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Abstract - In modern agriculture, monitoring and maintaining optimal atmospheric conditions are critical for crop health and 

productivity. Wireless Sensor Networks (WSNs) have emerged as a valuable technology for collecting real-time data from 

agricultural environments. However, deploying WSNs in agriculture exposes them to security threats, making intrusion 
detection essential. We propose an Energy-Sensitive Clustering algorithm with an X-Layer Intrusion Detection System (XL-

IDS) tailored for agriculture atmosphere monitoring using WSNs to address this challenge. Our IDS leverages the unique 

characteristics of WSNs and employs an X-layer approach to enhance detection accuracy while minimizing energy 

consumption. The system monitors WSN protocol stack layers, including the physical, data connection, network, and 

application layers, to identify and mitigate intrusions effectively. Our system employs clustering algorithms to optimize energy 

usage to organize sensor nodes efficiently. This reduces the communication overhead and extends the network’s lifetime. The 

IDS model provides real-time alerts to farmers and agricultural operators, allowing them to take immediate action when 

security threats or anomalies are detected, thereby safeguarding the data and the crops. 

Keywords - Wireless Sensor Network, Precision agriculture, X-Layer Intrusion Detection System, Atmosphere monitoring, 

Energy-sensitive clustering. 

1. Introduction 
Agriculture has endured a remarkable transition in recent 

years, propelled by technological developments ushered in 

the era of precision agriculture. In this new paradigm, 

farmers and growers harness data-driven insights to optimize 

crop yields, reduce resource waste, and ensure food security 

for an ever-growing global population [1]. WSNs have 

emerged as a pivotal technology in this transformation, 
enabling real-time data collection from agricultural 

environments [2]. These networks, composed of numerous 

tiny sensor nodes, provide critical information about soil 

conditions, weather patterns, and atmospheric parameters to 

help farmers make informed decisions [3]. 

However, the proliferation of WSNs in agriculture has 

introduced a new dimension of concern - security [4]. As the 

number of deployed sensor nodes increases and these nodes 

become increasingly interconnected, they become vulnerable 

to various security threats. Unauthorized access, data 

tampering, and disruption of network services can jeopardize 
the integrity of collected data and crops’ overall health and 

productivity [5].  

In this context, IDS have become indispensable tools for 
safeguarding agricultural sensor networks [6]. Traditional 

IDS solutions designed for conventional networks may not 

directly apply to the unique characteristics and constraints of 

WSNs [7, 8]. Wireless sensor nodes are resource-

constrained, operate on limited battery power, and are often 

deployed in remote and harsh environments [9]. 

Consequently, there is a pressing need for energy-efficient 

and context-aware intrusion detection mechanisms 

specifically tailored for agriculture atmosphere monitoring 

using WSNs [10]. 

This paper introduces an innovative Energy-Efficient 

XL-IDS designed explicitly for the unique challenges posed 
by agriculture atmosphere monitoring using Wireless Sensor 

Networks. Our XL-IDS not only enhances the security of 

WSNs in agricultural settings but also optimizes energy 

consumption, extending the operational lifetime of sensor 

nodes and improving the sustainability of precision 

agriculture. In the following sections, we will explore the 

design, implementation, and evaluation of our proposed XL-

IDS. We will explore the X-layer approach that integrates 
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insights from various protocol layers to enhance intrusion 

detection accuracy. Additionally, we will discuss the energy-

aware clustering mechanisms employed to reduce 

communication overhead and improve network longevity. 

Real-world deployment scenarios and performance 

evaluations will demonstrate the effectiveness and 
practicality of our energy-efficient XL-IDS in ensuring the 

security and reliability of agriculture atmosphere monitoring 

systems. 

