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Abstract - Wireless Sensor Networks (WSNs) are growing, improving human well-being, and being used for medical and 

military operations has highlighted the importance of data security. This is essential to avoid data handling, and thus, trust 

administration is an excellent way to handle these concerns by establishing Sensor Node (SN) trust associations. The Adapted 

Fire Hawk Cluster-based Novel Trust Coati Optimal Routing (AFHC-NTCOR) technique considers node energy restrictions to 

improve WSNs network security. The methodology also uses the Fire Hawk Optimizer (FHO) algorithm for clustering that 

selects Cluster Heads (CHs) from candidate SNs. They are chosen based on their energy reserves and trustworthiness stages, 

which must be above the network’s averages. AFHC-NTCOR uses a trustworthy routing algorithm to determine inter-cluster 

routing paths. Information is sent from CHs to the Base Station (BS) via these pathways. With the Coati Optimization (CO) 

algorithm, the suggested route construction strategy considers energy and dependability. The Network Simulator version 2 

(NS2) platform compares the AFHC-NTCOR protocol to other safe routing systems in energy consumption, data transfer rate, 
detection ratio, packet loss frequency, accuracy, and latency. This research shows that AFHC-NTCOR surpasses other 

methods in usefulness and effectiveness. 

Keywords - WSN, Clustering, Trust management, Network security, Modified fire hawk, Coati Optimal Routing, Network 

lifetime. 

1. Introduction 
WSNs consist of a multitude of sensors that are 

distributed over an extensive geographical region. The users 

assert their responsibility for determining the setting and 

employ a streamlined, decentralized approach to examine the 

gathered data [1, 2]. Due to their multifunctionality, these 

devices possess utility across various domains, including 

military applications, wherein they can be employed to 

identify and orchestrate the movements of adversary units. In 

addition to their application in agriculture monitoring, 

industrial product control, and the detection of chemical and 

nuclear radiation and biological risks [3, 4], they are also 

utilized.  

WSNs have proven valuable in various domains, 
including smart homes, transportation systems, urban 

environments, and the preservation of historic and 

commercial landmarks [5, 6]. The nodes inside WSNs are 

typically equipped with batteries that are not readily 

replaceable or rechargeable. The nodes necessitate a 

substantial amount of electricity to effectively carry out their 

tasks of detecting, processing, and transmitting 

environmental data.  

According to previous research studies [7, 8], the energy 

consumption associated with data transit is more significant 

than data processing or sensing. Hence, energy management 

plays a critical role in WSN. Clustering emerges as a 

pragmatic and productive approach to attaining this 

objective.  

The utilization of a clustered topology [9] contributes to 
the enhancement of energy efficiency and the preservation of 

transmission bandwidth. In this architectural framework, the 

network is partitioned into many clusters, wherein distinct 

SNs are assigned responsibilities inside each cluster. 

Selecting CHs in this scenario presents a challenging 

undertaking. Hence, exploring alternative approaches, such 

as meta-heuristic algorithms, is imperative to tackle this 

difficulty effectively.  

Cluster-based routing systems encompass both clusters, 

such as inter and intra-communication. Enhancing the 

durability of the network can be attributed to the solutions’ 
scalability and Energy Efficiency (EE). The topic of cluster-

based routing in WSNs has garnered significant scholarly 

interest in recent times.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Flow diagram of proposed model 

Nevertheless, further enhancements and modifications 

are required for these studies to address the unique 

challenges WSNs pose compared to their wired counterparts. 

Characteristics commonly associated with WSNs include 

limited resources, unpredictable connectivity, autonomous 
operations, and the absence of centralized control [10]. 

Figure 1 depicts a standard representation of a WSN 

setting. In this scenario, SNs are distributed around a specific 

geographical region to gather data on that area. The collected 

data, comprising various attributes, is received by a central 

BS or sink node. The transmission adheres to a 

predetermined trajectory consisting of discrete microsensor 

nodes. The underlying infrastructure facilitates the 

transmission process, which includes components like cloud 

computing. 

Hence, establishing secure WSNs poses a significant 

challenge in environments with elevated risks and a lack of 
security measures. Therefore, researchers must acknowledge 

the significance of assuring the data communication security 

mechanism. A conflict arises when attempting to strike an 

equilibrium between optimizing safety measures and 

minimizing energy value. From a particular perspective, the 

significance of devising secure protocols for SNs is 

comparable to establishing robust security mechanisms for 

the secure broadcast of data to the central BS.  

Nevertheless, deploying intricate security measures to 

guarantee secure data transmission is constrained for SNs 

owing to their restricted access to energy sources. In the 
context of developing protocols for WSNs, the establishment 

of a routing mechanism that is both reliable and resource-

efficient necessitates the integration of security measures 

alongside concerns for energy efficiency. Researchers have 

focused on cluster-based trusted routing systems to enhance 

security and efficiency. Extensive research has responded to 

the demand for a safe and productive routing solution in 

WSNs. Throughout history, many protocols have been 

devised with the primary objective of safeguarding the 

confidentiality of data during its acquisition and transmission 

[11]. Most of these protocols guarantee data security by 

utilizing established cryptographic techniques. 

Nevertheless, it is widely acknowledged that the efficacy 

of these conventional protocols is limited within the domain 

of WSNs, primarily due to their inherent characteristics that 

result in excessive consumption of vital resources of SNs, 
including memory, processing capabilities, and power supply 

[12]. Most of these protocols also operate under the 

statement that all nodes within the network will exhibit 

honesty and cooperation during data transmission [13]. The 

requirement for centralized key management poses 

significant challenges within the domain of WSNs, thereby 

hindering the effectiveness of conventional protocols in 

WSNs. Although considerable progress has been made in 

developing these methods, further improvement is still 

needed. 

1.1. Problem Statement 

Contemporary approaches to enhancing the security of 
data transmission are predicated upon trust-based protocols 

and reputation-based procedures. Nonetheless, a limitation of 

these solutions is their reliance on established routing paths 

for data. The occurrence of a non-functional node inside the 

network leads to delays, increased retransmissions, and the 

repetitive modernization of the routing methodology. These 

consequences have implications for trust and reputation-

based techniques.  

The circumstance has led to the development an 

excellent and adaptable routing technique that guarantees the 

protected dissemination of data packets. Trust- and 
reputation-based methodologies are utilized to overcome the 

constraints obligatory by the fixed-path data broadcast 

procedure. The broadcasting capabilities of WSNs can be 

enhanced by using the Opportunistic Routing (OR) protocol. 

Nevertheless, WSNs encounter a challenge regarding 

their broadcasting capabilities, which, although beneficial for 

opportunistic routing, can also lead to interference. This 

phenomenon occurs due to the potential for a defective or 

malevolent node inside the network to intercept a data packet 

that an SN is transmitting. These malignant nodes pose a 

significant risk to the functioning of the WSN and undermine 

its objectives. The security of WSNs can be compromised if 
malignant nodes can intercept data transmission inside the 

network. Trust-aware protocols have been proposed as a 

viable way to address this issue [14-16]. The OR routing 

technique exclusively employs nodes that have been assessed 

as trustworthy and reliable while excluding nodes that have 

been identified as faulty or unreliable. 

1.2. Research Contribution 

This study provides an overview of the current 

advancements in research and proposes a novel methodology 

for ensuring secure routing. Incorporating the finite energy 
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reserves of nodes in WSNs into the approach is anticipated to 

enhance network security. A novel approach known as 

AFHC-NTCOR is developed to reach the desired destination. 

The AFHC-NTCOR protocol employs trust-based 

methodologies and CO routing techniques to ensure data 

transfer security between the source and destination nodes. 
Furthermore, this study introduces a clustering technique that 

utilizes the Adapted FHO (AFHO) within the AFHC-

NTCOR framework.  

This approach facilitates the identification of nodes that 

can assume the role of CHs. A novel cost function is 

established to assess potential solutions in the clustering 

process. In summary, the AFHC-NTCOR system employs a 

reliable routing algorithm to establish inter-cluster routes, 

hence facilitating the broadcast of data from CHs to the BS. 

Based on the findings of the performance analysis, it can be 

concluded that the proposed schemes exhibited significantly 
superior performance correlated to the standard 

methodologies.  

The content of this manuscript is structured in the given 

order: The literature review commences in Section 2 and 

persists throughout the subsequent sections of the study. The 

details about the proposed approach are expounded upon in 

Section 3 of the publication, whereas the outcomes of the 

conducted tests and simulations are presented in Section 4. In 

Section 5, an analysis of the study’s results is presented, 

along with probable avenues for future research. 

2. Related Works 
This segment focuses on the discussion of cluster-based 

trust optimum routing-based techniques. In [17], a TBSIOP 

called Trust-Based Secure Intelligent OR Protocol was 

proposed. The protocol under consideration utilized three 

separate features of WSNs to compute the probability of a 
node being malevolent. The criteria used for trust 

computation include seriousness in legitimacy in 

acknowledgment, advancing data packets, and energy 

depletion. According to the trust factor computation, the 

relay selection method of the anticipated protocol effectively 

mitigates the assortment of malevolent nodes as relay nodes. 

