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Abstract - Chronic Kidney Disease (CKD) is a widespread and potentially fatal ailment that impacts millions of individuals 

globally. Early detection and timely intervention play a crucial role in preventing disease progression and improving patient 

outcomes. In recent years, advancement in Machine Learning (ML) and data analytics has shown promising potential for aiding 

the diagnosis and management of diseases. This study investigates the utilization of the CNN LSTM hybrid model to detect CKD 

using CSV data. To ensure the study’s efficiency, the dataset is collected from the Kaggle repository. The dataset contains 400 

samples with 37 different attributes for each sample. The prepared data is utilized for the prediction process, where a CNN is 

employed. The LSTM network used in this model analyzed the temporal dependencies and patterns in sequential data. The 

performance of the model was assessed using different performance metrics, resulting in an impressive accuracy rate of 98.75%. 

The results of this paper carry substantial significance in the progression of Deep Learning (DL) oriented diagnostic instruments 

for the prompt detection and management of CKD. 

Keywords - Long Short-Term Memory networks, Deep Learning, Kidney function, Machine Learning, Chronic Kidney Disease.  

1. Introduction 
Kidneys are vital organs responsible for various crucial 

functions in the body. It performs the filtration of waste 

products and surplus compounds from the bloodstream, 

manages the equilibrium of fluids and electrolytes, upholds 

the body’s acid-base balance [1], and generates hormones 
responsible for blood pressure regulation [2]. The outer region 

of the kidney is known as the renal cortex [3]. It contains 

millions of tiny filtering units called nephrons [4], which are 

responsible for the kidney’s primary function - filtering the 

blood to remove waste products, excess substances, and 

toxins.  

The inner section of the kidney, known as the renal 

medulla, has a vital function in concentrating urine by 
absorbing water and retaining it in the body, which is essential 

for maintaining proper hydration and conserving water in 

times of fluid scarcity [5]. In Figure 1, both normal and CKD 

images are depicted side by side for comparison. The renal 

pelvis serves as the central collection area within the kidney, 

where urine from multiple nephrons is accumulated. However, 

the kidneys are susceptible to various diseases, with the major 

one being CKD, where kidney function gradually deteriorates 

over time, often due to conditions like diabetes and 

hypertension [6]. It is a progressive and irreversible condition 

that can lead to kidney damage and a decline in kidney 
function. CKD is often asymptomatic in its early stages, which 

makes it challenging to detect without proper screening and 

testing.  

Marked by a sudden and severe drop in kidney function, 

Acute Kidney Injury (AKI) is a notable condition often 

brought about by infections, dehydration [7], or specific 

medications. Other major kidney diseases include kidney 

stones [8], Polycystic Kidney Disease (PKD) [9], 

glomerulonephritis, and kidney cancer. These diseases can 

have severe consequences for overall health and may require 

early detection and appropriate medical intervention to 

manage effectively.  

CKD is commonly categorized into various stages 

according to the estimated Glomerular Filtration Rate (eGFR) 

[10], which reflects the kidneys’ blood filtering rate. The 

stages range from Stage 1 to Stage 5. Diabetes, hypertension, 

glomerulonephritis, and polycystic kidney disease are among 

the common factors leading to CKD. Early stages of CKD 

may be asymptomatic or present with mild symptoms, such as 

fatigue, frequent urination, and swollen ankles [11]. As the 

disease progresses, more severe symptoms can occur, 

including nausea, loss of appetite, difficulty concentrating, 

and changes in urine output. Additionally, CKD increases the 
risk of other complications, such as cardiovascular disease, 

anaemia, and bone disorders. Figure 2 illustrates the different 

stages of CKD based on eGFR levels. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Normal and CKD image

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 CKD stages based on eGFR 

Diagnosis of CKD involves assessing kidney function 

through blood tests and urine tests to detect abnormal levels 

of creatinine, Blood Urea Nitrogen (BUN), and protein in the 

urine [12]. Imaging studies like ultrasound or CT scans [13] 

can help identify kidney abnormalities.  

The objectives of treatment include decelerating CKD 

advancement, handling symptoms, and averting 

complications. Lifestyle modifications, such as dietary 
changes and blood pressure control, are essential components 

of CKD management. Kidney transplantation or dialysis 

might become essential in later stages to restore kidney 

function [14]. 

Early detection allows for better management of 

underlying conditions, like diabetes and hypertension, which 

are often associated with CKD [15]. By identifying CKD at an 

early stage, healthcare providers can implement measures to 

preserve kidney function, enhance the patient’s quality of life, 

and reduce the burden on healthcare systems by minimizing 

the need for costly and intensive treatments like dialysis or 

kidney transplantation [16]. Regular check-ups and adherence 

to medical advice are essential for individuals at risk or 

diagnosed with CKD.  

Challenges in traditional prediction methods for CKD 
include limited data features that may not fully capture the 

complexities of the disease, difficulty in handling non-

linearity and interactions among variables affecting CKD 

progression, and issues related to managing missing data 

effectively [12]. These limitations can lead to less accurate 

predictions and hinder the ability to identify high-risk 

individuals early, potentially impacting timely interventions 

and personalized treatment strategies for better patient 
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outcomes. Accurate prediction models of CKD are essential to 

enable early identification of high-risk individuals, facilitating 

timely interventions and personalized treatment [17] plans.  