In agriculture atmosphere monitoring, the 

implementation of IDS using WSN plays a pivotal role in 

ensuring the integrity and reliability of data gathered from 

agricultural environments. However, despite advancements 

in this field, a noticeable research gap persists in developing 

an energy-efficient X-Layer IDS tailored specifically for 

agriculture atmosphere monitoring. Given the resource-

constrained nature of sensor nodes deployed in vast 

agricultural landscapes, this gap arises from the need to 
enhance energy use efficiency in WSNs. 

This research addresses the identified gap by introducing 

a novel Energy-Efficient X-Layer Intrusion Detection 

System designed explicitly for agriculture atmosphere 

monitoring. The fundamental motivation behind this work is 

to enhance the sustainability and longevity of WSNs in 

agricultural settings, where traditional intrusion detection 
systems may fall short due to their energy-intensive nature. 

2. Related Works 
IDS may be used with wireless sensors to identify 

intrusions in farm fields and deliver an alarm message to the 

user. The system is built on the Message Queue Telemetry 

Transport protocol [11], which allows information to be sent 

between internet-connected devices. The globe is facing a 
significant obstacle in the form of a lack of fresh water, and 

it is expected that this predicament will become much direr 

in the years to come. Because of the difficulties described 

above, intelligent irrigation and precision farming are the 

only alternatives likely to be successful. This article [12] 

outlines a methodology for identifying and categorizing 

intrusions into the Internet of Things networks used in 

agricultural settings. 

This article suggested a Federated Learning-based 

Intrusion Detection System (FELIDS) to protect agricultural 

Internet of Things infrastructures [13]. To be more specific, 

the FELIDS system safeguards data privacy via the process 

of local learning. In this method, devices get an advantage 

from the collective wisdom of their contemporaries and only 

share model updates with an aggregate server, which 

ultimately results in an enhanced detection model. An 

Intrusion Detection System (IDS) model was developed in 

this study [14]. It uses a deep learning method, a 

conditionally generative adversarial network, and the 

addition of an XGBoost classifier for quicker comparison 
and visualization of findings. 

Because attack scenarios have evolved, finding a 

practical and ideal network IDS that receives regular updates 

has become difficult. This is the reason why this article [15] 

pulls together publically accessible intrusion datasets and 

Machine-Learning approaches that have been used in recent 

intrusion detection systems to illustrate both present-day 

issues and potential prospects.  

To solve the deficiencies of current WSNs regarding 

energy efficiency, our suggested model incorporates high-

performance information that offers a platform for WSNs to 
assist agricultural output better. This is done to overcome the 

weaknesses of existing WSNs. This research [16] 

demonstrates the benefits of the suggested method over 

previous strategies in conserving energy in WSN and in 

monitoring the process of conserving water. 
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The authors of this study [17] use advanced image 

recognition algorithms in intelligent sensor networks to 

thoroughly examine and analyze the environmental 

profitability of precision farming. Their discoveries can be 

discovered in the subsequent sentences. Filtering and 

thresholding convert the analog signal generated from the 
wireless sensor network into a digital signal. This phase is 

essential for completing the data preparation for sensor 

monitoring before doing digital information analysis. 

Industry 4.0 can generate a novel revolution by offering 

smart, safe, self-sufficient, and adaptable networks. Internet 

of Things nodes may be grouped using a clustering technique 

to form clusters, enhancing networks’ efficiency, durability, 

and stability [18]. 

IoT sensors enable farmers to remotely regulate their 

crops and agricultural fields, opening up new possibilities for 

precision agriculture. Recent studies have focused on 

improving the safety and protection offered by precision 
agriculture [19]. A situational or dynamic security approach 

must have a secure Internet of Things network.  