The protocol under consideration was implemented on the 

list of forwarder nodes generated by the effective OR 

mechanism, which was under consideration subjected to 

simulation and compared with the trust-based routing 

techniques previously documented in the literature. The 
TBSIOP exhibited superior performance but was 

accompanied by a relatively high processing time [18].  

The research paper [19] introduced a secure routing 

system for WSNs known as “Realisable Secure Aware 

Routing” (RSAR). The main emphasis of this strategy lies in 

enhancing EE by utilizing data aggregation. This study 

aimed to assess the reliability of individual SNs inside the 

network. Subsequently, an optimization methodology was 

employed for the restricted struggle scenario, which was then 

succeeded by introducing an optimal trust extrapolation 

model. The data flow optimization was achieved by 

minimizing its volume and eliminating extraneous data from 

the system. Once all the relevant data was gathered, it was 

transmitted to the recipient. 

The method proposed in [20] utilized game theory and 

clustering techniques to observe behavior and analyze trust in 

relationships. The method of determining the trust factor of a 

node, commonly referred to as the evidence congregation 

structure, encompasses the integration of the concept of 

clustering.  

In [21], a trust-based adaptive routing approach for 

WSNs was introduced. This study considered three trust 

values: indirect, observer, and direct. The trust factors that 

have been determined were then subjected to comparison 

using the matching method. The cross-layer strategy 

discussed in [22] examines the routing principle employed in 
environmentally friendly IoT networks that rely on WSNs. 

This work presented a mathematical model that aims to 

facilitate data transfer in IoT applications by computing the 

QoS (Quality of Service) characteristics. The diagnostic and 

perilous path-loss models determined the confidence level 

accompanying the often utilized nodes.  

In [23], a trust-aware routing system was shown, 

incorporating numerous features. This protocol considered 

several factors, such as data transport, data, power, and 

recommendation. This study utilized a sliding time window 

to detect anomalous user behavior.  

The authors in [24] recommended a secure routing 

algorithm for WSNs that used the whale optimization 

clustering technique. This study aimed to ascertain the most 

reliable node to function as the CH. Various criteria like 

energy, density, delay, distance to the cluster, and 

transmission rate were considered in the selection process. 

In [25], the Swarm-Intelligence-Centric Routing 

Algorithm (SICROA) was developed as a potential solution 

for WSNs seeking to exploit the benefits of the ant colony 

optimization procedure. The routing protocol aimed to 

mitigate the issues encountered in the AODV protocol and 

enhance routing efficiency by implementing collision 
circumvention, maintenance techniques, and link-quality 

prediction. The suggested solution demonstrated an 

enhancement in network performance by the substitution of 

the regular “Hello” data with an intersect mechanism that 

aids in the anticipation and identification of link 

interruptions. As a result, the network’s overall performance 

could be enhanced by implementing suitable protocols for 

processing each control message. Hence, it can be deduced 

that this approach based on Swarm Intelligence (SI) offered 

an appropriate resolution to challenges encountered within an 
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intricate setting while functioning in a decentralized manner 

and sticking to straightforward behavioral principles. The 

work in [26] introduced a Multi-Objective Function (MOF) 

algorithm for WSNs that draws inspiration from nature, like 

the Shuffled Frog-Leaping procedure and Firefly. The MOF 

employed by MOSFA incorporates many factors to select 
suitable CHs in each cycle.  

2.1. Review Summary 

The survey presented above illustrated the diverse 

contributions made by researchers in security, dependability, 

scalability, and energy efficiency to improve the longevity of 

WSNs. Despite the existence of several approaches for 

problem-solving, it is apparent that the efficiency of data 

transfer for long-distance communication through a single 

hop remains a limitation. Therefore, multi-hop-based 

communication was favored. In addition, many earlier secure 

protocols based on clustering exhibit notable computational 

and communicational burdens, posing a substantial 
restriction in improving and optimizing the longevity of 

nodes in WSNs. 

3. Proposed Model 
This section discusses the proposed optimal routing in 

WSN using the AFHC-NTCOR model. The clustering 

protocol strategy in WSN is presented through an 
optimization procedure. This procedure selects high-energy, 

balanced, and trusted nodes from randomly generated nodes 

at the outset. The merging of nodes into clusters and the 

collection of CHs are determined based on evaluating node 

properties in a WSN.  

In addition, the AFHC-NTCOR approach introduces an 

AFHO-based clustering methodology to select CHs from a 

pool of candidate SNs. These nodes are nominated based on 

their remaining energy value and trust levels, which must 
exceed the trust values of every network node. CO is 

expected to reduce communication overhead during data 

transmission between the BS and CH, or vice versa, by 

choosing the most optimum path. The representation of the 

entire network process is demonstrated in Figure 2.  

The proposed system elucidates the propagation model 
in reference [21]. The nodes detect the data transmitted to the 

BS through direct or hop-by-hop messages. Using natural 

communication methods in long-distance scenarios results in 

higher energy consumption. Therefore, the multi-hop 

message mechanism is preferred to decrease energy usage. 

During the process of transcribing data, energy is 

expended by SNs. Measuring the distance between nodes and 

the BS was crucial in estimating energy consumption. The 
system under consideration utilizes Euclidean interval 

measurements to determine the gap among two nodes in 

WSN, denoted as A and B, within the network. This is 

achieved by employing Equation (1). 

𝑑(𝐴,𝐵) = √(𝐵𝑥 − 𝐴𝑥)
2 + (𝐵𝑦 − 𝐴𝑦)

2
  (1) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Overall process of AFHC-NTCOR protocol

Wireless Sensor Network 

Cluster Member 

Cluster Head 
Optimal Path Selection 

User 
Internet 

Base Station 

https://www 

Sensor Nodes 

Clustering Using AFHO 

CH Selection Using Energy, 
Distance, Trust, and Node Degree 

Using AFH 

Data Security Using 

AFHC-NTCOR 

Optimal Path Selection Using 

Coati Optimization 

Collect Packet and Route 

Information 

Identification and Validation 

of Path 

Path Table is Updated 

Optimal Path Obtained by 

Using CO 

Packet is Transmitted through the 

Optimal Path 



R. Kennady & K. Thinakaran / IJECE, 11(1), 86-100, 2024 

 

90 

To transmit a message consisting of n bits from a 

transmit node, the energy required, denoted as 𝐸𝑡, could be 

computed utilizing (2). In this, 𝐸𝑒 Indicates the energy 

needed to operate the node for transmitting and receiving the 

n-bit message. The Euclidean distance, 𝑑𝑡, is considered, 

with 𝑑0 representing the threshold value TH. The term fs 

means free space, 𝐸𝑖 represents the initial energy of the 

nodes, and mp refers to multipath. 

𝐸𝑡 = {
𝐸𝑒 ∗ 𝑛𝓂 + 𝑛𝓂 ∗ 𝑒𝑓𝑠 ∗ 𝑑𝑡

2𝑑𝑡 < 𝑑0
𝐸𝑒 ∗ 𝑛𝓂 + 𝑛𝓂 ∗ 𝑒𝓂𝑝 ∗ 𝑑𝑡

4𝑑𝑡 = 𝑑0
  (2) 

The nm bit message is received by employing the 

Equation. The entire energy 𝐸𝑟 usage of a node, denoted as 

𝐸𝑢𝑠. The location of the residual energy 𝐸𝑟𝑠 of the WSN 

node is unknown. The computation is performed by utilizing 

Equations (3-5). 

𝐸𝑟 = 𝐸𝑒 ∗ 𝑛𝓂  (3) 

𝐸𝑢𝑠 = 𝐸𝑡 ∗ 𝐸𝑟  (4) 

𝐸𝑟𝑠 = 𝐸𝑖 ∗ 𝐸𝑢𝑠  (5) 

In each iteration, the assortment of CH is determined by 

comparing the TH(n) with the RE of the nodes. The TH(n) is 

calculated using Equation (6).  

𝑇𝐻(𝑛) = {

𝑃

1−𝑃∗(𝑟𝓂𝑜𝑑
1

𝑃
)

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∗
𝐸𝑟𝑠

𝐸𝑖
 𝑖𝑓 𝑛𝓂 > 𝑆  (6) 

In the context of the CH selection issue, the variable 𝑃 
represents the total quantity of possible solutions. Following 

the CH procedure selection, clusters amid the nodes are 

established using the MFHO swarm intelligence method. 

3.1. Clustering Mechanism Using MFHO Algorithm 

The obligation for designing and implementing the 

FHO-based clustering technique lies with BS. In this method, 

it is postulated that the BS is accountable for monitoring the 

network nodes like 𝑠𝑛𝑖, where i = 1, 2, ..., N and possesses 

knowledge of their respective statuses, encompassing trust 

levels, positions, and energy levels. The clustering method 

operates on the suggestion that the sum of clusters is 

encoded, denoted as 𝑘 clusters, resulting in the display of 

clusters as 𝐶1, 𝐶2, . . . , 𝐶𝑘. Additionally, the CH assumes a 

rotational function among the nodes to mitigate node 

discharge and maintain energy balance within the network. 

