node ‘a’, the PV cell 

current (I) will be given in Equation (1).  

I = Isc = Iph − Io (e
q(V+I∗Rs)

nkT − 1) −
V+(I∗Rs)

Rsh
 for Voc = 0 (1) 

The open circuit voltage solar cell is a vital function of 
temperature, and it depends on the nature of the 

semiconductor material. The open circuit voltage of a solar 

cell at zero cell current is given in Equation (2), 

V = Voc =
nkT

q
ln (

IL

Io
+ 1) for Isc = 0  (2) 

This single-cell model is utilized to construct a 2KW PV 

array, and then its performance is evaluated under different 

temperature and irradiance levels. It is observed that single 

junction GaAs PV array develops 2025W for the cell 

description given in Table 1.  

Table 1. PV panel specifications 

S. No. Parameters Range 

1 Open Circuit Voltage 1.072V 

2 Maximum Cell Voltage 0.964V 

3 Number of Cells per Module 72 

4 Open Circuit Voltage/Module (Voc) 77.18V 

5 Short Circuit Current/Module (Isc) 3.241A 

6 Voltage at MPP/Module (Vmpp) 69.40V 

7 Current at MPP/Module (Impp) 2.916A 

8 Number of Parallel Strings 10 

9 Number of Series Modules 1 

10 Array Open Circuit Voltage (Voc) 77.18V 

11 Array Short Circuit Current (Isc) 32.41A 

12 Array Voltage at MPP (Vmpp) 69.40V 

13 Array Current at MPP (Impp) 29.16A 

14 Array Power at MPP (Pmpp) 2024W 
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Fig. 2 V-I & P-V characteristics of GaAs cell-based PV array (a) Irradiance, and (b) Temperature. 

Notably, the single GaAs solar cell can generate a 

maximum voltage of 0.964V extracted from solar cell 

efficiency tables-version 60 [5]. The open circuit voltage of 

the GaAs cell is 1.072V, and its efficiency is more than 29%, 

as proved by Atla devices [5]. GaAs solar cells outperform 

all other single-junction semiconductor materials like 

germanium, monocrystalline silicon, perovskite, and organic 

cells. The temperature coefficient is an essential parameter in 

the context of solar Photovoltaic (PV) materials and their 
efficiency.  

It represents the percentage change in the efficiency of a 

solar cell for each degree Celsius change in temperature from 

a standard reference temperature, which is often 25 degrees 

Celsius. Solar cells such as Silicon (Si) and germanium are 

typically experiencing a decrease in efficiency as the 

temperature increases. It is essential to mention that GaAs 

are not entirely resistant to all environmental factors [19]. 

The detailed electrical behaviour of GaAs solar cell 

constructed 2KW PV array is observed for different 

temperatures and irradiances, which are shown in Figure 2. 

2.2. Depiction of Optimum DC-DC Boost Converter 

Ripple in load side parameters, slow response for 

dynamics in climate changes and change in load current are 

the major challenging issues in the design of voltage-based 

DC-DC converters for a PV system. The DC-DC boost 

converter is the most critical component in renewable energy 

systems, which steps up the low input voltage level into the 

desired higher voltage level.  

The optimum DC-DC boost converter is used by 

considering the unpredictable meteorological conditions and 

reducing the output ripples by employing an inductor and 

capacitance-based filter [6]. Input capacitance (CIN), output 
capacitance (CO) and inductance (L) are shown in Equations 

(3), (4), & (5),  

CIN =  
4Vmpp(STC)Dmpp(STC)

∆VIN(STC)RT(STC)fs
 =   2.83e − 3F (3) 

CO =  
2VO(STC)Dmpp(STC)

∆VO(STC)ROfs
 =   3.49e − 5F (4) 

L =  
Vmpp(worst)Dmpp(worst)

2∆IO(worst)fs
 =   1.12mH (5)  

The values of input and output capacitances are 

calculated by using STC parameter values. Similarly, the 

inductor value was calculated using worst-condition 

parameter values [6]. 

2.3. P&O Method 

This algorithm is defined from the perturbation of the 
system by the increase/decrease in reference PV array 

voltage acting directly on the Duty cycle of the boost 

converter, then observing the effect of the output power of 

the PV panel [8]. Then, the present value of the power P(k) 

panel is greater than the previous value P(k-1). Then, it 

retains the same direction of the previous disturbance, or we 

reverse the disruption of the previous cycle, as shown in 

Figure 3. 