Adaptive security, a cybersecurity-based strategy, is one 

advanced security solution that can improve the security of 

the Internet of Things [20]. Agriculture is the most important 

factor in maintaining global equilibrium; with the help of 

precision farming, Internet of Things smart agri-sensors, and 

other intelligent approaches, food production is continuous 

and balanced. If these cutting-edge technologies are 

subjected to intrusion assaults, the equilibrium may be upset; 

to avoid these problems, an IDS is required to guarantee 
security and privacy to wireless sensor networks [21]. The 

Internet of Things is relevant to many application areas, such 

as the smart grid, agriculture, and medical care. The goal of 

this article [22] is to give a thorough survey on the function 

of IoT in the livestock industry by classifying and 

synthesizing previous research work done in this area. The 

survey will be presented in the form of an article. These two 

technologies are ushering in a new age of precision 

agriculture, replacing traditional farming methods. This 

study [23] aims to use IoT and UAV technologies in 

agricultural settings. 

The research introduced the Automated Machine 
Learning model [24] to provide intrusion detection and 

prevention techniques. Cyberattacks can turn off the 

operation of Internet of Things apps entirely. With Artificial 

Intelligence and, more specifically, deep learning algorithms, 

the authors of this research [25] investigate the risks 

associated with using intelligent agricultural applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 2 Overall agriculture for energy-sensitive clustering and XL-IDS for WSN 
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Existing research predominantly focuses on general 

intrusion detection systems and their application in diverse 

environments, with limited attention given to the unique 

challenges of agriculture settings. While studies have 

explored using WSNs for intrusion detection, few have 

explicitly addressed the energy constraints inherent in 
agriculture-specific deployments. This research fills this gap 

by proposing an energy-efficient X-Layer Intrusion 

Detection System, recognizing sensor nodes’ distinct energy 

challenges in expansive agricultural landscapes. 

However, energy efficiency is a critical consideration in 

the design and operation of IDS for agriculture atmosphere 

monitoring using WSN. This may be overcome by 

optimizing the WSN’s energy consumption to prolong the 
lifespan of the sensors and minimize maintenance 

requirements by energy-efficient routing protocols. 

3. Proposed Model 
Our proposed model is designed to discuss the 

challenges and requirements of securing WSNs in 

agricultural environments while optimizing energy 
consumption. Sensor nodes are the low-power sensor devices 

deployed throughout the agricultural field responsible for 

collecting environmental data.  

Each sensor node is equipped with sensors for 

monitoring various atmospheric parameters such as 

temperature, humidity, and gas concentrations. Sensor nodes 

are organized into clusters to optimize energy consumption 

by implementing an Energy-Sensitive Clustering algorithm. 

Cluster Heads (CH) are responsible for aggregating data 

from member nodes, processing initial data, and relaying 

information to the Base Station (BS).  

Cluster-based network topologies are commonly used in 

various networks to improve efficiency, scalability, and 

manageability. BS collects data from cluster heads, processes 

intrusion detection information, and communicates with the 

external world, including notifying farmers or operators of 

security incidents.  

Cluster heads are liable for gathering and forwarding 

data to the BS, reducing energy-intensive long-distance 

communication. We integrated energy-sensitive clustering 

with the XL-IDS Model. It operates at multiple protocol 

layers, including the physical, data link, network, and 
application layers, enabling cross-layer analysis for intrusion 

detection. The IDS employs anomaly detection techniques to 

identify deviations from expected behavior and intrusion 

patterns. Our proposed IDS provides real-time alerts to 

farmers or operators when an intrusion or anomaly is 

detected. 

 

Mathematical model for energy-aware clustering 

Notation: 

N - The total amount of sensor nodes that are part of the 

network. 

D - Diameter of the sensor field (maximum distance 

between any two nodes). 

T - Time slots of monitoring window. 

Ei(t) - Energy level of sensor node i at time t. 

Emax - Maximum energy volume of a sensor node. 

Eth - Energy threshold for node operation. 

R - Radius for cluster formation. 

Ci(t) - Cluster head selection probability for node i at 

time t. 

S - Set of sensor nodes. 

M - Number of cluster head nodes. 

CH - Set of cluster head nodes. 

NCH - Set of non-cluster head nodes. 

TCH - Time for cluster head selection. 

Dij - Distance between nodes i and j. 