Therefore, all nodes can function as CHs. During each 

period, the BS employs the FHO technique to determine the 

optimal CHs within the system. The algorithmic 

representation of FHO can be found in Algorithm 1. The 

clustering mechanism comprises several distinct steps, which 

are outlined below: 

3.1.1. The Initialization Process of a Population 

During this stage, the Biogeography-based optimization 

procedure evaluates Candidate Solutions (𝐶𝑆𝑖) that represent 

FHs and prey. In the CH collection problem context, each 

FH is assumed to be an array of k items, where k denotes CH 
numbers.  

Within this array, every individual component contains 

the unique Identifier (ID) of a SN, denoted as 𝑠𝑛𝑗 . The 

Traffic Class (TC) Identifier (ID) is chosen arbitrarily from a 

candidate channel CH set called CaCH. The set is formally 

defined in Equation (7). 

𝐶𝑎𝐶𝐻 = {𝑠𝑛𝑗|𝐸𝑟𝑠,𝑗
𝑡, ≥

(∑ 𝐸𝑡𝒩
𝑖=1 𝑟𝑠,𝑖

)

𝒩
, 𝑇𝑟𝑗

𝑡 ≥
(∑ 𝑇𝑟𝑖

𝑡𝒩
𝑖=1 )

𝒩
}  (7) 

It should be noted that the CaCH set comprises the 

identification of SNs with RE (𝐸𝑟𝑠,𝑗
𝑡,

) and trust level (𝑇𝑟𝑖
𝑡) 

exceed every network node’s Average Remaining Energy 

(ARE) and ATV. Trust 𝑇𝑟𝑖
𝑡 is determined by either previous 

communication or previous comments.  

The current level of observed misbehavior, cumulative 

misbehavior, and the preceding trust level determine the 

present trust value calculation in a prior interaction-based 

trust prediction approach. The present perception of 

misbehavior pertains to the conduct of a node at the current 
point in time. In contrast, the cumulative misbehavior and 

preceding trust value indicate the extent to which a node has 

engaged in misconduct in past times. The present occurrence 

𝑂 of node A’s deviant behavior at time 𝑡, enacted by node 𝐵, 

is quantified in the subsequent manner: 

𝑂(𝑇𝑟𝑖
𝑡) =

{
 
 

 
 1 − 𝛼 ≤ 𝑇𝑟𝑖

𝑡 ≤ 1 𝑡𝑟𝑢𝑠𝑡𝑒𝑑 ℎ𝑖𝑔ℎ𝑙𝑦

1 − 𝛽 ≤ 𝑇𝑟𝑖
𝑡 ≤ 1− 𝛼 𝑡𝑟𝑢𝑠𝑡𝑒𝑑

1 − 𝛾 ≤ 𝑇𝑟𝑖
𝑡 ≤ 1− 𝛽 𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑

0 ≤ 𝑇𝑟𝑖
𝑡 < 1− 𝛾 𝑢𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑 ℎ𝑖𝑔ℎ𝑙𝑦

(8) 

The variables 𝛼, 𝛽, and 𝛾 are subject to the condition 

that 𝛼 is less than 𝛽, 𝛽 is less than 𝛾, and 𝛾 is less than 1. 

These variables might be adjusted based on the setup and 

security demands to establish the node’s state. The 

determination of these values remains contingent upon the 

prevailing technological and safety conditions.  

For example, the ability of the network to tolerate a drop 

in effectiveness is one factor determining whether a node’s 
trust value needs to be recognized as belonging to the 

untrusted sector. Furthermore, the adaptability or persistence 

of these characteristics is contingent upon the prevailing 

security issues. Consequently, nodes with low energy levels 

and inadequate security measures are ineligible for selection 

as CH. The process of Tc can be described by Equation (9). 
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𝐶𝑆 = 𝑆F.

[
 
 
 
 
 
𝐶𝑆1
𝐶𝑆2
⋮
𝐶𝑆𝑖
⋮
𝐶𝑆𝑃]

 
 
 
 
 

=

[
 
 
 
 
 
 𝑐𝑠1

1, 𝑐𝑠1
2, … , 𝑐𝑠1

𝑗
𝑐𝑠1

𝑘

𝑐𝑠2
1, 𝑐𝑠2

2, … , 𝑐𝑠2
𝑗
𝑐𝑠2

𝑘

⋮

𝑐𝑠𝑖
1, 𝑐𝑠𝑖

2, … , 𝑐𝑠𝑖
𝑗
𝑐𝑠𝑖

𝑘

⋮

𝑐𝑠𝑃
1 , 𝑐𝑠𝑃

2, … , 𝑐𝑠𝑃
𝑗
𝑐𝑠𝑃

𝑘]
 
 
 
 
 
 

, {
𝑖 = 1,2,… , 𝑃
𝑗 = 1,2,… , 𝑘

 (9) 

In this context, 𝐶𝑆𝑖  denotes the 𝑖th candidate result 

within the search area. SF represents a scaling factor, 

whereas 𝑘 represents the number of CHs. Furthermore, the 

notation 𝑐𝑠𝑖
𝑗
 denotes the identifier of 𝑠𝑛𝑗 , which is selected 

randomly from the CaCH collection and subsequently 

incorporated into the candidate solution.  

3.1.2. Evaluation Process 

Each candidate’s result is evaluated based on the cost 

function outlined in Equation (10) during this stage. 

𝑓𝑐𝑡 = ∑ 𝜔𝑖
4
𝑖=1 𝑓𝑖  (10) 

The weight coefficients 𝜔𝑖 are constrained to the range 

(0,1). The sum of the products is denoted by ∑ 𝜔𝑖
4
𝑖=1 𝑓𝑖. 

Considering that 𝑓𝑐𝑡  is a cost function, it follows that an 

optimal result is attained by minimizing 𝑓𝑐𝑡 . In Equation 

(10), the variable 𝑓𝑐𝑡 is expressed as a linear combination of 

𝑓𝑐1 , 𝑓𝑐2, 𝑓𝑐3, and 𝑓𝑐4 . Based on the Equation (10) presented by 

𝑓1 , it is observed that the BS prefers selecting nodes as CH 

that meet two specific characteristics. The SNs in the 
network are located near the cluster center, resulting in a 

minimal distance between the Cluster Member (CM) nodes 

(𝐶𝑀𝑟 ∈ 𝐶𝑙𝑗) and their associated CH (𝐶𝐻𝑗). The distance 

between CHs should be sufficiently large to ensure a well-

distributed presence of CHs overall network sections. 

𝑓𝑐1 =

∑ (
∑ 𝐶𝑀𝑟∈𝐶𝑙𝑗∀ 𝑑(𝐶𝑀𝑟,𝐶𝐻𝑗)

|𝐶𝑙𝑗|
)𝑘

𝑗=1

min   {𝑑(𝐶𝐻𝑗,𝐶𝐻𝑔)}

∀ 𝐶𝐻𝑗≠𝐶𝐻𝑔

  (11) 

Here, 𝐶𝑙𝑗  represents the size of the cluster 𝐶𝑙𝑗 , and 

𝑑𝑡(𝐶𝑀𝑟 , 𝐶𝐻𝑗) = √(𝑥𝑟 − 𝑥𝑗)
2
+ (𝑦𝑟 − 𝑦𝑗)

2
 is the Euclidean 

distance between the centroid 𝐶𝑀𝑟 and the centroid 𝐶𝐻𝑗, 

with the spatial coordinates (𝑥𝑟 , 𝑦𝑟) and the spatial 

coordinates 𝑥𝑗𝑦𝑗 of 𝐶𝐻𝑗. Additionally, the term 

𝑑𝑡(𝐶𝐻𝑗 , 𝐶𝐻𝑔) represents the distance measurement between 

𝐶𝐻𝑗 and 𝐶𝐻𝑔. In contrast, according to the Equation (12) and 

the variable 𝑓𝑐2 , it can be observed that the BS prefers 

selecting CHs from nodes with high energy levels. The 

present preference arises since 𝑓𝑐2 is calculated as the 

summation of the ratio between the ARE of CMs and the 

energy of CHs. To reduce the value of 𝑓𝑐2 , it is necessary for 

the ARE of CMs to be lower than the RE of CHs. 

𝑓𝑐2 = ∑ (

∑ 𝐶𝑀𝑟∈𝐶𝑙𝑗∀ 𝐸𝑟𝑠,𝑟
𝑡,

|𝐶𝑙𝑗|

𝐸𝑟𝑠,𝑟
𝑡, )𝑘

𝑗=1   (12) 

The Equation (12) represents the ratio of the RE of 

𝑀𝑟and 𝐶𝐻𝑗, signified as 𝐸𝑟𝑠,𝑟
𝑡  and 𝐸𝑟𝑠,𝑗

𝑡 , correspondingly, 

divided by the absolute value of the clustering coefficient of 

𝐶𝐻𝑗, denoted as (𝐶𝑙𝑗 ). Furthermore, as stated by 𝑓𝑐3  via 

Equation (13), BS exhibits a preference for selecting CHs 

from nodes that are near the BS. The reduction in energy 
consumption and delay during the information transfer 

procedure amid CHs and the BS is realized.  