By identifying those at risk, healthcare providers can 

implement preventive measures and allocate resources more 

efficiently, reducing disease progression and potentially 
alleviating the burden on healthcare systems. These models 

play a crucial role in promoting proactive management of 

CKD, enhancing patient quality of life, and potentially 

reducing healthcare costs associated with advanced stages of 

the disease. The combination of CNN and LSTM networks 

[18] holds excellent potential for predicting CKD due to their 

complementary strengths. CNNs excel at extracting spatial 

features from medical images, providing valuable information 

about the kidney’s structure and morphology.  

On the other hand, LSTM networks are proficient in 

capturing temporal dependencies and patterns in time-series 

data, like longitudinal patient records. Through the fusion of 
these two architectures, the model can skillfully harness 

spatial and temporal information, facilitating a more holistic 

grasp of the intricate progression of CKD. This fusion 

enhances predictive accuracy, facilitates early identification of 

at-risk individuals and leads to improved CKD management 

and patient outcomes. While previous research has shown that 

integrating different neural network architectures can be 

effective, more thorough studies are required to examine the 

possible advantages of integrating not only different deep 

learning models but also taking non-neural network 

techniques into account.  

Furthermore, there is little investigation of interpretability 

and explainability features in the context of CKD detection, 

and there is disagreement on the best combination of tactics 

and ensemble sizes. By filling in these research gaps, 

ensemble models for chronic kidney disease diagnosis could 

become more reliable and accurate, and they could also be 

easier to understand. The significant contribution of this 

research work includes: 

 A novel deep learning-based hybrid model for the 

detection of CKD. 

 Performance evaluation and comparison of the proposed 

method with existing methods.  

2. Literature Review 
Ma et al. [19] introduced a method for detecting, 

segmenting, and diagnosing chronic renal failure within the 

context of the Internet of Medical Things (IoMT) platform. 

Moreover, the proposed approach combines elements of SVM 

and MLP with the Backpropagation (BP) algorithm. The 

primary data input for the algorithm is an ultrasound image, 

which undergoes preprocessing, followed by the segmentation 

of the kidney region of interest within the ultrasound image. 

The method is computationally intensive and requires 

powerful hardware resources, such as GPUs or TPUs, for 

efficient training and inference. 

A popular deep-learning CNN architecture is employed 

by Cruz et al. [20] to automatically identify and select the 

appropriate range of slices within the CT images that 

encompass the kidneys, facilitating the subsequent kidney 
segmentation process. KiTS19 database with CT images was 

acquired to carry out the experiments. The selection of slices 

containing kidneys to be segmented was accomplished using 

the AlexNet network, as employed by the authors. The use of 

AlexNet in this context presents a challenge due to its deep 

architecture, which demands a substantial amount of memory. 

This memory requirement can become a limitation, mainly 

when dealing with large datasets or resource-constrained 

computing environments. A significant drawback of this study 

is the lack of consistent, measurable enhancement in kidney 

segmentation resulting from the steps aimed at scope 

reduction and false positive reduction. 

The approach introduced by Kriplani et al. [21] involves 

a deep neural network that forecasts the existence or absence 

of CKD. This study utilizes the CKD dataset from the UCI ML 

Repository. A large amount of data is needed to generalize 

well, which can be a limitation when dealing with small or 

imbalanced CKD datasets. 

Al Imran et al. [22] stated that their primary focus in the 

research was to apply three modern ML techniques to 

diagnose CKD and determine the most effective technique by 

assessing their diagnostic performance. The real-time dataset 

is collected for the study. Upon assessment of these methods, 
the authors determined that the feedforward neural network 

exhibited the highest proficiency as a technique for diagnosing 

CKD. 

Akter et al. [23] employed several clinical features of 

CKD and implemented seven advanced deep-learning 

algorithms for predicting and classifying CKD. The proposed 

algorithms utilized artificial intelligence techniques to extract 

and evaluate features. One limitation of the study is the small 

dataset size, potentially compromising the reliability of the 

results. 

Amirgaliyev et al. [24] presented an automated 

classification algorithm for diagnosing kidney disease. It 
utilizes noninvasive and cost-effective factors like clinical 

history, physical exams, and lab tests. They assessed the SVM 

classifier with linear kernels to optimize sensitivity, 

specificity, and accuracy. However, the study lacks an in-

depth exploration of potential drawbacks and contrasts with 

other medical methods in terms of screening and diagnosis. 

Qin et al. [25] presented an ML approach to diagnose 

CKD. Real-time dataset was collected for the study, but it 

contained numerous missing values. To tackle this problem, 
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KNN imputation was utilized, entailing the utilization of 

measurements from the nearest samples to fill in missing data 

for each incomplete sample. The model’s ability to perform 

well on new data might be constrained, and it is unable to 

assess the severity of CKD since the dataset contains only two 

categories: “ckd” and “notckd.” Rashed et al. [26] created 
machine learning models utilizing specific essential 

pathological categories to detect clinical test attributes that can 

facilitate precise and early diagnosis of CKD. The data with 

labelled samples was gathered from hospital-based resources. 

Employing empirical analysis of diverse ML techniques, 

Khan et al. [27] categorized a dataset of kidney patients into 

two distinct groups: CKD and NOTCKD. 25 attributes 

describe each instance in the dataset. Seven different ML 

techniques were employed for classification. To assess the 

performance of these techniques, the authors used distinctive 

evaluation measures. Implementing and tuning seven different 

machine-learning approaches can be time-consuming and 
complex.  