W - Set of neighboring nodes within radius R of node i. 

Pi - Power consumption of sensor node i in a given time 

slot. 

Di - Data transmission rate of sensor node i. 

L - Number of protocol layers analyzed by the IDS. 

R - Detection rate of the IDS. 

F - False positive rate of the IDS. 

C - Communication overhead in bits. 

I - Number of detected intrusions. 

Tdata - Time taken to transmit data to the Base Station. 

Ttotal - Total time for IDS operation. 

W - Window size for cross-layer analysis. 
 

3.1. Energy Model 

3.1.1. Energy Consumption in Transmitting Data 

𝑃𝑡𝑥 =  
𝐸𝑡𝑥

𝐸𝑒𝑙𝑒𝑐
. 𝑑2  

The energy used up to transmit a bit of information over 

a distance d, where 𝐸𝑡𝑥 is the energy required to 

communicate a bit and 𝐸𝑒𝑙𝑒𝑐 is the energy required to run the 
radio. 

3.1.2. Energy Consumption in Receiving Data 

𝑃𝑟𝑥 =  
𝐸𝑟𝑥

𝐸𝑒𝑙𝑒𝑐
  

The energy consumed to receive a bit of data where 𝐸𝑟𝑥 
is the energy required to receive a bit. 

3.2. Cluster Head Selection 

3.2.1. Cluster Head Selection Probability 

𝐶𝑖(𝑡) =  
𝐸𝑖(𝑡)

𝐸𝑚𝑎𝑥
 . (1 −

𝐸𝑖(𝑡)

𝐸𝑡ℎ
) .

1

|𝑊|
  

 



S. Helga Selvin & A. Devi / IJECE, 11(1), 150-161, 2024 

154 

The Probability of node I becoming a cluster head to 

time t is based on its energy level, energy threshold, and the 

number of neighboring nodes within radius R. 

3.3. Cluster Formation 

3.3.1. Cluster Formation Criterion 

 Node i becomes a cluster head at time t if 𝐶𝑖(𝑡) >
𝐶𝑗(𝑡) for all j ∈ W. 

 The node with the highest cluster head selection 

probability in its neighbourhood becomes the cluster 

head. 

3.3.2. Number of Cluster Heads 
|𝐶𝐻| =  ∑ 𝛿𝑖(𝑡)𝑖∈𝑆   

The total number of cluster heads is the sum of the 

indicator variables. 𝛿𝑖(𝑡) representing whether node i 

becomes a cluster head at time t. 

3.4. Energy-Efficiency Metric 

Energy - efficiency metric for Clustering measures the 
ratio of the number of cluster heads to the total energy 

consumed for communication. 

Energy − Efficiency =  
|𝐶𝐻|

∑ (𝑃𝑡𝑥+𝑃𝑟𝑥)𝑖∈𝑆
  

The above mathematical model provides a framework 

for the Energy-Sensitive Clustering algorithm’s key 
components and contribution of energy-efficient cluster 

formation in WSNs. 

3.5. XL-IDS 
XL-IDS are the component that facilitates 

communication between the various levels and apps. It 

basically consists of two components: the interaction 

interface and the X-layer Interface. The interaction interface 

facilitates communication between the layers and 

applications and the X-Layer system.  

These methodologies are used to obtain or refresh data. 

The framework for XL-IDS is illustrated in Figure 3.  In this 

framework, a Sensor Node (SN) monitors its neighbor node 

by estimating the trust value at each layer, such as physical, 

MAC, and network. Several attacks are primarily directed 

against the network layer, which is used for data routing in 

the network. Hence, the system only considers these three 

layers for estimating an SN’s final reliability. First, the trust 

parameters are selected to compute the trust at every layer. 