2.4. Fuzzy Logic Method 

The fuzzy logic system uses linguistic variables instead 

of numerical values, and it is the most active tool in the 
research area. Compared to other conventional techniques, 

FLC provides solutions for complex indefinite difficulties 

which human operators can control without any 

mathematical calculations [9]. A fuzzy logic controller has 

two inputs, namely, error e(k) and changes in error ∆e(k), 

and it is given by, 

 𝑒(𝑘) = (𝑉𝑟𝑒𝑓 − 𝑉𝑘)  

∆𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1)   
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Fig. 3 Flowchart for P&O algorithm 

The first step in the FLC design is to define the 

membership functions for the input values. In this paper, 

seven fuzzy levels are defined by the following fuzzy set 

values for error, change in error and output values, as shown 

in Figures 4, 5, & 6, respectively. The higher number of 

fuzzy levels increases the input resolution, and triangular 

membership functions are used in this work because of their 

simplicity [10]. The heuristic control rules align the fuzzy 
output with the fuzzy inputs, which are derived through an 

inspection of the system’s behaviour. The FLC utilizes the 

rule table given in Table 2. In this study, meticulous 

consideration is given to the selection of the solar cell for its 

elevated efficiency.  

At the same time, the choice of the DC-DC converter is 

based on its ability to perform optimally under both 

favourable and adverse climate conditions. Subsequently, the 

subsequent section focuses on the implementation of the 

Support Vector Regression (SVR) algorithm to enhance the 
overall performance of the PV system. 

 

 

 

 

 

 

 

Fig. 4 Error membership function 
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Fig. 5 Change in the error membership function 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
Fig. 6 Output membership function 

Table 2. Fuzzy truth table 

Variable NH NM NS Z PS PM PH 

PH Z PS PM PH PH PH PH 

PM NS Z PS PM PH PH PH 

PS NM NS Z PS PM PH PH 

Z NH NM NS Z PS PM PM 

NS NH NH NM NS Z PS PM 

NM NH NH NH NM NS Z PS 

NH NH NH NH NH NM NS Z 

 
2.5. Overview of SVR Model 

The SVR algorithm forms the foundation of the MPPT 

controller in the PV system. SVR is a machine learning 

technique used to predict continuous output values, making it 

suitable for optimizing the PV system’s power output [16]. 

SVR proves valuable when provoked with intricate 

connections between input parameters and output results, 

especially in situations marked by non-linear relationships. 
Its objective is to expose a function that effectively translates 

input features into continuous output values, all the while 

minimizing prediction errors within a specified range.  

SVR operates by identifying a hyperplane within a 

complex and high-dimensional feature space that optimally 

aligns with the training data. SVR goes beyond mere error 

reduction, which introduces a tolerance tube around the 

hyperplane and allows for a permissible level of error within 

this spatial constraint. 
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The potential applications of SVR in MPPT lie in its 

capability to handle complex and non-linear relationships 

between input constraints (such as solar irradiance 

temperature) and the corresponding power output of a 

photovoltaic system. Traditional MPPT methods often rely 

on simplified models or heuristics that might not capture the 
intricate relationships between various parameters accurately. 

SVR-based MPPT algorithm can capture these complex 

relationships and provide more accurate forecasts of power 

output.  

By training an SVR model with predicted data that 

includes various environmental conditions, the SVR 

algorithm-based MPPT controller can predict the power 

output based on real-time measurements of input parameters. 

This prediction can manage the adjustment of the system’s 

operating point to maximize power point in any situation 

with rapidly changing conditions, shading, or partial cloud 

cover. The SVR basic equation is formed with a training 
dataset with the input variable as ‘X’ and the response as ‘y’. 

The assignment of SVR is to discover the regression function 

f(x), which predicts the y values continuously based on the 

input dataset X. The basic SVR equation is given in Equation 

(6). 

𝑓(𝑥) =  ∑ 𝑁𝛼𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏𝑖=1   (6) 

Where, N represents the count of training instances in 

the dataset, ∝i are the Lagrange multipliers associated with 

each training sample, xi is the input features of the training 

samples, K (x, xi) is the kernel function that computes the 

similarity between the input features x and the training 

sample xi in a transformed space and b is the bias term.  

The Lagrange multipliers ∝i are found by solving the 

dual optimization problem that involves maximizing a dual 

objective function subject to certain constraints, typically 

based on the margin and the epsilon-insensitive loss [17]. 