Chittora et al. [28], seven different classifier algorithms 

were employed. The authors used the CKD dataset from the 

UCI repository. The results indicate that the SMOTE 

technique proved to be the most effective method for 

balancing the dataset. Employing and optimizing seven 

distinct machine-learning approaches can be a time-

consuming and intricate process. Furthermore, it was observed 

that SMOTE achieved superior outcomes when applied to the 

selected features. Jain et al. [29] introduced a rapid adaptive 

classification system designed for chronic disease diagnosis. 
The method utilizes a hybrid strategy that combines PCA and 

the Relief technique, along with an optimized SVM classifier.  

Chronic Kidney Disease (CKD), associated with 

cardiovascular and renal risks, necessitates early detection. 

Yadav et al. [30] introduced a hybrid ML technique that 

combines a feature selection method with a classification 

algorithm. Relief-F and chi-squared methods identify crucial 

features, while six. The amalgamation of big data and ML 
shows promise in elevating healthcare value by accurately 

detecting CKD at its initial stages.  

Vashisth et al. [31] aimed to enhance classification 

accuracy for chronic kidney disease diagnosis using a Neural 

Network classifier combined with four distinct feature 

techniques. The study explores feature reduction and 

relevance methods to optimize the neural network’s 

performance. The experimental setup involves utilizing the 

neural network as an ensemble model with diverse feature 

techniques. The training phase employs 300 instances, 

constituting 75% of the chronic kidney disease dataset, while 

testing involves 100 cases. This approach seeks to improve 
disease classification accuracy, employing a combination of 

advanced techniques to identify the most relevant features and 

optimize the neural network’s predictive capabilities. 

3. Materials and Methods 
The initial phase involves gathering the dataset, which is 

then subjected to preprocessing. Subsequently, the prepared 

data is utilized for the prediction process, where CNN is 

employed. The LSTM network used in this model analysed 

the temporal dependencies and patterns in sequential data. 

Upon constructing the corresponding model, notable 

enhancements in performance parameters are achieved. The 

diagram representing the proposed system can be observed in 

Figure 3.  

 

 

 

 

 

 

 

 

 

 

Fig. 3 Block diagram of proposed method 
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3.1. Dataset Description 

The dataset of CSV files utilized for the detection of CKD 

was taken from the Kaggle repository. The dataset is a two-

dimensional tabular data structure that can hold data in rows 

and columns. The dataset contains 400 samples with 37 

different attributes for each sample. The dataset comprises 
essential clinical attributes, medical test results, and 

demographic information related to CKD patients to 

effectively capture spatial patterns and temporal dependencies 

within the data, respectively.  

The dataset thus employed is passed through a hybrid 

method that combines CNN and LSTM architecture. It 

provides a substantial amount of information for the hybrid 

model to learn from and make more precise predictions, 

ultimately contributing to improved diagnostic outcomes for 

patients with CKD. By using the hybrid CNN-LSTM method 

on this dataset, we aimed to achieve enhanced accuracy and 

sensitivity in identifying CKD cases early on. The dataset is 
split into two subsets, dedicating 80% for training and 20% for 

testing objectives. 

3.2. Data Preprocessing 

The initial and critical phase in data analysis is the data 

preprocessing of CSV data, where raw data is prepared and 

refined to enhance its quality and suitability for further 

processing. The preprocessing typically involves loading the 

data, inspecting for missing values, and handling duplicates. 
The missing value of each column is verified to ensure the 

data’s quality and to decide on appropriate strategies for 

handling missing data during data preprocessing. Count, 

mean, std, min, max, and three three-quartile values are the 

statistical parameters verified for each numerical column.  

This information helps to quickly understand the 

distribution and range of the data in each numerical column. 

Visualization of data is shown in Figure 4. Correlation 

analysis is performed as it is helpful in feature selection. 

Features with high positive or negative correlations with the 

target variable can be considered more influential in predicting 

the target. They may be prioritized in machine learning models 
or data analysis-higher feature values in positive correlation 

are associated with a higher probability of CKD. 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 4 Data visualization 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Correlation of features with CKD 
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Fig. 6 Correlation with case type 

Also, Higher feature values in negative correlation values 

are associated with a lower likelihood of CKD. A correlation 

value close to 0 indicates a weak or no linear relationship 

between the feature and the target variable. This means that 

changes in the feature value do not significantly affect the 

likelihood of having or not having CKD. The correlation of 

features with CKD is depicted in Figure 5. 

The bar plot of the dataset is visualised in Figure 6, which 

shows the correlation of each feature with the target variable 

‘CKD_1_NonCKD_0’. The plot will display the association 

between each feature and the target variable. 
‘CKD_1_NonCKD_0’ as vertical bars. The higher the bar, the 

stronger the correlation between the feature and the target 

variable. 

3.3. Convolutional Neural Network (CNN) 

CNN is a robust and widely used DL architecture 

specifically designed for processing and analyzing visual data. 

The architecture of a CNN is a DL model designed explicitly 

for visual data processing. It typically consists of input layers 

to receive raw data, convolutional layers for feature extraction 

using learnable filters, activation functions to introduce non-

linearity, pooling layers for spatial dimension reduction, a 

fully connected layer for prediction, and an output layer for 

generating the final results.  

CNNs leverage the hierarchical structure of these layers 
to learn and represent meaningful patterns in the data 

automatically. The basic CNN architecture is shown in Figure 

7. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Fig. 7 Basic CNN architecture 
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Fig. 8 Basic LSTM architecture

3.4. Long Short-Term Memory (LSTM) 

The structure of an LSTM network constitutes a specific 

form of Recurrent Neural Network (RNN) crafted to 

comprehend and represent extended patterns in sequential 

data. The core components of an LSTM include input gates to 

control the flow of information into the memory cells, forget 

gates to regulate the retention of relevant information, and 

output gates to control the flow of information from the 

memory cells to the next time step.  

