
SSRG International Journal of Electronics and Communication Engineering Volume 11 Issue 3, 31-40, March 2024
ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V11I3P104 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Split-Join: A Blockchain Framework for Improving

Scalability and Performance

Vemula Harish1, R. Sridevi2, K.S. Sadasiva Rao3

1Department of CSE, Jawaharlal Nehru Technological University, Telangana, India.
2Department of CSE, JNTUH College of Engineering, Telangana, India.

3Department of CSE, Sri Indu College of Engineering and Technology, Telangana, India.

1Corresponding Author : vemula.harish31@gmail.com

Received: 05 January 2024 Revised: 05 February 2024 Accepted: 04 March 2024 Published: 31 March 2024

Abstract - Blockchain technology has proven its capability to secure data robustly and reliably, most enterprises are ready to

move into blockchain due to its unique characteristics, and many researchers are contributing to improve the technology day

by day, but still, there are performance and scalability issues need to be addressed in a better way, so that it can serve the globe

by removing intermediaries and bringing the transparency and immutability. In this work, a split-join framework is proposed to

improve the scalability and performance of the blockchain technology while maintaining the overall blockchain principles valid

and allowing the parallel processing of the blocks efficiently through nonlinear principles, which offer efficient load balancing

while processing the transactions. It aims to improve the performance and scalability aspects of blockchain. The proposed

framework shows significant improvements in scalability and throughput; the number of parallel blocks processed increases

with respect to split-chain length, resulting in higher throughput.

Keywords - Blockchain, Scalability, Performance, Consensus, Split-join framework.

1. Introduction
Blockchain technology, introduced by Satoshi Nakamoto

[1], was initially limited to only cryptocurrencies. Still,

nowadays, most industries are looking forward to bringing

their business activities into the blockchain, and also it has
become popular in various sectors like healthcare, digital asset

management, supply chain management, IoT, and cloud etc.;

blockchain solves the double spending problem without

centralized architecture, it is very much helpful in maintaining

the information in a tamper-proof manner.

The significant potential of the blockchain is that it

provides confidentiality, transparency, integrity, and privacy

over the peer-to-peer network that uses Decentralized Ledger

Technology, known as DLT. Decentralized Applications

(DApps) are becoming popular as web3-based applications.

NFTs [2], and Metaverse [3] are other emerging areas of

blockchain. Blockchain provides data integrity and
confidentiality through asymmetric key cryptography

algorithms such as SHA-256, Keccak-256, etc.

In general, traditional centralised systems process

thousands of transactions per second; thus, they are highly

scalable, exhibit minimum transaction latency, have

confirmation time, and have high performance. At present,

decentralized technology is grabbing the attention because of

its unique nature, but it is not highly scalable compared to the

traditional centralized systems, to achieve the same level of

scalability, it requires refinement in terms of architecture,

protocols, and algorithms.

Blockchain is classified into two broad categories: Public

blockchains and private blockchains; initially, it was

introduced to serve cryptocurrencies as a public blockchain

network that added transparency by publishing the transaction

in the network and offered immutability, i.e., once the

transaction is confirmed, it cannot be modified. Earlier, it was
limited to cryptocurrencies only, but later, people understood

the potential behind the technology, and as a result, intelligent

contracts evolved into blockchain 2.0 [4].

A smart contract is a program that contains the

instructions agreed by both parties to conduct their business

smoothly, and once these rules are installed onto the network,

they are immutable. i.e., it allows business entities to operate

in an untrusted environment.

Because the other party cannot modify the program alone,

every transaction must be agreed upon by a certain pre-defined

number of participants; then, only it validates the transaction
and marks it as successful; otherwise, it rejects the transaction

and invalidates it.

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Vemula Harish et al. / IJECE, 11(3), 31-40, 2024

32

This agreement happens through consensus algorithms

such as proof of work [5], proof of stake [6], etc.; consensus

algorithms solve distributed consensus issues and propose a

solution for Byzantine Generals problem.