The selection of the kernel function is denoted as K (x, xi), is 
contingent upon the nature of the problem at hand and may 

include options such as linear, polynomial, radial basis 

function, and sigmoid, among others. The kernel function is 

used to implicitly transform the input features into a higher-

dimensional space, allowing SVR to capture complex 

relationships between features and target values. 

3. Methodology 
There are three steps involved in this proposal of work. 

The higher efficiency GaAs solar cell is utilized for 

constructing the two-kilowatt solar array, carefully designed 

(considering best and worst irradiance and temperature) DC-

DC boost converter is used to transform the PV power (PPV) 

to load power (POUT), and finally, the ML-based SVR MPPT 

algorithm is applied to track the power at MPP always closer 

to predicted values. The PMPP always depends on the 

irradiance (IG) and real temperature (Tr), and so the SVR uses 

IG and Tr as input features ‘X’ to guess the Voltage at 

Maximum Power Point (VMPP) Current at Maximum Power 

Point (IMPP). The predicted values of VMPP and IMPP are used 

to calculate reflected input resistance (RT), which is identical 

to Resistance at MPP (RMPP)at an optimized value of the DC-

DC converter’s Duty cycle (D). 

3.1. Data Collection and Pre-Processing 

Data collection involves gathering information about the 

photovoltaic system’s performance under various 

environmental conditions. This data serves as the training, 

testing and justification dataset for the SVR algorithm. The 

parameters to be collected for training and testing are 

irradiance, temperature, PV voltage & current. Raw data 

collected from the PV system may contain noise, outliers, 
and irregularities that can affect the SVR model’s 

performance. Pre-processing steps are necessary to enhance 

data quality and model accuracy. They are data cleaning, 

feature selection, feature scaling, data scaling and data 

augmentation. 

3.2. Selection of ML Tool and Input Features 

The solar panel parameters (IG, Tr, VMPP & IMPP) are 
utilized to train, test and validate the proposed model. 

MATLAB/SIMULINK platform is used to develop the SVR 

model to be implemented for MPPT control of the PV 

system.  

3.3. Kernal Selection and Model Training 

Support Vector Regression is a predictive modelling 

algorithm that aims to find a function that best represents the 

relationship between input features and continuous output 
values. Unlike traditional regression, SVR focuses on 

minimalizing the prediction error while allowing a certain 

margin of tolerance. The critical components of SVR are the 

Kernal function, support vectors, Epsilon-tube and 

regularization Constant (C).  

The steps to implement the SVR algorithm for MPPT 

control in the PV system are data preparation, Kernal 

selection, feature scaling, parameter tuning, model training, 
prediction and MPPT adjustment. Kernal selection depends 

on the characteristics of the dataset selected for the particular 

application. The standard kernels are linear, polynomial and 

Radial Bias Function (RBF). Train the selected SVR model 

using a training data set that finds a best-fit data function to 

minimize the deviation. 

3.4. Hyperparameters Tuning and Model Evaluation 

Hyperparameter tuning is done to optimize the 

performance of the trained SVR model by adjusting the C, 

Epsilon and RBF kernels. Random search or grid search 

methods are the methods available for this optimization. 

Random search is adopted in this work because it tries with 

all possibilities of combination. After training, the SVR 

model is evaluated using a cross-validation method, which 

generalizes the model to obtain unseen data. 
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Fig. 7 Workflow of proposed SVR algorithm 

The trained SVR model provides crucial factors to 

assess its performance using appropriate metrics such as 

Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE) and R-squared.  

These metrics quantify the accuracy and reliability of the 

SVR predictions and their effectiveness as an MPPT 

controller. In this work, the SVR algorithm is implemented 

as the core of the MPPT controller; the PV system can 

intelligently adjust its operating point to track the MPP, 

enhancing overall energy efficiency and system performance. 

The detailed workflow of the proposed SVR algorithm is 

shown in Figure 7. 

3.5. MPPT Control Parameters 

The Duty cycle is the key parameter to operate the DC-

DC boost converter closer to the maximum power point. This 

Duty cycle value is decided by RT and load resistance (RL). 
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Fig. 8 MPPT using RT for various irradiances 

 

 

 

               

 

 

 

 

                                                                            

 

 

                                                                                                                                                       

 
 

Fig. 9 Block diagram of proposed SVR MPPT-based PV system 

Apply D=1 in Equation (7), 𝑅𝑇 = 𝑅𝐿(1 − 1)2 = 0. Now, 

the reflected input resistance (RT) is approximately lying 

along the y-axis at point ‘a’, as shown in Figure 8, which 

means that the MPP is approximately closer to the short 
circuit operating point [6].  