The trust parameters pertaining to the physical layer include 
the energy dissipation of an SN and the quantity of messages 

received from such SN. The trust parameters at the MAC 

layer include the back-off time and the count of successfully 

executed transmissions. The trust parameters pertaining to 

the network layer include the specified number of hops. The 

suggested IDS utilizes an X-layer design that leverages the 

interaction and cooperation of three contiguous levels within 

the OSI model: the network, Mac, and physical layers. As 

seen in Figure 4, the measured signal intensity for a wireless 

medium directly correlates with the spatial separation of 

nodes. The fundamental concept behind our IDS is 

identifying unauthorized individuals when they attempt to 
communicate with the various nodes within the network. 

After receiving RTS packets from the invading node, the 

detection method examines if the targeted node is a 

neighbouring node in the routing path.  

Consequently, if a node is excluded from the routing 

path and attempts to establish communication by receiving 

RTS packets from the sensor nodes, it is promptly 

recognized as an unauthorized entity. In the absence of 
explicit authentication via RSSI, it becomes challenging to 

ascertain the true origin of a packet received by a node. 

TinyOS, an emerging embedded operating system, has been 

designed with the functionality to get the Received Signal 

Strength Indicator (RSSI) value. Integrating the Received 

Signal Strength Indicator (RSSI) value with the 

neighbourhood routing database significantly enhances the 

detection capability. 

3.6. Energy Consumption Model 

3.6.1. Energy Consumption in Data Transmission 

𝑃𝑖(𝑡) = 𝐷𝑖 ⋅ 𝐸𝑖(𝑡)  

Energy consumption of sensor node i in a given time slot 

is proportional to its data transmission rate and current 

energy level. 

Energy Depletion 

𝐸𝑖(𝑡 + 1) = 𝐸𝑖(𝑡) − 𝑃𝑖(𝑡)  

The energy level of sensor node i decreases over time 

due to power consumption. 

Node Deactivation 

Sensor nodes with energy levels below a threshold Eth 

deactivate and stop participating in network operations. 

3.7. Intrusion Detection Model 

Figure 5 provides a comprehensive overview of the 

various options available for evaluating the legitimacy of a 

node. In due course, the proposed algorithm is anticipated to 

result in a higher proportion of accurate positive and negative 

outcomes while reducing the proportion of erroneous 

positive and negative outcomes. 

3.7.1. Cross-Layer Analysis 

𝐼𝐷𝑆𝐶𝐿 =  𝐼𝐷𝑆𝑃𝐻  ∩  𝐼𝐷𝑆𝐷𝐿  ∩ 𝐼𝐷𝑆𝑁𝐿  ∩  𝐼𝐷𝑆𝐴𝐿  

The Intrusion Detection System’s output at each 

protocol layer is combined through logical intersection to 

generate a cross-layer intrusion detection result. 
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Detection Rate and False Positive Rate 

𝑅 =  
𝐼

𝐼𝑡𝑜𝑡𝑎𝑙
  

𝐹 =  
𝐹𝑃

𝐼𝑡𝑜𝑡𝑎𝑙
  

Detection and false positive rates are calculated based on 

the number of detected intrusions (I) and total intrusions 

(Itotal). 

3.8. Network Operation Model 

Energy-Sensitive Clustering: The energy-efficient 
clustering algorithm selects cluster heads that minimize 

energy consumption for data aggregation and transmission. 

𝐶 =  ∑ 𝐶𝑖
𝑁
𝑖=1   

Total communication overhead is the sum of 

communication overhead for each sensor node. 

Network Lifetime: The network lifetime is determined 

by the time at which the first sensor node deactivates. 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =  𝑚𝑖𝑛𝑖 (
𝐸𝑖(0)

𝑃𝑖
)   

It is the minimum time among all sensor nodes depletion 

times. 