Public blockchains such as Bitcoin [7], Ethereum [8], etc.,

are exhibiting low scalability due to their open nature and
complex consensus algorithms, i.e., public blockchains are

open to everybody, so that anybody can join the network, send

transactions, and participate in mining the transactions into

Blocks. Here, public blockchains allow anybody over the

globe to participate; as it is allowing vast numbers of

participants, it is challenging to make everyone agree for the

same set of transactions to be accumulated into a single block,

to achieve this, there should be only one winner to publish the

block.

A node or network participant who mines the block is the

miner, who calculates the block’s hash to meet the target by

choosing the appropriate nonce value. As all miners compete
to create a block of transactions, sometimes more than one

miner may emerge as the winner; then, both blocks are added

parallelly, called forks in blockchain.

Forks can be resolved using the most prolonged chain

principles. Due to these complexities, it is difficult to achieve

consensus within less time and publish the block to the

network; hence, bitcoin creates a single block every 10

minutes, showing seven transactions per second; Ethereum

also suffers from scalability issues and supports 15

transactions per second [9], compared to public blockchains

the Private blockchains are more scalable.

Researchers propose solutions to improve the scalability

of blockchain platforms; they include optimizing the core

architecture and enhancing the consensus protocols to avoid

unnecessary overhead while mining, load balancing between

the network participants, and parallelizing the transaction

processing by overcoming the potential performance

bottlenecks.

2. Related Study
Despite blockchain’s unique and secure characteristics,

the technology faces performance and scalability issues. There

are specific improvements proposed by researchers using

shard-based blockchains [10]; Qin Wang et al. [11] conducted

a systematic study on Directed Acyclic Graph (DAG) based

blockchains and discussed the consensus, security, privacy,

and performance aspects in detail.

Lang Li [12] et al. proposed a new DAG-based

architecture for addressing issues such as the complexity of

tracing the order of parallel blocks in DAG. Zicheng Wang,
Bo Cui and Wenhan Hou [13] analyzed the Ethereum

blockchain, introduced the dynamic load balancing based on

sharding and analyzed throughput based on proof of work

consensus. Canlin Li [14] et al. studied the load balancing

issues in sharding and proposed a new protocol that efficiently

handles the incoming transactions and distributes the

transactions evenly between the shards.

Zhongteng Cai [15] et al. proposed a cooperation-based
protocol for sharding, which allows shards to verify the

correctness of transactions recorded in other shards based on

voting. Hiroki Watanabe [16] et al. researched retrieving the

historical state information from the blockchain ledgers and

proposed a solution to read the info efficiently based on DAG.

Where each technique has its pros and cons. To realize

the full potential of blockchain, it is essential to process

thousands of transactions per second and scale them to allow

many participants to submit their transactions parallelly.

Hence, parallel and nonlinear approaches can significantly

impact blockchain technology’s performance and scalability.

2.1. Sharding
Sharding improves blockchain technology’s scalability

[17] through partitioning or dividing the entire network into

multiple small networks called shards. Shards are responsible

for handling the transactions independently to process them

parallelly.

This mechanism boosts the throughput to some extent.

Still, there is a possibility of overloading a shard with plenty

of transactions where other shards might be free and don’t

have any transactions awaiting. One must take care of efficient

load balancing between the shards by continuously monitoring

the traffic. As shards are small network chunks, they are also
vulnerable [15] to 51% attack.

Fig. 1 Shard

Figure 1 shows an example of a shard that contains a total

of 20 nodes, out of which four nodes are malicious, but in real-

time, there will be millions of nodes that participate in the

blockchain network; in this example, if we consider the

percentage of malicious nodes over total number of nodes are

about 20%, this percentage may increase or decrease because

of its dynamic topological structure, nodes will join and leave

as and when they want, hence it is easy to attack such small

network chunks compared to an extensive single network of
nodes.