Similarly, apply D = 0. In Equation (7), we get 𝑅𝑇 =

𝑅𝐿(1 − 0)2 = 𝑅𝐿. Now, the reflected input resistance (RT) is 

approximately lying along the x-axis at point ‘b’, as shown in 

Figure 8, which means that the MPP is approximately closer 

to the open circuit operating point. The reflected input 

resistance can lie in any region across the two extreme points 

(D = 1 and 0), as shown in Figure 8. The reflected input 
resistance (RT) at MPP and Duty cycle at maximum power 

point (DMPP) is calculated as shown in Equations (8), and (9). 

The value of RT is calculated by using the SVR-trained 

model output values of VMPP & IMPP.  

𝑅𝑇 = 𝑅𝑀𝑃𝑃 =
𝑉𝑀𝑃𝑃

𝐼𝑀𝑃𝑃
 (8) 

Dmpp = 1 − √
RT

RL
  (9) 

The graphical block diagram of the ML SVR algorithm-

based MPPT controller for GaAs solar photovoltaic system 

using an optimum DC-DC boost converter is shown in 

Figure 9. 

4. Simulation Results Analysis of Proposed ML 

SVR MPPT Model 
The proposed SVR model for MPPT control is trained, 

tested and evaluated with two input parameters (IG & Tr) on 

SRV-I and the predicted responses (VMPP & IMPP) on SVR-II. 
Cross-validation (5 folds) is adopted to protect against data 

overfitting during the partition of data sets in folds and 

estimate accuracy on each fold. The SVR model is trained 

using a Linear Support Vector Machine and by linear kernel 

function.  

The training results are observed as RMSE being 

0.34381, MSE being 0.11821, and R-squared being 0.99, 

where the technical parameters of the SVR model are 

automatically adjusted to obtain better training results. The 

true and predicted data of the proposed SVR model is shown 

in Figure 10.  It is clear that the prediction is more accurate 
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with less error. The presence of residual of both trained and 

tested data on SVR-I and SVR-II levels are shown in Figures 

11, and 12. It is detected that the residuals of SVR-I (VMPP) 

lie in the range of -0.6 to 0.6, whereas the residuals of SVR-

II (IMPP) lie in the range of -30 to 30. The expected voltage at 

the maximum power point exists with minimum residuals, as 
indicated in Figure 11, and it is similar to the current at MPP. 

The data set for (IG, Tr, VMPP & IMPP) is generated by using 

specific MATLAB code. This data set is utilized in the 

training and testing of the SVR model. The PV voltage (VPV) 

& power (PPV) load voltage (VOUT) &  power (POUT) 

developed by SVR model-based MPPT control at Standard 

Test Conditions (STC) by using an optimized DC-DC boost 

converter is shown in Figure 13.  

The observed responses are more accurate and stable. 

The mean efficiency of the proposed SVR model at STC and 

in dynamic climate is shown in Figure 14. Also, the mean 

efficiency of the PV system is disturbed during the transition 

of minimum irradiance (at instant 1 sec from 400 w/m2 to 
600 w/m2). The magnitude of output power is slightly higher 

than the PV power because of internal converter losses. 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

Fig. 10 True and predicted data of the proposed SVR model 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 
 
 

Fig. 11 Trained and tested response on SVR-I level 
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Fig. 12 Trained and tested response on SVR-II level 

 
 

 

 
 

 

 

 
 

 

 
 
 

 

 
 
 

Fig. 13 PV and load (voltage & power) outcomes at STC using the SVR model 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

Fig. 14 Mean efficiency at STC and dynamic climate using the SVR model 
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To assess the effectiveness of the projected SVR model, 

the Photovoltaic (PV) system is subjected to dynamic 

climatic conditions, as detailed in Table 3, across varying 

time intervals. During each time segment, irradiance and 

temperature values are systematically randomized while 

maintaining other technical parameters constant. The PV 
voltage (VPV) & power (PPV) load voltage (VOUT) & power 

(POUT) developed by SVR model based MPPT control under 

dynamically varying input parameters are shown in Figure 

15.  