This architecture addresses the vanishing gradient 
problem in traditional RNNs. It enables LSTM networks to 

effectively process and learn from sequential data, making 

them well-suited for tasks like natural language processing, 

time series analysis, and any other application where temporal 

dependencies are crucial for accurate predictions. Figure 8 

shows the LSTM architecture. 

3.5. Proposed Model Architecture 

The suggested model comprises a trio of concealed layers 

with 100, 50, and 25 units, respectively, each using the ReLU 

activation function. The output layer has one unit with the 

sigmoid activation function, making it suitable for binary 

classification tasks. The structure of the proposed model’s 

LSTM design includes two LSTM layers with 128 and 256 

units, respectively.  

The first layer processes the input sequence and returns 

the output for each time step, while the second layer processes 
the sequence and returns the output only for the last time step. 

To enhance model regularization, a dropout layer is 

introduced following the initial LSTM layer. The model’s 

output is a solitary value using a sigmoid activation function, 

indicating the likelihood of a binary classification objective. 

The proposed model architecture is shown in Figure 9.

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 9 Proposed model architecture 
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A Time Distributed LSTM model is added to the 

proposed model. It allows the LSTM model to process each 

time step of the input sequence independently. After the 

compilation process, the model is ready for training, where it 

will be trained on a given dataset, optimizing the specified loss 

function with the Adam optimizer and evaluated using the 
accuracy metric. A total of 467,608 parameters were used 

which all are trainable. The model uses ‘Adam’ as the 

optimization and ‘Binary-Cross entropy’ as the loss function.  

3.6. Performance Parameters 

In the context of evaluating the suggested model’s 

performance, various performance indicators are available to 

gauge its effectiveness. The deep learning industry employs 

several standards to assess system performance, and in the 

following sections, we will explore some key metrics such as 

accuracy, Cohens kappa, precision, recall, specificity, F1-

score. Table 1 provides the mathematical expression of 

various performance measures. 

 Table 1. Performance parameters 

Parameters Equation 

Accuracy (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄  

Precision (𝑇𝑃) (𝑇𝑃 + 𝐹𝑃)⁄  

Recall (𝑇𝑃) (𝑇𝑃 + 𝐹𝑁)⁄  

F1- Score 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

TP: True Positive, TN: True Negative,  

FP: False Positive, FN: False Negative 

 

4. Results and Discussion  
4.1. Hardware and Software Setup 

To ensure a consistent and reliable computing 

environment, this research opts for Google Collaboratory and 

Microsoft Windows 10 as the preferred platforms. In this 

setup, the system boasts an Intel Core i7-6850K 3.60 GHz 12-

core processor and one NVIDIA GeForce GTX 1080 Ti GPU 

2760 4MB. 

4.2. Experimental Results 

After the dataset preparation, the proposed models were 

implemented using Python and TensorFlow. The training 

process of the model involved the application of the Adam 

optimization algorithm with a batch size of 40. During the 
training, we utilized accuracy and loss plots to gain valuable 

insights into the model’s performance. The accuracy plot 

provided a visual representation of the correct prediction trend 

over training epochs, indicating the classification 

effectiveness. The loss plot depicted the gradual reduction in 

the model’s error throughout training, showcasing its 

convergence towards an optimal solution. These plots served 

as valuable tools for detecting potential overfitting or 

underfitting issues and making well-informed decisions 

regarding necessary model adjustments or optimizations to 

enhance overall performance. The accuracy plot and loss plot 
of the model on the dataset are shown in Figure 10 and Figure 

11, revealing an impressive accuracy of 98.75%. Table 2 

provides the classification report of the proposed model. 

The accuracy and loss plot of the proposed system is 

shown in Figure 10, Figure 11 provides a visual representation 

of its performance during the training process. It illustrates the 

increasing or stabilizing trend of the model’s accuracy, which 

indicates its ability to classify data points correctly-the loss 

plot represents the discrepancy between the predicted output 

and the actual target values.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 10 Accuracy plot of the proposed system 
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Fig. 11 Loss plot of the proposed system 

Table 2. Classification report 

Parameters Value 

Accuracy 98.75 % 

Precision 100 % 

Recall 97.87 % 

F1- Score 98.92 % 

Cohens Kappa 97.43 % 

ROC AUC 98.93 % 

Specificity 100 % 
 

As the system iteratively learns from the data, the loss 

should ideally decrease, signifying that the model is 

minimizing its errors and becoming more accurate. The 
proposed system demonstrates outstanding performance, as 

reflected in the accuracy and loss plot. The accuracy plot 

shows a steady upward trend, indicating that the model 

consistently makes correct predictions as the training 

progresses. Additionally, the loss plot exhibits a substantial 

and consistent decrease, showcasing the system’s ability to 

minimize errors and optimize its predictions effectively. 

These promising results signify the robustness and efficiency 

of our proposed system in tackling the given task with high 

precision and reliability. 