SHsss

Good Nodes

Malicious Nodes

Shard

Vemula Harish et al. / IJECE, 11(3), 31-40, 2024

33

So, a malicious user may gain access to the majority of

the nodes to compromise the consensus decisions of the

blockchain networks, which play a crucial role in deciding the

transaction’s approval; due to a lack of governance policies, if

a malicious node gains access, then those invalid transactions

approved by the majority of malicious nodes are permanently
stored in the ledger. Because of its tamper-proof nature, once

the blockchain is compromised, the changes made are

permanent; nobody has the right to change them later, which

may lead to a disastrous situation. The other problem with

sharding is the load balancing between shards is difficult.

2.2. DAG Based Consensus

Directed Acyclic Graph (DAG)-based consensus is the

scalability [18] solution to the blockchain technology; DAG

doesn’t use blocks for storing transactions, unlike other

blockchain networks. DAG-based blockchains such as IoTA

store individual transactions instead of accumulating them

into blocks; they are called tips. Tip is a newly arrived
transaction that is not confirmed in the blockchain ledger.

Every node possesses cumulative weight and weight.

The self-weight is always one (1), and the cumulative

weight is obtained by adding all approving nodes. Here, every

node that wants to add their transaction to the ledger needs to

support the unconfirmed transaction that has already been

added. They function as a miner approving the transaction;

hence, the transactions in DAG are not final immediately.

However, they are committed permanently to the ledger after

a certain number of transactions are appended and accepted by

newly arriving transactions or Tips.

Fig. 2 DAG-based consensus mechanism

Figure 2 shows the DAG Consensus algorithm [20],

where newly arriving transactions are denoted with the circles

(F, G); the DAG consensus mechanism avoids the

unnecessary waiting time of a transaction to fill the block, as

all transactions are independent of each other one need not

wait. However, using DAG, the complexity increases while

the blockchain is scaling or when more participants join the

blockchain. Because of its complex structure, retrieving the

information from the blockchain is difficult.

3. Proposed Framework

Blockchain technologies exhibit lower scalability in

comparison to conventional centralized systems, to meet the

current needs, blockchain must scale in terms of processing

the number of transactions, but due to the peer-to-peer nature

and decentralized architecture, it isn’t easy to achieve high

scalability without compromising the original nature of the

blockchain technology. However, there are few scalable

solutions given by researchers; still, there is a lot of scope for

improving the scalability of blockchain technology.

Researchers are now actively working on the scalability and

performance aspects of the blockchain platforms.

The proposed framework addresses the scalability issues
of blockchain platforms by adopting the nonlinear approach;

in general, blockchain platforms process one block of

transactions at a time; due to distributed consensus and

synchronization issues, blockchain is not processing the

transactions parallelly, thus, the Directed Acyclic Graph

(DAG) based blockchains tried to address this issue by

avoiding the grouping of transactions into blocks. Instead,

they processed individual transactions parallelly using DAG.

However, the complexity of retrieving or searching for

transactions increases proportionally with respect to the DAG

spread.

This study presents a new framework for blockchain

technology that improves the scalability of blockchain

systems by using nonlinear characteristics; using this

approach, the performance of the underlying blockchain

platform also increases, and the proposed framework modifies

the way legacy blockchain ledger stores the block of

transactions. Instead of linear, this framework introduces a

nonlinear fashion to store blocks; all blocks are well

connected. It is possible to trace all transactions in the

blockchain from the genesis block to the very recent block of

transactions; this approach allows parallelism and improves

the blockchain technology’s scalability.