𝑓𝑐3 =
max  {𝑑𝑡(𝐶𝐻𝑗 , 𝐵𝑆)}

𝑗 − 1,2,… , 𝑘
  (13) 

Based on the Equation (13) proposed by 𝑓𝑐4 , it can be 

inferred that the preference of BS lies in maintaining a nearly 

identical size for all clusters. Hence, the utilization of 

standard deviation enables the comparison of cluster 

magnitudes. When the value of this metric approaches 0, it 

indicates that the sizes of the clusters are nearly equal.  

𝑓𝑐4 =
𝓂𝑎𝑥

𝑗 − 1,2, … , 𝑘

{
 
 

 
 
√∑ (|𝑙𝑐𝑗|−(

∑ |𝑐𝑙𝑗|
𝑘
𝑗=1
𝑘

))𝑘
𝑗=1

(
∑ |𝑐𝑙𝑗|
𝑘
𝑗=1

𝑘
)

}
 
 

 
 

  (14) 

After carefully evaluating the available alternatives, it 

has been determined that the most optimal solution is 

identified as the primary option with no cost (gigabytes). The 

ten remaining candidate solutions will be classified into two 

categories based on cost value.  

Solutions with lower cost functions, as defined by 

Equation (15), will be referred to as FHs. On the other hand, 

solutions with higher cost functions will be regarded as prey, 

as per Equation (16). 

𝐹𝑖𝐻 =

[
 
 
 
 
 
𝐹𝑖𝐻1
𝐹𝑖𝐻2
⋮

𝐹𝑖𝐻𝑙
⋮

𝐹𝑖𝐻𝑓]
 
 
 
 
 

, 𝑙 = 1,2, … , 𝑓  (15) 

𝑃𝑦 =

[
 
 
 
 
 
𝑃𝑦
𝑃𝑦
⋮
𝑃𝑦
⋮
𝑃𝑦]
 
 
 
 
 

, 𝑞  (16) 
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The variable 𝐹𝐻𝑙 represents the 𝑛-th instance of an FH, 

while the variable f denotes the total number of FHs. The 

symbol 𝑃𝑦𝑞 represents the 𝑞-th prey within the search field 

of FHO, while the symbol m denotes the total of prey 

numbers. 

3.1.3. Establishing the Geographic Range of FHs 

Each FH shows its territory by identifying and selecting 

nearby prey during this stage. To ascertain the territorial 

boundaries of each FH, calculate the total Euclidean distance 

among the chosen CHs in the 𝑃𝑦𝑞 network model and the 

chosen CHs in the 𝐹𝑖𝐻𝑙 Network model, using Equation 

(17). 

𝐷𝑞
𝑙 = ∑ ∑ √∑ (𝑐𝑠𝑙

𝑗
− 𝑐𝑠𝑞

𝑗
)
2

𝑘
𝑗=1

𝓂
𝑞=1

𝑓
𝑙=1   (17) 

In Equation (17), the objective is to calculate the sum of 

the square roots of the squared alterations between the 

elements of two sets, denoted as 𝑐𝑠𝑙
𝑗
 and 𝑐𝑠𝑞

𝑗
.  

3.1.4. The Process of Apprising FHs 

 During this stage, each FH obtains combustible 
materials from the ground and ignites them within their 

designated area to induce prey to evacuate under duress. This 

behavior is employed to update the location of the 𝐹𝑖𝐻. The 

user’s text can be rewritten as follows: The vector 

[𝑐𝑠𝑙
~1, 𝑐𝑠𝑙

~2, … . , 𝑐𝑠𝑙
~𝑘] should be arranged by Equation (18).  

𝑐𝑠𝑙
~𝑖 =

{
 
 

 
 𝑐𝑠𝑙

𝑗
, 𝑟𝑑1 = 0 𝑎𝑛𝑑 𝑟𝑑2 = 0

𝑐𝑠𝑛𝑟−𝑡𝑜−𝐺𝐵,
𝑖 𝑟𝑑1 ≠ 0 𝑎𝑛𝑑𝑟𝑑2 < 0.5,     {

𝑗 = 1,2,… , 𝑘
𝑙 = 1,2,… , 𝑓

𝑐𝑠𝑛𝑟−𝑡𝑜−𝑏𝑟𝐹𝑖𝐻,
𝑗

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 (18) 

In this context, the notation 𝑐𝑠𝑛𝑟−𝑡𝑜−𝐺𝐵
𝑖  denotes selecting 

a node from the CaCH set closer to the equivalent CH in GB. 

Additionally, the term 𝑠𝑛𝑟−𝑡𝑜−𝑏𝑟𝐹𝑖𝐻
 𝑗

 denotes selecting a node 

from the CaCH series near the equivalent CH in the FH 

while having a lower cost function than the present FH. The 

variables 𝑟𝑑1 and 𝑟𝑑2 represent random numbers that are 
uniformly distributed between 0 and 1.  

Prey Adaptation 

 The FH strategically sets fire into its designated 

territory during this stage. As a result, the prey inside this 

area must consciously decide to modify its movement 

patterns to navigate the altered environment effectively. The 

decision of Tc is utilized to determine the updated position of 

the prey, denoted as 𝑃𝑦𝑞
𝑛𝑒𝑤 = ([𝑐𝑠𝑞

~1, 𝑐𝑠𝑞
~2, … , 𝑐𝑠𝑞

~𝑘]. Every 

component of the PRnew q is derived using Equation (19).  

𝑐𝑠𝑞
~𝑖 = {

𝑐𝑠𝑙
𝑗
, 𝑟𝑑3 = 0 𝑎𝑛𝑑 𝑟𝑑4 = 0

𝑐𝑠𝑛𝑟−𝑡𝑜−𝐹𝑖𝐻,
𝑖 𝑟𝑑3 ≠ 0 𝑎𝑛𝑑 𝑟𝑑4 < 0.5,     

𝑐𝑠𝑟𝑑,
𝑗

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19) 

The term 𝑐𝑠𝑛𝑟−𝑡𝑜−𝐹𝑖𝐻
𝑖  denotes the process of selecting a 

node from the CaCH set based on its proximity to the spot of 

the relevant CH in the FH relative to the prey. The term 𝑐𝑠𝑟𝑑
𝑗

 

denotes the process of selecting a node at random from the 

CaCH collection. The variables 𝑟𝑑3 and 𝑟𝑑4 represent two 

randomly generated numbers within the range of 0 to 1. 

Next, 𝑃𝑦𝑞
𝑛𝑒𝑤 is computed by utilizing the cost purpose 

defined in Equation (19). The calculation of 𝑃𝑦𝑞
𝑛𝑒𝑤 is 

recomputed utilizing Equation (20) due to the possibility of 

the prey relocating towards the domain of additional FHs. 

𝑐𝑠𝑞
~𝑖 = {

𝑐𝑠𝑙
𝑗
, 𝑟𝑑5 = 0 𝑎𝑛𝑑 𝑟𝑑6 = 0

𝑐𝑠𝑛𝑟−𝑡𝑜−𝑎𝑟𝐹𝑖𝐻,
𝑖 𝑟𝑑3 ≠ 0 𝑎𝑛𝑑𝑟𝑑4 < 0.5,     

𝑐𝑠𝑟𝑑,
𝑗

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(20) 

In this context, the abbreviation “𝑐𝑠𝑛𝑟−𝑡𝑜−𝑎𝑟𝐹𝑖𝐻
𝑖 ”is 

presented. The process involves selecting a node from the 

CaCH set adjacent to the location of the equivalent CH in a 

free hawk. Let 𝑟𝑑5 and 𝑟𝑑6 represent two randomly 

generated numbers inside the interval (0, 1). The 

convergence condition refers to the criteria to be met for a 
mathematical or computational process to converge or 

approach stability and accuracy. The Termination Criterion 

(Tc) represents the last state of the FHO algorithm.  

Upon the fulfillment of the end state, the FHO will reach 

its completion, resulting in the return of GB as the ultimate 

solution. The clustering methodology defines the termination 

criterion as the number of iterations such that the lambda 

value is not greater than zero.  

Once the algorithm has been performed, BS transmits a 

message known as state determination to the nodes in WSN. 

Once clusters have been formed, the data transmission stage 

commences, during which CMs transmit their data directly to 

the CH at a predetermined time. 

Upon receiving the CMs’ data, the CHs collect the 
acknowledged message and transmit the merged message to 

the BS via the most efficient channels available. During this 

phase, the optimizer aims to prioritize the exploration of the 

feature space’s vicinity that contains solutions of higher 

quality. The phenomenon enhances the search process inside 

a specific geographical area instead of encompassing broader 

portions of the overall landscape. An optimally structured 

optimizer should possess the ability to strike a judicious 

equilibrium between the inclinations for exploration and 

exploitation effectively.  
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Alternatively, the likelihood of encountering Local 

Optima (LO) and experiencing limitations in convergence 

maturity is heightened. An adaptive scaling factor, referred to 

as the AFHO algorithm, is implemented to enhance the 

efficacy of the FHO process. Following the construction of 

clusters and the selection of CHs, the ideal path is 
determined by utilizing the CO approach. The proposed 

protocol demonstrates enhanced performance.  