The confusion matrix of the proposed model is shown in 
Figure 12 as a valuable tool for evaluating its performance in 

a classification task. The diagonal components of the 

confusion matrix denote accurate predictions (TP and TN), 

while the non-diagonal elements indicate inaccurate 

predictions (FP and FN). The ROC curve in Figure 13 

illustrates the trade-off between the model’s true positive rate 

(sensitivity) and the false positive rate (1-specificity) across 

different probability thresholds for classification. A value of 

0.5 for the AUC-ROC indicates a classifier performing at 

random, whereas a value of 1.0 signifies an impeccable 

classifier. 

Upon analyzing the table comparing our system with 
existing methods, it becomes evident that our system 

outperforms other approaches in several key aspects. It 

achieves higher accuracy rates, demonstrating its superior 

ability to make correct predictions for CKD. Additionally, our 

system exhibits improved precision and recall values, 

indicating its effectiveness in minimizing false positives and 

false negatives, respectively, leading to more reliable 

diagnoses. Furthermore, the F1 score of our system is 

significantly higher than that of the existing methods, 

signifying a better balance between precision and recall.  

This balanced performance is crucial in accurately 
identifying high-risk individuals early and guiding appropriate 

personalized treatment plans. The Area Under the Receiver 

Operating Characteristic Curve (ROC AUC) score also shows 

a substantial improvement in our system, confirming its 

superior discriminative power in distinguishing between 

positive and negative CKD cases. Table 3 presents a 

performance comparison of the proposed method with 

existing methods. 
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Fig. 12 Confusion matrix of the proposed system 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 13 ROC curve of the proposed system 

Table 3. Contrasting the newly introduced system with established methodologies 

Sl. 

No. 

Author, Year & 

Reference 
Methodology 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1- Score 

(%) 

Specificity 

(%) 

1 
Amirgaliy ev et al. 

[24], 2018 

Support Vector 

Machine 
93 - 93.10 - 94.20 

2 
Jain et al. [29], 

2021 

PCA and Relief 

Method with 
Optimized SVM 

Classifier 

97.48 100 71.43 83.33 - 

3 
Vashisth et al. [32], 

2020 

Multi-layer Perception 

Classifier 
92.5 - - 93 1 

4 
Ravindra et al. 

[33], 2018 

Feedforward 

Backpropagation 

Neural Network 

95.3 - 100 - 90 

5 Kriplai [21], 2019 CNN 97 100 95.2 97.6 - 

6 
Suresh et al. [34], 

2020 

Artificial Neural 

Network 
96 - - - - 

7 
Bhaskar et al. [35], 

2019 
CNN, SVM 96.59 97.2 94.59 95.8 98.03 

8 Proposed Method CNN- LSTM 98.75 100 97.87 98.9 100 
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5. Conclusion  
CKD is a serious and widespread health concern, 

affecting millions of people worldwide. Early detection of 

CKD is crucial in preventing disease progression, as it allows 

for timely intervention, resulting in tailored treatment 

approaches, ultimately culminating in enhanced patient 

results. This study successfully demonstrates the potential of 

utilizing a CNN model with LSTM units for the prompt 

identification of CKD through the utilization of CSV data.  

The dataset collected from the Kaggle repository was 

efficiently used for the prediction process. The CNN-LSTM 

model showcased impressive performance, achieving an 

accuracy rate of 98.75%. This remarkable accuracy indicates 
the model’s ability to identify CKD effectively. Cases, thereby 

highlighting the value of deep learning-based diagnostic tools 

in the field of medical research. The high accuracy rate 

suggests that the CNN-LSTM model can serve as a reliable 

and efficient tool for aiding clinicians in the early 

identification and management of CKD. The success of this 

study further encourages further research and development in 
the field of artificial intelligence and its potential to 

revolutionize healthcare practices. 

Acknowledgements 
I want to express my sincere gratitude to all those who 

contributed to the completion of this research paper. I extend 

my heartfelt thanks to my supervisor, my family, my 

colleagues and fellow researchers for their encouragement and 
understanding during the demanding phases of this work. 

References 
[1] Julian L. Seifter, “Body Fluid Compartments, Cell Membrane Ion Transport, Electrolyte Concentrations, and Acid-Base Balance,” 

Seminars in Nephrology, vol. 39, no. 4, pp. 368-379, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Marina Feigenson et al., “Ker-050, A Novel Inhibitor of Tgfβ Superfamily Signalling, Induces Red Blood Cell Production by Promoting 

Multiple Stages of Erythroid Differentiation,” Blood, vol. 136, no. 1, pp. 1-3, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Yucheng Tang et al., “Renal Cortex, Medulla and Pelvicaliceal System Segmentation on Arterial Phase CT Images with Random Patch-

Based Networks,” Medical Imaging 2021: Image Processing, vol. 11596, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Jennifer R. Charlton et al., “Nephron Number and Its Determinants: A 2020 Update,” Pediatric Nephrology, vol. 36, pp. 797-807, 2021. 

[CrossRef] [Google Scholar] [Publisher Link] 

[5] Yaowen Xia et al., “Experimental and Numerical Studies on Indoor Thermal Comfort in Fluid Flow: A Case Study on Primary School 

Classrooms,” Case Studies in Thermal Engineering, vol. 19, pp. 1-8, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[6] Jeremy Slivnick, and Brent C. Lampert, “Hypertension and Heart Failure,” Heart Failure Clinics, vol. 15, no. 4, pp. 531-541, 2019. 