3.1. System Architecture

Fig. 3 Split-join framework system architecture

B

8,1

A

8,1

G

C

2,1

D

2,1

E

3,1

G

1,1

F

1,1

Client

Load

Balancer
Lower

MP

Higher

MP
Node-1

Node-2 Node-4

Node-3

Split-Join Ledger
hb1 hb2 hb4 hb5

lb1 lb2 lb4 lb5

G0 Jb6 Jb3

SPJ Blockchain Framework

Vemula Harish et al. / IJECE, 11(3), 31-40, 2024

34

The split-join blockchain architecture distinguishes itself

from standard blockchain platforms primarily in its

simultaneous transaction processing and appending or

creating blocks in the distributed ledger; it starts with a genesis

block, “G0”, also called a join-block. Genesis block is created

while setting up the network for the first time. Once the
genesis block is created, the blockchain state is transferred to

“split-state” Subsequently, two blocks are created parallelly,

and the chain splits into two; it is like forks in the bitcoin

blockchain, but they again join after a certain number of

blocks are added to split-chain.

The difference is the way transactions are accumulated

into these blocks. Both the blocks receive transactions from

different sources, i.e., separate mining pools, which allow

independent processing of blocks; these mining pools are

maintained to process the transactions parallelly; they are

named Higher-Mining-Pool (HMP) and Lower-Mining-Pool

(LMP).

Network participants (miners) competing to create higher

blocks differ from those competing to develop lower ones.

Initially, the transactions are received into the Primary Mining

Pool (PMP), where all unconfirmed transactions are stored,

and then there is a possibility of two states in the split-join

blockchain they are “join-state” and “split-state”. If the current

state is join-state, then only one block will be created next, and

it is labelled as join-block; for creating a join block, the split-

join framework follows the traditional way of mining the

transactions into blocks; as a result, the single block of

transactions is completed.

Otherwise, if the current state is split-state, the load

balancer evenly redirects the transactions into higher and

lower mining pools. Load balancer is responsible for sending

unique transactions; also, it manages the load between the

mining pools to avoid overloading one of the mining pools

where the other one is free; load-balancer avoids duplicate

transactions in parallel blocks, for processing the unconfirmed

transactions there will be two independent sets of miners

competing to create higher split-chain block and lower split-

chain block.

A split chain is a chain of blocks created parallelly after

the previous join block. for example, consider that hb1, and
hb2 blocks form a split-chain and their split-chain-length is 2.

3.1.1. Split-Chain-Length

It is the number of blocks created in split-chain; this value

is configured before starting the genesis block and remains

permanent throughout the blockchain lifecycle or until and

unless the blockchain is alive.

Miners can pick transactions from either of the mining

pools to create a block, computing hash. Here, two blocks are

made independently and in parallel [19], and two miners will

emerge as winners. In this approach, forks are not allowed and

are resolved immediately by a lottery-based mechanism to

reduce complexity. Because of the load-balancer component

of the split-join framework, there is no chance of accumulating

duplicate transactions into mining pools. Newly created

blocks are higher blocks (hb1) and lower blocks (lb1),
respectively. Here, both blocks consider Genesis as their

previous block; there is no sequence for creating these blocks

as they are completely independent and parallel.

 Once higher and lower blocks are created, the split-join

blockchain framework will check for the “split-chain-length”

property before transferring the state to “join-state”.

Based on the split-chain-length property split-join

blockchain, it decides the number of split blocks to be created

before merging and creating a join block.

Case 1: if the split-chain-length value is one (1), the

blockchain will transfer its state to “join-state” this property

indicates to miners whether to compete for split-block or join-
block. i.e., Here, for “join-state”, miners compete for the

creation of a single block called join block, which is appended

to a higher block (hb1) as well as a lower block (lb1).

Case 2: if the split-chain-length value is two (2), then the

blockchain will wait in “split-state” until the creation of hb2

and lb2 is completed, later the blockchain will transfer its state

to “join-state” Figure 4 shows the example of blockchain

ledger with split-chain-length = 2.

The blockchain state holds based on the split-chain-length

value. This continuous process results in a blockchain ledger,

as shown in Figure 4.