3.8.1. Energy – Efficiency Metric 

𝐸𝑛𝑒𝑟𝑔𝑦 − 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑
  

It measures the amount of data sent per unit of energy 

consumed. Maximizing energy efficiency is essential to 

prolong the lifespan of the sensors, minimize maintenance 
requirements, and reduce overall operational costs. Reduce 

the frequency of data collection to the minimum required for 

accurate monitoring while ensuring that essential events or 

anomalies are captured.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Fig. 3 Proposed XL-IDS model 
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Fig. 4 Proposed XL-IDS model 
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4. Results and Discussions 
Evaluation of the efficacy of our system for intrusion 

detection is conducted with the network simulator NS2. The 

simulation employs an experimental model of 100 randomly 

dispersed nodes on a square area of 100 × 100 m², as seen in 

Figure 6. Table 1 presents a comparative analysis of the 

accuracy of the proposed frameworks and current approaches 

in identifying IDS in WSN. 

Figure 7 shows that the detection accuracy of the 
proposed Energy Efficient XL-IDS is better than the existing 

methods. The proposed Energy Efficient XL-IDS produces a 

higher detection accuracy of 95.43%, whereas the CIDS 

method metric is 94.21%, and the Auto-IDS method metric is 

93.6%, higher than other existing models. The proposed 

method produces better detection accuracy than the current 

security methods. Table 2 presents a comparative analysis of 

the detection rate achieved by the suggested technique in 
contrast to standard methods. The results demonstrate that 

the proposed methodology attains a detection rate of 95.2% 

when confronted with a single attacker. The system’s 

scalability is shown by its capacity to achieve a detection rate 

of 94.2% when the number of attackers was raised to 10, as 

seen in Figure 8. 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Experimentation model 

Table 1. Comparison of detection accuracy 

Authors Methods Detection Accuracy 

Anand et al. [19] AgroKy 85.27 

Sood et al. [14] Conditional IDS 90.43 

Chakravarthy et al. [11] MQTT 91.6 

Friha et. al [13] FELIDS 93.4 

Singh et al. [24] Auto-IDS 93.6 

Mansour et al. [18] CIDS 94.21 

Proposed Model Energy Efficient XL-IDS 95.43 

 

 
Fig. 7 Detection accuracy comparison between proposed and existing models 
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Table 2. Comparison of detection rate 

Number of 

Attackers 
AgroKy Conditional IDS MQTT FELIDS Auto-IDS CIDS 

Energy Efficient 

XL-IDS 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

91.3 

91.2 

91.16 

91.1 

90.98 

90.87 

90.63 

90.51 

90.43 

90.12 

92.86 

92.68 

92.45 

91.99 

91.75 

91.63 

91.6 

91.59 

91.38 

91.15 

93.72 

93.65 

93.15 

92.84 

92.74 

92.63 

92.55 

92.5 

92.45 

92 

93.99 

93.89 

93.86 

93.86 

93.81 

93.78 

93.72 

93.65 

93.65 

93.62 

94.98 

94.92 

94.89 

94.79 

94.67 

94.56 

94.12 

93.98 

93.9 

93.72 

94.86 

94.80 

94.6 

94.56 

94.32 

94.23 

94.17 

94.15 

94.04 

94.01 

95.2 

95.12 

95.02 

94.98 

94.68 

94.65 

94.35 

94.21 

94.05 

94.02 

 

 
Fig. 8 Comparison of detection rate 

Table 3 presents a comparative analysis of the False 

Positive Rate (FPR) between the proposed model and 

existing techniques. The findings indicate that the proposed 

model yields a false positive rate of 0.01 when confronted 

with a single attacker. The scalability of the method is 

demonstrated by achieving a detection rate of 0.09% when 

the number of attackers was increased to 10, as illustrated in 
Figure 9. Table 4 presents a comparative analysis of energy 

consumption between the proposed method and conventional 

methodologies.  

The process under consideration demonstrates an energy 

consumption of 1294.35 mJ over a simulation duration of 

100 seconds. The proposed method in this study resulted in 

an energy consumption of 1194.64 mJ over a simulation time 

of 500 seconds, as depicted in Figure 10. 