[CrossRef] [Google Scholar] [Publisher Link] 

[7] Stavros A. Kavouras, “Hydration, Dehydration, Underhydration, Optimal Hydration: Are we Barking up the Wrong Tree?,” European 

Journal of Nutrition, vol. 58, no. 2, pp. 471-473, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Api Chewcharat, and Gary Curhan, “Trends in the Prevalence of Kidney Stones in the United States from 2007 to 2016,” Urolithiasis, 

vol. 49, no. 1, pp. 27-39, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Emilie Cornec-Le Gall, Ahsan Alam, and Ronald D. Perrone, “Autosomal Dominant Polycystic Kidney Disease,” The Lancet, vol. 393, 

no. 10174, pp. 919-935, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Mina Khorashadi et al., “Proenkephalin: A New Biomarker for Glomerular Filtration Rate and Acute Kidney Injury,” Nephron, vol. 144, 

no. 12, pp. 655-661, 2020. [CrossRef] [Google Scholar] [Publisher Link]  

[11] Karen M. Krueger, Michael G. Ison, and Cybele Ghossein, “Practical Guide to Vaccination in All Stages of CKD, Including Patients 

Treated by Dialysis or Kidney Transplantation,” American Journal of Kidney Diseases, vol. 75, no. 3, pp. 417-425, 2020. [CrossRef] 

[Google Scholar] [Publisher Link] 

[12] Valerie A. Luyckx, David Z.I. Cherney, and Aminu K. Bello, “Preventing CKD in Developed Countries,” Kidney International Reports, 

vol. 5, no. 3, pp. 263-277, 2020. [CrossRef] [Google Scholar] [Publisher Link]  

[13] Alice Sabatino et al., “Validation by CT Scan of Quadriceps Muscle Thickness Measurement by Ultrasound in Acute Kidney Injury,” 

Journal of Nephrology, vol. 33, pp. 109-117, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Israa Alnazer et al., “Recent Advances in Medical Image Processing for the Evaluation of Chronic Kidney Disease,” Medical Image 

Analysis, vol. 69, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Lyudmila A. Bratchenko et al., “Raman Spectroscopy of Human Skin for Kidney Failure Detection,” Journal of Biophotonics, vol. 14, 

no. 2, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[16] Sundaram Hariharan, Ajay K. Israni, and Gabriel Danovitch, “Long-Term Survival after Kidney Transplantation,” New England Journal 

of Medicine, vol. 385, no. 8, pp. 729-743, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Rebecca Noble, and Maarten W. Taal, “Epidemiology and Causes of Chronic Kidney Disease,” Medicine, vol. 47, no. 9, pp. 562-566, 

2019. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Thomas Lees et al., “Hydrological Concept Formation Inside Long Short-Term Memory (LSTM) Networks,” Hydrology and Earth System 

Sciences, vol. 26, no. 12, pp. 3079-3101, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1016/j.semnephrol.2019.04.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Body+fluid+compartments%2C+cell+membrane+ion+transport%2C+electrolyte+concentrations%2C+and+acid-base+balance&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0270929519300397
https://doi.org/10.1182/blood-2020-140364
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ker-050%2C+a+novel+inhibitor+of+Tgf%CE%B2+superfamily+signalling%2C+induces+red+blood+cell+production+by+promoting+multiple+stages+of+erythroid+differentiation&btnG=
https://www.sciencedirect.com/science/article/pii/S0006497118718910
https://doi.org/10.1117/12.2581101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Renal+cortex%2C+medulla+and+pelvicaliceal+system+segmentation+on+arterial+phase+CT+images+with+random+patch-based+networks&btnG=
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11596/2581101/Renal-cortex-medulla-and-pelvicaliceal-system-segmentation-on-arterial-phase/10.1117/12.2581101.short
https://doi.org/10.1007/s00467-020-04534-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nephron+number+and+its+determinants%3A+a+2020+update&btnG=
https://link.springer.com/article/10.1007/s00467-020-04534-2
https://doi.org/10.1016/j.csite.2020.100619
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Experimental+and+numerical+studies+on+indoor+thermal+comfort+in+fluid+flow%3A+A+case+study+on+primary+school+classrooms&btnG=
https://www.sciencedirect.com/science/article/pii/S2214157X19304733
https://doi.org/10.1016/j.hfc.2019.06.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5BSlivnick%2C+J%2C+Hypertension+and+heart+failure.+Heart+failure+clinics&btnG=
https://www.heartfailure.theclinics.com/article/S1551-7136(19)30045-5/abstract
https://doi.org/10.1007/s00394-018-01889-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydration%2C+dehydration%2C+underhydration%2C+optimal+hydration%3A+are+we+barking+up+the+wrong+tree&btnG=
https://link.springer.com/article/10.1007/s00394-018-01889-z
https://doi.org/10.1007/s00240-020-01210-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Trends+in+the+prevalence+of+kidney+stones+in+the+United+States+from+2007+to+2016&btnG=
https://link.springer.com/article/10.1007/s00240-020-01210-w
https://doi.org/10.1016/S0140-6736(18)32782-X
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cornec-Le+Gall%2C+E.%2C+Alam%2C+A.%2C+%26+Perrone%2C+R.+D.+%282019%29.+Autosomal+dominant+polycystic+kidney+disease.+The+Lancet&btnG=
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)32782-X/abstract
https://doi.org/10.1159/000509352
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Proenkephalin%3A+a+new+biomarker+for+glomerular+filtration+rate+and+acute+kidney+injury&btnG=
https://karger.com/nef/article/144/12/655/212415/Proenkephalin-A-New-Biomarker-for-Glomerular
https://doi.org/10.1053/j.ajkd.2019.06.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Practical+guide+to+vaccination+in+all+stages+of+CKD%2C+including+patients+treated+by+dialysis+or+kidney+transplantati&btnG=
https://www.ajkd.org/article/S0272-6386(19)30891-1/abstract
https://doi.org/10.1016/j.ekir.2019.12.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Preventing+CKD+in+developed+countries&btnG=
https://www.sciencedirect.com/science/article/pii/S2468024919315864
https://doi.org/10.1007/s40620-019-00659-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Validation+by+CT+scan+of+quadriceps+muscle+thickness+measurement+by+ultrasound+in+acute+kidney+injury&btnG=
https://link.springer.com/article/10.1007/s40620-019-00659-2
https://doi.org/10.1016/j.media.2021.101960
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recent+advances+in+medical+image+processing+for+the+evaluation+of+chronic+kidney+disease&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1361841521000062
https://doi.org/10.1002/jbio.202000360
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Raman+spectroscopy+of+human+skin+for+kidney+failure+detection&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/jbio.202000360
https://doi.org/10.1056/NEJMra2014530
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S+hariharan%2C+Long-term+survival+after+kidney+transplantation&btnG=
https://www.nejm.org/doi/10.1056/NEJMra2014530
https://doi.org/10.1016/j.mpmed.2019.06.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R+Noble%2C+Epidemiology+and+causes+of+chronic+kidney+disease&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1357303919301653
https://doi.org/10.5194/hess-26-3079-2022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydrological+concept+formation+inside+long+short-term+memory+%28LSTM%29+networks&btnG=
https://hess.copernicus.org/articles/26/3079/2022/