Algorithm 1: Cluster formation among nodes using FHO 

Input: Candidate CH set, Sensor nodes: 𝑠𝑛1, 𝑠𝑛2, … . 𝑠𝑛𝒩, 

clusters: 𝐶𝑙1, 𝐶𝑙2, … . . , 𝐶𝑙𝑘,    𝑇𝑠: simulation time,  𝑇𝑔: the 

guide message periodic time,  𝑇𝐶𝐻: CH assortment process 

time 
Output: CH selection  𝐶𝐻1, 𝐶𝐻2, 𝐶𝐻𝑘 
Begin 

𝑡 = 0  
Repeat  

If 𝑡 mod 𝑇𝑔 = 0  then 

For 𝑖 = 1 to 𝒩 do 

Send a guide data from sni to BS; 

BS: Store the trust value, location, and energy of 𝑠𝑛𝑖 in the 

memory; 
End for 

End if  

If 𝑡 mod 𝑇𝐶𝐻 = 0 then 

Consider each 𝑆𝑖 = [𝑠1
1, 𝑠1

2, … . , 𝑠1
𝑗
, … . , 𝑠1

𝑘] as an array with 𝑘 

elements; 

Select the initial value of the 𝐶𝑆𝑖 from CCH randomly; 

Determine the initial population as 𝐶𝑆 based on Equation 8; 
Evaluate the cost value of each solution based on Equation 9; 

Sort the solutions based on their cost value; 

Obtain the GB (Global Best) solution as the main fire; 

If iteration ≤ 𝜆, then 

Choose a random integer (𝑓) as the number of FHs; 

Divide the distance among FHs and preys (𝑃𝑦) based on 

Equation 15; 

Calculate the distance among FHs and preys according to 

Equation 16; 

Regulate the land of each FH; 
Update the spot of FHs based on Equation 17; 

Update the spot of PRs based on Equation 18; 

Evaluate the cost value of PRs based on Equation 19; 

If the cost value of PRs is not improved, then 

Update the position of PRs based on Equation 19;  

End if 

Obtain the GB solution as the main fire; 

end if 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1;  
Return GB; 
Send an SD message to all nodes; 

End if 

𝑡 = 𝑡 + 1; 

Until 𝑡 ≤ 𝑇𝑠𝑖𝓂𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

End 

3.2. Mathematical Model of CO Algorithm 

The CO approach relies on modeling two natural actions 

of coatis to update the position of candidate solutions. The 

behaviors under consideration encompass the strategic 

approach employed by coatis, namely when engaging in 

attacks on iguanas, as well as their method for evading 
predators. Consequently, the population of CO undergoes 

updates in two distinct phases.  

3.2.1. Phase 1: Exploration of Hunting and Attacking 

Strategies on Iguanas  

The initial stage of enhancing the population of coatis 

(specifically, CMs) within the search space is formulated by 

imitating their approach in attacking iguanas (i.e., nodes 

exhibiting malevolent behavior). Within this method, a 

collective of coatis ascends the arboreal structure to access 

an iguana and induce a state of fear within it. A group of 

coatis congregates beneath a tree, patiently awaiting the 

descent of the iguana.  

Following the descent of the iguana to the ground, the 

coatis engage in an act of predation by attacking and 

pursuing it without displaying any hostile intent. This 

method facilitates the displacement of coatis to various 

locations across the search space, a phenomenon commonly 

referred to as clustering. This behavior serves as evidence of 

the exploration capability of the CO in conducting a global 

search inside the problem-solving domain. The schematic 

representation of this method is depicted in Figure 3. In the 

context of CO design, it is postulated that an optimal location 

within the population is equated with an iguana’s location. It 
is additionally postulated that around fifty percent of the 

coatis engage in arboreal locomotion. In comparison, the 

remaining fifty percent adopt a passive stance, awaiting the 

descent of the iguana to the terrestrial surface. Hence, the 

mathematical simulation of the coatis’ ascent from the tree is 

achieved using Equation (21).  

𝐶𝑙𝑋𝑖
𝑃1: 𝑐𝑙𝑥𝑖,𝑗

𝑃1 = 𝑐𝑙𝑥𝑖,𝑗 + 𝑟𝑙 · ( 𝐼𝑎𝑗 − 𝐼𝑛 · 𝑐𝑙𝑥𝑖,𝑗), for 𝑖 =

 1, 2, . . . , [
𝒩

 2
] 𝑎𝑛𝑑 𝑗 =  1, 2, . . . ,𝓂  (21) 

Once the iguana descends to the ground, it is positioned 

randomized inside the search space. Coatis on the ground 

exhibit movement within a simulated search space, as 

determined by Equations (22) and (23).  

𝐼𝑎𝐺: 𝐼𝑎𝑗
𝐺 = 𝑙𝑏𝑗 + 𝑟 · (𝑢𝑏𝑗 − 𝑙𝑏𝑗  ), 𝑗 =  1, 2, . . . ,𝓂,  (22) 

𝐶𝐿𝑋𝑖
𝑝1
: 𝐶𝐿𝑋𝑖,𝑗

𝑝1
= {

𝑐𝑙𝑥𝑖,𝑗 + 𝑟 · (𝐼𝑎𝑗
𝐺 − 𝐼 · 𝑐𝑙𝑥𝑖,𝑗), 𝐹𝐼𝑎𝐺 < 𝐹𝑖 ,

𝑐𝑙𝑥𝑖,𝑗 + 𝑟 · (𝑐𝑙𝑥𝑖,𝑗 − 𝐼𝑎𝑗
𝐺), 𝑒𝑙𝑠𝑒,

 

 (23) 

for 𝑖 = [
𝒩

2
] + 1, [

𝒩

2
] + 2 , . . . ,𝒩 and 𝑗 =  1, 2, . . . ,𝓂. 
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Fig. 3 Flowchart depicting the process of selecting the ideal path based on CO 
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Suppose the new position, referred to as the new CM 

node, calculated for each coati, specifically the CH, results in 

an improvement in the value of the OF. In that case, it is 

deemed acceptable for the update process. However, if the 

new position does not improve the OF (Objective Function), 

the coati will remain in its old position. The update condition 

is applied to the values of 𝑖 ranging from 1 to N, as simulated 

using Equation (24). 

𝐶𝐿𝑋𝑖 =  {
𝐶𝐿𝑋𝑖

𝑃1 𝐹𝑖
𝑃1 < 𝑂𝐹𝑖 ,

𝐶𝐿𝑋𝑖 , 𝑒𝑙𝑠𝑒.
  (24) 

Here, 𝐶𝐿𝑋𝑖
𝑃1 represents the newly determined location 

for the 𝑖th coati, 𝐶𝐿𝑋𝑖,𝑗
𝑃1  refers to its jth dimension, and 𝑂𝐹𝑖

𝑃1 

represents a certain value. P1 denotes the value of the OF, 𝑟𝑙 
is a randomly generated real number within the range of (0, 

1). 𝐼𝑎 symbolizes the location of the iguana inside the search 

space, specifically referring to the position of the best 

member. 𝐼𝑎𝑗  signifies the 𝑗th dimension of the iguana’s 

position.  

Let 𝐼𝑛 be an integer randomly chosen from the set       

{1, 2}. 𝐼𝑎𝑗
𝐺 represents the position of the iguana on the 

minced, which is generated randomly. 𝐼𝑎𝐺 denotes the jth 

dimension of the iguana’s position. The value of the OF for 

𝐼𝑎𝐺 is denoted as 𝑂𝐹𝐼𝑎𝐺. The base function, the most 

significant integer function, is represented by ⌊·⌋. 

3.2.2. The Predation Evasion Process (Exploitation Phase) 

The mathematical modeling of the second phase of 

apprising the position of coatis in the search space is derived 

from observing their natural behavior when confronting and 

evading predators. Coatis, non-malicious nodes with shorter 
transmission times, are the basis for this modeling process. 

When a predator initiates an attack on a coati, the animal 

promptly evades and disengages from its current location. 

The strategic movements of the coati result in its 

establishment in secure proximity to its present location, 

thereby demonstrating the coati’s proficiency in exploiting 

local search opportunities. The present study examines the 

pattern diagram of coatis’ approach to evading predators. To 

replicate this behavior, a random position is created near the 

current location of each coati, utilizing equations (25) and 

(26).  