The study reveals a notable observation that the VMPP 

remains consistently stable and accurate, irrespective of 

alterations in climatic conditions, distinguishing it from other 

MPPT controllers. The PV power exhibits a substantial rate 

of fluctuation in response to alterations in irradiance levels 

(at instants 1, 15, and 2 seconds), as depicted in Figure 15 

and aligned with the data presented in Table 3. In contrast, 

minimal changes are observed in PV power due to variations 

in temperature (at an instant 0.5 seconds). 

The P&O MPPT algorithm is used to control the Duty 

cycle for the optimum DC-DC boost controller, as discussed 

in section 2.3. The outcomes (PV voltage and power) of the 

P&O MPPT controller have been compared with the SVR 

model, as shown in Figure 16. It shows that there is an 

oscillation in both voltage and power to track the maximum 

point in the case of P&O MPPT control. 

Table 3. Variable inputs for PV panel at different intervals 

Time (sec) IG (W/m2) Tr (°C) 

0 to 0.5 400 15 

0.5 to 1 400 35 

1 to 1.5 600 20 

1.5 to 2 800 25 

2 to 3 1000 25 

 
 

 

 

 

 
 

 

 
 

 

 
 

 
 

Fig. 15 PV and load (voltage & power) outcomes under dynamic climate using SVR model 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Fig. 16 PV voltage & power comparison of the SVR model with the P&O method 
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Fig. 17 PV voltage & power comparison of SVR model with FLC method 

Table 4. Numerical analysis of MPPT controllers 

MPPT  VPV (V) VOUT (V) PPV (W) POUT (W) Tr (ms) Ts (ms) ME (%) 

SVR Model 68.6 434 2021 1968 9.12 2.97 96.6 

FLC 68.3 432 2018 1948 4.96 4.47 95.2 

P&O 684 431 2015 1940 4.33 18.02 94.5 

 
Fuzzy Logic Control comes from the AI family, which 

tracks the MPP in dynamic climates in a better manner than 
the existing traditional MPPT controllers. FLC is 

straightforward to handle, and it can effectively deal with 

non-linear PV systems. Its operation is based on 

fuzzification, fuzzy rule base, inference method and de-

fuzzification, as discussed in section 2.4. The outcomes (PV 

voltage and power) of the FLC MPPT controller have been 

compared with the SVR model, as shown in Figure 17. The 

responses of FLC are almost similar to the SVR model based 

MPPT controller. However, FLC emulates human-like 

decision-making based on linguistic rules. It uses fuzzy sets 

and linguistic variables to model uncertainty and imprecision 
in system behaviour.  

FLC generates control signals based on predefined fuzzy 

rules and membership functions. When dealing with SVR, 

the objective is to discover a model that optimally aligns 

with the training data, concurrently regulating the margin and 

minimalizing discrepancies. The MPPT technical outcomes 

are listed in Table 4. The SVR model achieves stable and 

accurate results with a high Mean Efficiency (96.6%), swift 

Settling Time (2.97 ms), and zero Percentage Overshoot 

(PO). It consistently attains the MPP, ensuring optimal 
energy conversion.  

FLC maintains a good Mean Efficiency (95.2%) and low 

Percentage Overshoot (PO) while settling slightly slower 

(4.47 ms) compared to the SVR model. P&O exhibits a 

minor oscillation reflected by a low Percentage Overshoot 

(1.33%). However, it takes longer to settle (18.02 ms) and 

has a lower Mean Efficiency (94.5%). As a whole, the 

proposed SVR model excels in terms of efficiency, stability, 

and response time, making it a promising choice for 

enhanced photovoltaic power generation across diverse 
conditions. 

5.  Conclusion 
In conclusion, this research introduces a precise and 

stable MPPT technique employing a Machine Learning-

based SVR model, which is integrated with an optimized 

DC-DC boost converter for a GaAs solar-cell based PV 
system. The primary objective of this study is to enhance the 

overall efficiency of the PV system by carefully selecting the 

solar cell, enhanced DC-DC converter and MPPT controller. 

The SVR model-based MPPT controller achieves an 

impressive mean efficiency exceeding 96%, attesting to its 

stability across Standard Test Conditions (STC) and varying 

climatic scenarios. The comprehensive investigations and 

comparisons with P&O and FLC enabled MPPT methods 

have been conducted under both STC and dynamic climatic 

conditions that positively underscore the superior stability, 

accuracy and efficiency of the proposed SVR model. It is 

obvious that Machine Learning-based MPPT control 
strategies are poised to impact future research in renewable 

energy significantly and hold substantial promise within the 

global photovoltaic market. 
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