Jeena Jose & S. Sheeja / IJECE, 11(3), 12-23, 2024 

23 

[19] Fuzhe Ma et al., “Detection and Diagnosis of Chronic Kidney Disease Using Deep Learning-Based Heterogeneous Modified Artificial 

Neural Network,” Future Generation Computer Systems, vol. 111, pp. 17-26, 2020. [CrossRef] [Google Scholar] [Publisher Link]  

[20] Luana Batista da Cruz et al., “Kidney Segmentation from Computed Tomography Images Using Deep Neural Network,” Computers in 

Biology and Medicine, vol. 123, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Himanshu Kriplani, Bhumi Patel, and Sudipta Roy, “Prediction of Chronic Kidney Diseases Using Deep Artificial Neural Network 

Technique,” Computer-Aided Intervention and Diagnostics in Clinical and Medical Images, pp. 179-187, 2019. [CrossRef] [Google 

Scholar] [Publisher Link]  

[22] Abdullah Al Imran, Md Nur Amin, and Fatema Tuj Johora, “Classification of Chronic Kidney Disease Using Logistic Regression, 

Feedforward Neural Network and Wide & Deep Learning,” 2018 International Conference on Innovation in Engineering and Technology 

(ICIET), Dhaka, Bangladesh, pp. 1-6, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Shamima Akter et al., “Comprehensive Performance Assessment of Deep Learning Models in Early Prediction and Risk Identification of 

Chronic Kidney Disease,” IEEE Access, vol. 9, pp. 165184-165206, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Yedilkhan Amirgaliyev, Shahriar Shamiluulu, and Azamat Serek, “Analysis of Chronic Kidney Disease Dataset by Applying Machine 

Learning Methods,” 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT), 

Almaty, Kazakhstan, pp. 1-4, 2018. [CrossRef] [Google Scholar] [Publisher Link]  

[25] Jiongming Qin et al., “A Machine Learning Methodology for Diagnosing Chronic Kidney Disease,” IEEE Access, vol. 8, pp. 20991-

21002, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[26] Md. Rashed-Al-Mahfuz et al., “Clinically Applicable Machine Learning Approaches to Identify Attributes of Chronic Kidney Disease 

(CKD) for Use in Low-Cost Diagnostic Screening,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 9, pp. 1-11, 

2021. [CrossRef] [Google Scholar] [Publisher Link] 

[27] Bilal Khan et al., “An Empirical Evaluation of Machine Learning Techniques for Chronic Kidney Disease Prophecy,” IEEE Access, vol. 

8, pp. 55012-55022, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[28] Pankaj Chittora et al., “Prediction of Chronic Kidney Disease-A Machine Learning Perspective,” IEEE Access, vol. 9, pp. 17312-17334, 

2021. [CrossRef] [Google Scholar] [Publisher Link] 

[29] Divya Jain, and Vijendra Singh, “A Two-Phase Hybrid Approach Using Feature Selection and Adaptive SVM for Chronic Disease 

Classification,” International Journal of Computers and Applications, vol. 43, no. 6, pp. 524-536, 2021. [CrossRef] [Google Scholar] 

[Publisher Link] 

[30] Manal A. Abdel-Fattah, Nermin Abdelhakim Othman, and Nagwa Goher, “Predicting Chronic Kidney Disease Using Hybrid Machine 

Learning Based on Apache Spark,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1-12, 2022. [CrossRef] [Google Scholar] 

[Publisher Link] 

[31] Dhyan Chandra Yadav, and Saurabh Pal, “Performance-Based Evaluation of Algorithms on Chronic Kidney Disease Using Hybrid 

Ensemble Model in Machine Learning,” Biomedical and Pharmacology Journal, vol. 14, no. 3, pp. 1633-1645, 2021. [CrossRef] [Google 

Scholar] [Publisher Link] 

[32] Shubham Vashisth, Ishika Dhall, and Shipra Saraswat, “Chronic Kidney Disease (CKD) Diagnosis Using Multi-Layer Perceptron 