𝑙𝑏𝑗
𝑙𝑜 =

𝑙𝑏𝑗 

𝑡𝑐
, 𝑢𝑏𝑗

𝑙𝑜 =
𝑢𝑏𝑗

𝑡𝑐
, 𝑤ℎ𝑒𝑟𝑒 𝑡𝑐 =  1, 2, . . . , 𝑇  (25) 

𝐶𝐿𝑋𝑖
𝑃2: 𝑐𝑙𝑥𝑖,𝑗 

𝑃2 = 𝑐𝑙𝑥𝑖,𝑗 + (1 − 2𝑟𝑑) · (𝑙𝑏𝑗
𝑙𝑜 + 𝑟𝑑 ·

(𝑢𝑏𝑗
𝑙𝑜 − 𝑙𝑏𝑗

𝑙𝑜)) ,    𝑖 = 1, 2, . . . ,𝒩, 𝑗 = 1, 2, . . . ,𝓂  (26) 

The acceptability of the newly calculated location is 

contingent upon its ability to enhance the value of the goal 

function, as determined by the condition modeled by 

Equation (27). 

CL𝑋𝑖 = {
𝐶𝐿𝑋𝑖

𝑃2 𝑂𝐹𝑖
𝑃2 < 𝑂𝐹𝑖 ,

𝐶𝐿𝑋𝑖𝑗 𝑒𝑙𝑠𝑒
  (27) 

The new location is denoted as 𝐶𝐿𝑋𝑖
𝑃2, is determined for 

the ith coati during the second phase of CO. 𝐶𝐿𝑋𝑖𝑗  represents 

the jth dimension of this position, while OF refers to the OF. 

The variable 𝑟𝑑 represents an arbitrary number within the 

range of (0, 1). The variable tc represents the iteration 

counter.  𝑙𝑏𝑗
𝑙𝑜 and 𝑢𝑏𝑗

𝑙𝑜 Correspondingly, it signifies the jth 

decision variable’s local lower and upper bounds. 

Algorithm 2: Optimal path selection using CMs of nodes 
Input: CMs as Coatis’ population  

Output: optimal path selection  

Input the optimization delinquent data. 

Established the total iterations 𝑇 and the coatis 𝒩. 

Initialization of the position of all coatis and assessment of 

the OF for this initial population. 

For 𝑡 = 1: 𝑇 

Update the location of the iguana followed by the best 

member location of the population. 

//Exploration Phase 

For 𝑖 = 1: [𝒩/2] 
Calculate the new position for the 𝑖th coati using (20). 

Update the position of the 𝑖th coati using (23). 

End for 

For 𝑖 = 1: [
𝒩

2
] :𝒩 

Calculate the random position for the 𝑖th coati using (21). 

Calculate the new position for the 𝑖th coati using (22). 

Update the position of the 𝑖th coati using (23). 

End for 

// Exploitation Phase 

Calculate the local bounds for variables using (24). 

For 𝑖 = 1:𝒩 

Calculate the new position for the 𝑖th coati using (25). 

Update the position of the 𝑖th coati using (26). 

End for 

Except for the best candidate result found so far, 

End for 

Output of the obtained solution by CA for a given optimal 

path selection problem. 

End COA 

Acknowledging the growing importance of data security 

in WSNs, AFHC-NTCOR introduced a cluster-based trust 

mechanism utilizing the FHO algorithm. This approach 
strategically selected trustworthy CHs based on energy 

reserves and trustworthiness levels, ensuring they surpass 

network averages. The technique employed a reliable routing 

algorithm for inter-cluster communication, optimizing data 
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pathways. The CO algorithm enhanced optimal route 

selection by considering EE and dependability. 

3.3. Cache-Based Side-Channels 

Attacks present the categorization of cache-based SC 

attacks in the following paragraphs. Understanding the sort 

of information that is released is crucial for differentiating 
and categorizing the attack appropriately. Separates time-

driven attacks from trace-driven attacks. Active and passive 

time-driven attacks are the two subtypes created to organize 

time-dependent attacks further. 

4. Results and Discussion 
This segment will analyze the performance parameters 

of the anticipated AFHC-NTCOR routing scheme and 
compare it to existing trust-based routing schemes, namely 

Hybrid MFO-FA (Moth Flame Optimizer and Firefly 

Algorithm) [25], RDSAOA-EECP (energy and distance-

based multi-objective red fox optimization) [26], and Hybrid 

CL-ALO (Cross-Layer with Harris-Hawk Optimization) 

[27]. The performance of the proposed secure routing 

strategy is estimated in comparison to other existing methods 

in terms of energy consumption, data throughput, packet loss 

rate, latency, and detection ratio, as well as PLR and PDR.  

Experiments were performed using MATLAB 2020A, 

and simulations were executed on a system with an Intel i7 
64-bit CPU, 12GB of RAM, and storage comprising a 

500GB SSD and a 1TB HDD. This review demonstrates the 

superior and successful performance of AFHC-NTCOR 

compared to alternative approaches.  Table 1 presents a 

comprehensive overview of the critical parameters employed 

in the simulation procedure. 

Table 1. Simulation parameters 

Area 100*100 

Nodes Number 100 

BS Location (50,50) 

Initial Energy 0.5J 

E 50nJ/bit 

Packet Size 4000bits 

εfs 10pJ/bit/m2 

εmp 0.0013pJ/bit 

CH_timer 2s 

In_timer 1s 

Join_timer 2s 

𝛿𝑠 2s 

𝛿𝓂 2s 

𝛿𝑖 1s 

4.1. Residual Energy 

Figure 4 presents an analysis of the RE across several 

methods. It should be noted that the energy disbursed in each 

node is equivalent to the total energy essential to carry out 

data broadcast operations, such as transmitting or receiving 

data. According to the depicted data, it can be observed that 
AFHC-NTCOR exhibits the highest RE level among the 

evaluated algorithms, with improvements of 12%, 27%, and 

37% in comparison to Hybrid MFO-FA, RDSAOA-EECP, 

and CL-ALO, respectively. According to the findings 

presented in Figure 4, the trust value plays a vital part in 

mitigating the detrimental impact of intimidating nodes on 

the efficient energy value of nodes in WSN, hence enhancing 

energy consumption in the AFHC-NTCOR system. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4 Comparison of the AFHC-NTCOR model’s residual energy 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Comparison of the AFHC-NTCOR model’s EE 
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4.2. Energy Efficiency 

Figure 5 illustrates the graphical depiction of the 

comparison of EE. Based on the data presented in the figure, 

it can be observed that AFHC-NTCOR exhibits superior EE, 

with an increase of 57.71%, 86.45%, and twice as much as 

Hybrid MFO-FA, RDSAOA-EECP, and CL-ALO, 
respectively. This finding provides evidence that the use of 

AFHC-NTCOR can potentially prolong a network’s 

operational lifespan. According to the findings presented in 

Figure 5, there is a positive correlation between the rise in 

the quantity of WSNs and the rise in EE. 

4.3. Throughput 

The term “throughput” denotes the quantity of data 

effectively sent from one position to another within a 

specified timeframe. Figure 6 presents a comparison of 

throughput across several systems. Throughput refers to the 

quantity of packets successfully transmitted to the intended 

destination within a specified time frame. The AFHC-
NTCOR methodology exhibits the maximum efficiency of 

190kbps compared to alternative methods such as Hybrid 

MFO-FA, RDSAOA-EECP, and CL-ALO. Path quality is 

critical in AFHC-NTCOR’s determination of the optimal 

route to the destination. Therefore, the implementation of 

AFHC-NTCOR is probable to enhance the data delivery rate, 

thereby positively impacting the overall throughput. 

4.4. Packet Delivery Ratio 

The measure under consideration is to assess the 

efficacy of routing protocols in WSNs. Figure 7 illustrates 

the performance comparison of the projected AFHC-NTCOR 
method with known approaches, namely Hybrid MFO-FA, 

RDSAOA-EECP, and CL-ALO. The suggested scheme 

achieved a higher PDR than existing schemes due to the 

effective trust evaluation and cluster formation. The selection 

of optimal parameters in the AFHO has resulted in an 

enhanced PDR in the context of optimal routing. As the 

quantity of nodes rises, the PDR for all routing methods also 

increases. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6 Comparison of the AFHC-NTCOR model’s throughput 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Comparison of the AFHC-NTCOR model’s PDR 

 

 

 

 

 

 

 

 

 

Fig. 8 Comparison of the AFHC-NTCOR model’s PLR 

4.5. Packet Loss Rate 

This section conducts a comparative analysis of the 

PLR, as depicted in Figure 8. The suggested AFHC-NTCOR 

exhibits a lower PLR compared to existing protocols such as 

Hybrid MFO-FA, RDSAOA-EECP, and CL-ALO, which 
result in reductions of 47.22%, 60.80%, and 75.32%, 

respectively. As the quantity of nodes rises, packet loss 

decreases across all routing techniques. Cumulating the rate 

of WSN nodes in a system will enhance the likelihood of 

locating a suitable node for packet forwarding. 

4.6. End-to-End Delay 

Figure 9 presents a comparison of the delay seen in 

various ways. The proposed AFHC-NTCOR algorithm 

reduces latency by 32.20%, 42.83%, and 58.17% compared 

to the Hybrid MFO-FA, RDSAOA-EECP, and CL-ALO 

algorithms, respectively. The primary rationale behind this is 

that AFHC-NTCOR prioritizes selecting pathways that 
exhibit high energy levels, superior quality, and dependable 

performance for data transfer. Consequently, this leads to a 
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decrease in route disappointment and subsequently 

minimizes the necessity for the route discovery procedure, 

which is known for its time-consuming nature. In the 

clustering progression, assigning nodes with trust levels 

below the mean trust level of all WSN nodes as the CH is not 

feasible.  