Table 3. Comparison of false positive rate 

Number of 

Attackers 
AgroKy Conditional IDS MQTT FELIDS Auto-IDS CIDS 

Energy Efficient 

XL-IDS 

1 

2 

3 

4 
5 

6 

7 

8 

9 

10 

0.1 

0.16 

0.18 

0.23 
0.27 

0.36 

0.48 

0.52 

0.58 

0.6 

0.14 

0.17 

0.21 

0.27 
0.31 

0.37 

0.41 

0.46 

0.52 

0.54 

0.1 

0.17 

0.18 

0.21 
0.25 

0.3 

0.31 

0.38 

0.41 

0.49 

0.05 

0.09 

0.12 

0.15 
0.18 

0.2 

0.21 

0.25 

0.29 

0.33 

0.08 

0.1 

0.11 

0.15 
0.17 

0.19 

0.24 

0.25 

0.27 

0.28 

0.01 

0.04 

0.06 

0.07 
0.07 

0.09 

0.1 

0.12 

0.13 

0.15 

0.01 

0.01 

0.02 

0.03 
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Fig. 9 Comparison of false positive rate 

Table 4. Comparison of energy consumption models 

Simulation 

Time 
AgroKy Conditional IDS MQTT FELIDS Auto-IDS CIDS 

Energy Efficient 

XL-IDS (mJ) 

100 

150 

200 

250 

300 

350 

400 

450 

500 

1198.36 

1184.26 

1176.25 

1161.14 

1152.28 

1149.37 

1133.39 

1121.98 

1119.63 

1199.96 

1193.62 

1184.63 

1158.15 

1147.97 

1138.36 

1121.97 

1117.54 

1116.63 

1204.12 

1201.36 

1198.29 

1187.98 

1184.96 

1176.98 

1163.16 

1158.11 

1134.15 

1226.39 

1218.63 

1216.28 

1211.14 

1208.38 

1197.63 

1186.42 

1171.38 

1163.11 

1263.67 

1216.56 

1219.73 

1214.65 

1210.53 

1199.61 

1192.48 

1175.43 

1172.16 

1279.72 

1223.56 

1228.72 

1216.75 

1235.63 

1215.63 

1198.26 

1189.52 

1186.26 

1294.35 

1235.24 
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1204.64 

1198.35 

1198.24 

1196.37 

1195.46 

1194.64 

 
Fig. 10 Comparison of energy consumption in mJ 

Hence, the strategy mentioned above has exhibited a 

greater lifespan through the effective utilization of energy to 
accomplish the data transfer process. Figure 11 illustrates the 

analysis of network lifetime by considering the number of 

nodes and the running time of the proposed model. By 

addressing energy consumption at various levels, our system 
minimizes redundant data transmissions and reduces the 

overall energy overhead associated with intrusion detection. 
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Fig. 11 Network lifetime of proposed model 

5. Conclusion 
Developing and implementing an Energy-Sensitive 

Clustering Algorithm within an XL-IDS model for 

agriculture atmosphere monitoring using WSN significantly 

enhances the efficiency, security, and sustainability of 

modern precision agriculture. This technology leverages the 
unique characteristics of WSNs and addresses the specific 

challenges posed by agriculture atmosphere monitoring. An 

energy-sensitive clustering algorithm for optimizing network 

performance and extending the operational lifetime of sensor 

nodes. Our algorithm considers the energy levels of 

individual nodes, their proximity to neighbors, and their 

suitability to serve as cluster heads. This approach ensures 

that cluster heads are selected judiciously, minimizing 

energy-intensive long-distance communication and 

facilitating efficient data aggregation.  

Our model incorporates cross-layer intrusion detection 

mechanisms that operate at multiple protocol layers, thereby 

enhancing the accuracy of intrusion detection to 95.43 % 

while minimizing false positives and negatives. By analyzing 

data and events across these layers, our system can detect 

anomalies and intrusion patterns more effectively, 

safeguarding the integrity of collected data and the overall 
health of crops. 
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