Classifier,” 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, pp. 346-

350, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[33] B.V. Ravindra, N. Sriraam, and M. Geetha, “Chronic Kidney Disease Detection Using Back Propagation Neural Network Classifier,” 

2018 International Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, pp. 65-68, 2018. 

[CrossRef] [Google Scholar] [Publisher Link] 

[34] Chalumuru Suresh et al., “A Neural Network-Based Model for Predicting Chronic Kidney Diseases,” 2020 Second International 

Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, pp. 157-162, 2020. [CrossRef] [Google 

Scholar] [Publisher Link] 

[35] Navaneeth Bhaskar, and M. Suchetha, “An Approach for Analysis and Prediction of CKD Using Deep Learning Architecture,” 2019 

International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, pp. 1660-1664, 2019. [CrossRef] 

[Google Scholar] [Publisher Link] 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.future.2020.04.036
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+and+diagnosis+of+chronic+kidney+disease+using+deep+learning-based+heterogeneous+modified+artificial+neural+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X20308128
https://doi.org/10.1016/j.compbiomed.2020.103906
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Kidney+segmentation+from+computed+tomography+images+using+deep+neural+network&btnG=
https://www.sciencedirect.com/science/article/pii/S0010482520302523
https://doi.org/10.1007/978-3-030-04061-1_18
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prediction+of+chronic+kidney+diseases+using+deep+artificial+neural+network+technique&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prediction+of+chronic+kidney+diseases+using+deep+artificial+neural+network+technique&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-04061-1_18#:~:text=Our%20proposed%20method%20is%20based,the%20model%20safe%20from%20overfitting.
https://doi.org/10.1109/CIET.2018.8660844
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+of+chronic+kidney+disease+using+logistic+regression%2C+feedforward+neural+network+and+wide+%26+deep+learning.&btnG=
https://ieeexplore.ieee.org/document/8660844
https://doi.org/10.1109/ACCESS.2021.3129491
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comprehensive+performance+assessment+of+deep+learning+models+in+early+prediction+and+risk+identification+of+chronic+kidney+disease&btnG=
https://ieeexplore.ieee.org/abstract/document/9622243
https://doi.org/10.1109/ICAICT.2018.8747140
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+chronic+kidney+disease+dataset+by+applying+machine+learning+methods&btnG=
https://ieeexplore.ieee.org/document/8747140
https://doi.org/10.1109/ACCESS.2019.2963053
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=J+Qin%2C+IEEE+Access%2C+2019+A+machine+learning+methodology+for+diagnosing+chronic+kidney+disease.&btnG=
https://ieeexplore.ieee.org/document/8945312
https://doi.org/10.1109/JTEHM.2021.3073629
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clinically+applicable+machine+learning+approaches+to+identify+attributes+of+chronic+kidney+disease+%28CKD%29+for+use+in+low-cost+diagnostic+screening&btnG=
https://ieeexplore.ieee.org/document/9405681
https://doi.org/10.1109/ACCESS.2020.2981689
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+empirical+evaluation+of+machine+learning+techniques+for+chronic+kidney+disease+prophecy&btnG=
https://ieeexplore.ieee.org/document/9040562
https://doi.org/10.1109/ACCESS.2021.3053763
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Chittora%2C+Prediction+of+chronic+kidney+disease-a+machine+learning+perspective&btnG=
https://ieeexplore.ieee.org/document/9333572
https://doi.org/10.1080/1206212X.2019.1577534
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+two-phase+hybrid+approach+using+feature+selection+and+adaptive+SVM+for+chronic+disease+classification&btnG=
https://www.tandfonline.com/doi/abs/10.1080/1206212X.2019.1577534
https://doi.org/10.1155/2022/9898831
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MA+Abdel-Fattah%2C+2022%2C+Hindawi%2C+Predicting+chronic+kidney+disease+using+hybrid+machine+learning+based+on+apache+spark.&btnG=
https://www.hindawi.com/journals/cin/2022/9898831/
https://dx.doi.org/10.13005/bpj/2264
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance-based+Evaluation+of+Algorithms+on+Chronic+Kidney+Disease+using+Hybrid+Ensemble+Model+in+Machine+Learning&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance-based+Evaluation+of+Algorithms+on+Chronic+Kidney+Disease+using+Hybrid+Ensemble+Model+in+Machine+Learning&btnG=
https://biomedpharmajournal.org/vol14no3/performance-based-evaluation-of-algorithmson-chronic-kidney-disease-using-hybrid-ensemble-model-in-machine-learning/
https://doi.org/10.1109/Confluence47617.2020.9058178
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Chronic+kidney+disease+%28CKD%29+diagnosis+using+multi-layer+perceptron+classifier&btnG=
https://ieeexplore.ieee.org/document/9058178
https://doi.org/10.1109/IC3IoT.2018.8668110
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Chronic+kidney+disease+detection+using+back+propagation+neural+network+classifier&btnG=
https://ieeexplore.ieee.org/document/8668110
https://doi.org/10.1109/ICIRCA48905.2020.9183318
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+neural+network-based+model+for+predicting+chronic+kidney+diseases&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+neural+network-based+model+for+predicting+chronic+kidney+diseases&btnG=
https://ieeexplore.ieee.org/abstract/document/9183318
https://doi.org/10.1109/ICCES45898.2019.9002214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+approach+for+analysis+and+prediction+of+CKD+using+deep+learning+architecture&btnG=
https://ieeexplore.ieee.org/document/9002214