Accordingly, clusters are accomplished by secure CHs. 

Additionally, it is crucial to acknowledge that hostile nodes 

cannot operate as intermediary nodes inside a designated 

route. The reason for this is that the path selection 

mechanism considered the dependability of the path. 

Therefore, data transmission processes exclude routes that 

involve hostile nodes. The elements have played a significant 

role in the commendable performance of AFHC-NTCOR in 

effectively reducing network latency when faced with 

negative nodes. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9 Comparison of the AFHC-NTCOR model’s delay 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Comparison of the AFHC-NTCOR model’s detection rate 

4.7. Detection Rate 

Figure 10 presents a comparison of the detection rates 

across several techniques. The detection rate measures the 

effectiveness of trust systems implemented in different 

schemes for accurately identifying rogue nodes inside a 

network. The value is equivalent to the proportion of 
discovered malevolent nodes to the entire malevolent nodes 

inside the WSN. The AFHC-NTCOR algorithm 

demonstrates an enhanced detection rate of 3.07%, 6.58%, 

and 9.26% compared to the Hybrid MFO-FA, RDSAOA-

EECP, and CL-ALO algorithms. 

4.8. Communications Cost 

Figure 11 illustrates a comparative analysis of 

communications costs across several models. This statistic 

quantifies the frequency of official data transmitted through a 

node to transmit a packet to the intended destination node 

successfully and assesses the trustworthiness of the 

participating nodes.  

The AFHC-NTCOR approach reduces 26.39%, 36.36%, 

and 44.07% compared to the Hybrid MFO-FA, RDSAOA-

EECP, and CL-ALO methods in communication cost, 

respectively. This demonstrates that the research model 

exhibits a commendable performance concerning overheads. 

The AFHC-NTCOR model exhibits competitive 

performance across various metrics compared to existing 

models, including CL-ALO, RDSAOA-EECP, and LDDFA-

MFO-FA. Regarding residual energy, the AFHC-NTCOR 

model consistently outperforms CL-ALO and RDSAOA-

EECP, showcasing higher residual energy levels at different 
node counts. The EE, Throughput, PDR, and Detection Rate 

also demonstrate favorable results for AFHC-NTCOR, 

indicating its effectiveness in optimizing energy 

consumption while maintaining robust communication. 

 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

Fig. 11 Comparison of the AFHC-NTCOR model’s communication cost 
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However, the model tends to have higher 

communication cost values, suggesting a potential trade-off 

between communication efficiency and other performance 

metrics. AFHC-NTCOR presents a promising approach, 

particularly in scenarios prioritizing EE and network 

robustness. 

5. Conclusion 
This study suggests a novel technique called AFHC-

NTCOR for efficient energy use and routing in WSN. The 

AFHC-NTCOR protocol ensures secure data transfer 

between the source and destination nodes by employing 

trust-based techniques and coati optimum routing. 

Furthermore, the AFHC-NTCOR algorithm introduces a 
clustering technique that relies on the AFHO.  

The method is accountable for the selection of CH 

nodes. A novel cost function is introduced during the 

clustering phase to determine and evaluate responses. The 

present study focuses on utilizing coati optimization to 

enhance the routing performance in WSNs, resulting in the 

collection of an optimal path. The AFHC-NTCOR protocol 

establishes inter-cluster pathways by employing a trusted 

routing algorithm. These paths are utilized for transmitting 

data from CHs to the BS.  

The performance findings indicate that the AFHC-
NTCOR approach achieved superior performance in various 

metrics, including throughput, energy consumption, latency, 

packet loss rate, detection ratio, and PDR, when compared to 

existing systems such as Hybrid MFO-FA, RDSAOA-EECP, 

and CL-ALO. In the future, there will be an emphasis on 

enhancing trust-based clustering in WSN by utilizing various 

optimization techniques. 

Acknowledgments 
The authors thank the Saveetha School of Engineering 

and Saveetha Institute of Medical and Technical Sciences, 

Chennai, Tamilnadu, India, for their support and motivation 

throughout this research. 

References 
[1] Efat Yousefpoor, Hamid Barati, and Ali Barati, “A Hierarchical Secure Data Aggregation Method Using the Dragonfly Algorithm in 

Wireless Sensor Networks,” Peer-to-Peer Networking and Applications, vol. 14, pp. 1917-1942, 2021. [CrossRef] [Google Scholar] 

[Publisher Link] 

[2] Mohammad Sadegh Yousefpoor, and Hamid Barati, “DSKMS: A Dynamic Smart Key Management System Based on Fuzzy Logic in 

Wireless Sensor Networks,” Wireless Networks, vol. 26, pp. 2515-2535, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Mohammad Sadegh Yousefpoor, and Hamid Barati, “Dynamic Keys Management Algorithms in Wireless Sensor Networks: A Survey,” 

Computers Communications, vol. 134, pp. 52-69, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Amir Masoud Rahmani et al., “An Energy-Aware and Q-Learning-Based Area Coverage for Oil Pipeline Monitoring Systems Using 

Sensors and Internet of Things,” Scientific Reports, vol. 12, pp. 1-17, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Hojjatollah Esmaeili, Behrouz Minaei Bidgoli, and Vesal Hakami, “CMML: Combined Metaheuristic-Machine Learning for Adaptable 

Routing in Clustered Wireless Sensor Networks,” Applied Soft Computing, vol. 118, 2022. [CrossRef] [Google Scholar] [Publisher 

Link] 

[6] Natalie Temene et al., “A Survey on Mobility in Wireless Sensor Networks,” Ad Hoc Networks, vol. 125, 2022. [CrossRef] [Google 

Scholar] [Publisher Link] 

[7] Amir Masoud Rahmani et al., “An Area Coverage Scheme Based on Fuzzy Logic and Shuffled Frog-Leaping Algorithm (SFLA) in 

Heterogeneous Wireless Sensor Networks,” Mathematics, vol. 9, no. 18, pp. 1-41, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Mohammad Sadegh Yousefpoor et al., “Secure Data Aggregation Methods and Countermeasures against Various Attacks in Wireless 

Sensor Networks: A Comprehensive Review,” Journal of Network and Computer Applications, vol. 190, 2021. [CrossRef] [Google 

Scholar] [Publisher Link] 

[9] Asha Jerlin Manuel et al., “Optimizations of Routing-Based Clustering Approach in Wireless Sensor Network: Review and Open 

Research Issues,” Electronics, vol. 9, no. 10, pp. 1-29, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Chao Chen, Li-Chun Wang, and Chih-Min Yu, “D2CRP: A Novel Distributed 2-Hop Cluster Routing Protocol for Wireless Sensor 

Networks,” IEEE Internet of Things Journal, vol. 9, no. 20, pp. 19575-19588, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Salim El Khediri, “Wireless Sensor Networks: A Survey, Categorization, Main Issues, and Future Orientations for Clustering 

Protocols,” Computing, vol. 104, pp. 1775-1837, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Adnan Ahmed et al., “A Secure Routing Protocol with Trust and Energy Awareness for Wireless Sensor Network,” Mobile Networks 

and Applications, vol. 21, pp. 272-285, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[13] Mahmood Salehi et al., “Towards a Novel Trust-Based Opportunistic Routing Protocol for Wireless Networks,” Wireless Networks, vol. 

22, pp. 927-943, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Abdulhamid Zahedi, and Faryad Parma, “An Energy-Aware Trust-Based Routing Algorithm Using Gravitational Search Approach in 

Wireless Sensor Networks,” Peer-to-Peer Networking and Applications, vol. 12, pp. 167-176, 2019. [CrossRef] [Google Scholar] 

[Publisher Link] 

 

https://doi.org/10.1007/s12083-021-01116-3
https://scholar.google.com/scholar?q=A+hierarchical+secure+data+aggregation+method+using+the+dragonfly+algorithm+in+wireless+sensor+networks&hl=en&as_sdt=0,5
https://link.springer.com/article/10.1007/s12083-021-01116-3
https://doi.org/10.1007/s11276-019-01980-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MS+Yousefpoor%2C+Springer%2C+2020+DSKMS%3A+A+dynamic+smart+key+managements+systems+based+on+fuzzy+logic+in+wireless+sensor+network%2C&btnG=
https://link.springer.com/article/10.1007/s11276-019-01980-1
https://doi.org/10.1016/j.comcom.2018.11.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Yousefpoor%2C+Elsevier%2C+2019+Dynamic+keys+managements+algorithm+in+wireless+sensor+network%3A+A+survey&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0140366418303608
https://doi.org/10.1038/s41598-022-12181-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+energy-aware+and+Q-learning-based+area+coverage+for+oil+pipeline+monitoring+systems+using+sensors+and+Internet+of+Things&btnG=
https://www.nature.com/articles/s41598-022-12181-w
https://doi.org/10.1016/j.asoc.2022.108477
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CMML%3A+Combined+metaheuristic-machine+learning+for+adaptable+routing+in+clustered+wireless+sensor+networks&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1568494622000369
https://www.sciencedirect.com/science/article/abs/pii/S1568494622000369
https://doi.org/10.1016/j.adhoc.2021.102726
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+mobility+in+Wireless+Sensor+Networks&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+mobility+in+Wireless+Sensor+Networks&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1570870521002158
https://doi.org/10.3390/math9182251
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+area+coverage+schemes+based+on+fuzzy+logic+and+shuffled+frogs-leaping+algorithms+%28SFLA%29+in+heterogeneous+wireless+sensor+network&btnG=
https://www.mdpi.com/2227-7390/9/18/2251
https://doi.org/10.1016/j.jnca.2021.103118
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Secure+data+aggregation+methods+and+countermeasures+against+various+attacks+in+wireless+sensor+networks%3A+A+comprehensive+review&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Secure+data+aggregation+methods+and+countermeasures+against+various+attacks+in+wireless+sensor+networks%3A+A+comprehensive+review&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1084804521001375
https://doi.org/10.3390/electronics9101630
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Manuel%2C+mdpi%2C+2020+Optimizations+of+routing-based+clustering+approach+in+wireless+sensor+networks%3A+Review+and+open+research+issue&btnG=
https://www.mdpi.com/2079-9292/9/10/1630
https://doi.org/10.1109/JIOT.2022.3148106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=D2CRP%3A+A+novel+distributed+2-hop+cluster+routing+protocol+for+wireless+sensor+networks&btnG=
https://ieeexplore.ieee.org/document/9698400
https://doi.org/10.1007/s00607-022-01071-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wireless+sensor+networks%3A+A+survey%2C+categorization%2C+main+issues%2C+and+future+orientations+for+clustering+protocols&btnG=
https://link.springer.com/article/10.1007/s00607-022-01071-8
https://doi.org/10.1007/s11036-016-0683-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+secure+routing+protocol+with+trust+and+energy+awareness+for+wireless+sensor+network&btnG=
https://link.springer.com/article/10.1007/s11036-016-0683-y
https://doi.org/10.1007/s11276-015-1010-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+a+novel+trust-based+opportunistic+routing+protocol+for+wireless+networks&btnG=
https://link.springer.com/article/10.1007/s11276-015-1010-4
https://doi.org/10.1007/s12083-018-0654-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+energy-aware+trust-based+routing+algorithm+using+gravitational+search+approach+in+wireless+sensor+network&btnG=
https://link.springer.com/article/10.1007/s12083-018-0654-0


R. Kennady & K. Thinakaran / IJECE, 11(1), 86-100, 2024 

 

100 

[15] Deep Kumar Bangotra et al., “An Intelligent Opportunistic Routing Algorithm for Wireless Sensor Networks and Its Application 

towards e-Healthcare,” Sensors, vol. 20, no. 14, pp. 1-21, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[16] Thangaramya Kalidoss et al., “QoS Aware Trust Based Routing Algorithm for Wireless Sensor Networks,” Wireless Personal 

Communications, vol. 110, pp. 1637-1658, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Deep Kumar Bangotra et al., “A Trust Based Secure Intelligent Opportunistic Routing Protocol for Wireless Sensor Networks,” 

Wireless Personal Communications, vol. 127, pp. 1045-1066, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Adam Raja Basha, “Energy Efficient Aggregation Technique-Based Realizable Secure Aware Routing Protocol for Wireless Sensor 

Network,” IET Wireless Sensor Systems, vol. 10, no. 4, pp. 166-174, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[19] Liu Yang et al., “A Dynamic Behavior Monitoring Game-Based Trust Evaluation Scheme for Clustering in Wireless Sensor Networks,” 

IEEE Access, vol. 6, pp. 71404-71412, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[20] Nor Azimah Khalid, Quan Bai, and Adnan Al-Anbuky, “Adaptive Trust-Based Routing Protocol for Large Scale WSNs,” IEEE Access, 

vol. 7, pp. 143539-143549, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Mohammed Zaki Hasan, Fadi Al-Turjman, and Hussain Al-Rizzo, “Analysis of Cross-Layer Design of Quality-of-Service Forward 

Geographic Wireless Sensor Network Routing Strategies in Green Internet of Things,” IEEE Access, vol. 6, pp. 20371-20389, 2018. 

[CrossRef] [Google Scholar] [Publisher Link] 

[22] Boyuan Sun, and Donghui Li, “A Comprehensive Trust-Aware Routing Protocol with Multi-Attributes for WSNs,” IEEE Access, vol. 6, 

pp. 4725-4741, 2017. [CrossRef] [Google Scholar] [Publisher Link]  

[23] Richa Sharma, Vasudha Vashisht, and Umang Singh, “WOATCA: A Secure and Energy Aware Scheme Based on Whale Optimization 

in Clustered Wireless Sensor Networks,” IET Communication, vol. 14, no. 8, pp. 1199-1208, 2020. [CrossRef] [Google Scholar] 

[Publisher Link]  

[24] Changsun Shin, and Meonghun Lee, “Swarm-Intelligence-Centric Routing Algorithm for Wireless Sensor Networks,” Sensors, vol. 20, 

no. 18, pp. 1-13, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Amirhossein Barzin et al., “A Hybrid Swarm Intelligence Algorithm for Clustering-Based Routing in Wireless Sensor Networks,” 

Journal of Circuits, Systems and Computers, vol. 29, no. 10, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[26] Rajathi Natarajan et al., “Energy and Distance Based Multi-Objective Red Fox Optimization Algorithm in Wireless Sensor Network,” 

Sensors, vol. 22, no. 10, pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[27] Xingsi Xue et al., “A Hybrid Cross Layer with Harris-Hawk Optimization-Based Efficient Routing for Wireless Sensor Networks,” 

Symmetry, vol. 15, no. 2, pp. 1-25, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

 

 
 

https://doi.org/10.3390/s20143887
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+intelligent+opportunistic+routing+algorithms+for+wireless+sensor+network+and+its+applications+towards+e-healthcare&btnG=
https://www.mdpi.com/1424-8220/20/14/3887
https://doi.org/10.1007/s11277-019-06788-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Kalidoss%2C+QoS+aware+trusts-+based+routing+algorithms+for+wireless+sensor+networks&btnG=
https://link.springer.com/article/10.1007/s11277-019-06788-y
https://doi.org/10.1007/s11277-021-08564-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+trusts+based+secure+intelligent+opportunistic+routing+protocols+for+wireless+sensor+network&btnG=
https://link.springer.com/article/10.1007/s11277-021-08564-3#:~:text=This%20protocol%20(TBSIOP)%20is%20an,resources%20by%20the%20sensor%20nodes.
https://doi.org/10.1049/iet-wss.2019.0178
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+efficient+aggregation+technique-based+realizable+secure+aware+routing+protocol+for+wireless+sensor+network&btnG=
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-wss.2019.0178
https://doi.org/10.1109/ACCESS.2018.2879360
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+dynamic+behavior+monitoring+game-based+trust+evaluation+scheme+for+clustering+in+wireless+sensor+networks&btnG=
https://ieeexplore.ieee.org/document/8520800
https://doi.org/10.1109/ACCESS.2019.2944648
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nor+Azimah+Khalid%2C+Adaptive+trust-based+routing+protocols+for+large+scale+WSN&btnG=
https://ieeexplore.ieee.org/document/8853253
https://doi.org/10.1109/ACCESS.2018.2822551
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mohammed+Zaki+Hasan%2C+Analysis+of+cross-layer&btnG=
https://ieeexplore.ieee.org/document/8332487
https://doi.org/10.1109/ACCESS.2017.2786944
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+trust-aware+routing+protocol+with+multi-attributes+for+WSNs&btnG=
https://ieeexplore.ieee.org/document/8240887
https://doi.org/10.1049/iet-com.2019.0359
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=WOATCA%3A+a+secure+and+energy+aware+schemes+based+on+whale+optimizations+in+clustered+wireless+sensor+network&btnG=
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-com.2019.0359
https://doi.org/10.3390/s20185164
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Swarm-intelligence-centric+routing+algorithm+for+wireless+sensor+networks&btnG=
https://www.mdpi.com/1424-8220/20/18/5164
https://doi.org/10.1142/S0218126620501637
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+swarm+intelligence+algorithm+for+clustering-based+routing+in+wireless+sensor+networks&btnG=
https://www.worldscientific.com/doi/abs/10.1142/S0218126620501637?journalCode=jcsc
https://doi.org/10.3390/s22103761
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+and+Distance+Based+Multi-Objective+Red+Fox+Optimization+Algorithm+in+Wireless+Sensor+Network&btnG=
https://www.mdpi.com/1424-8220/22/10/3761
https://doi.org/10.3390/sym15020438
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Hybrid+Cross+Layer+with+Harris-Hawk+Optimization-Based+Efficient+Routing+for+Wireless+Sensor+Network&btnG=
https://www.mdpi.com/2073-8994/15/2/438