Fig. 4 Split-join ledger architecture

3.2. Lottery-Based Mechanism

Miners will create a join block once the “split-state” is

completed. Suppose two miners solve the block

simultaneously and emerge as a leaders. In that case, one of
the blocks is accepted based on a lottery mechanism, i.e., if

G0

HB1 HB2

LB1 LB2

JB3

HB4 HB5

LB4 LB5

JB6

Genesis

Block

Higher Split

Blocks

Lower Split

Blocks

Join

Block

Vemula Harish et al. / IJECE, 11(3), 31-40, 2024

35

multiple miners emerge as winners. The algorithm chooses a

random number between 1 and 10*N, where N is the number

of miners competing to publish the block of transactions.

Accept the block created by the miner who got the minimum

value. This approach guarantees only one miner will always

publish the block.

For example, if three miners are competing to publish the

block of transactions, then N=3, let’s assume that Miners got

a set (S) of random numbers between 1-30, i.e., Miner1=15,

Miner-2 = 23 and Miner-3 = 12 then the algorithm finds “m”

which is the minimum of S, S = {15, 23, 12}, here m = 12,

Miner3 will publish the block of transactions and other blocks

are ignored. This approach avoids the forks while creating a

split-join block.

3.3. Split-Join Block Properties

All properties of a block in traditional blockchains hold

in the split-join block, but some additional properties are

included to facilitate the parallel processing of transactions;
they have the hash of the previous join block, previous higher

block, and last lower block.

Fig. 5 Split-join block

Where,

BN - Block Number,

TS - Time Stamp,

PJB - Previous Join Block,

PLB - Previous Lower Block,

PHB - Previous Higher Block.

G - Genesis,

J - Join,

H - Higher,

L - Lower.

3.4. Join Block Properties
The join block is the particular block in the split-join

framework; this block combines the chain splits back into a

single chain, responsible for approving the transactions

accumulated into previous higher and lower blocks. Join-

block verifies any duplicate transactions available in both

higher and lower chain blocks created after the previous join

block is confirmed.

Additionally, the join block stores the hash of the last

higher and lower blocks for maintaining the overall
transactions included in split chains; this allows tracking all

transactions committed to the blockchain ledger from the

latest join block to the genesis block. Merkle tree is used to

link all the transactions inside the single block like traditional

blockchain ledgers.

The transactions in the split-join framework are not final

until the join block is committed to the ledger permanently.

Fig. 6 Join block

Fig. 7 Split block

Figure 6 shows the join-block properties; the genesis

block is also considered the join block, and its block type is

‘Genesis’. Block type property value will be ‘join’ for all other

join blocks except the genesis block. For further

distinguishing the block, the ‘Block Tag’ property is used; the

Join Block

Data

Timestamp

Hash

Block Number

Block Type

Block Tag

Nonce

Previous Lower

Block

Previous Higher

Block

Split Block

Data

Timestamp

Hash

Block Number Block Type

Block Tag Nonce

Previous Join

Block

Previous

Lower Block

Previous Higher Block

Block Header

BN Nonce TS Data

Type: Genesis/Split/Join

Previous Block Hash:

PJB/PLB/PHB

Block Tag:G/J/H/L

Vemula Harish et al. / IJECE, 11(3), 31-40, 2024

36

block tag value will be ‘J’ for all join blocks, and for the

Genesis block, it is ‘G’; the genesis block doesn’t store any

previous hash values as it is the first block created in the

blockchain.

Figure 7 shows the split-block properties; the block type

property value will be ‘split’, and the block tag will be ‘H’ for
higher split-block and ‘L’ for lower split block. It contains the

previous join blocks hash if split-chain-length is 1; for all other

values >1 of split-chain-length, it holds the previous split-

blocks hash.

To understand this in detail, let us consider the example,

see Figure 4 (Split-Join Ledger architecture) for the following

example; let us consider a split-block with the block number

‘hb1’ (Higher Block - 1) then it is in higher split-chain, it is

the first block created after the genesis block and hb1 contains

the previous hash of only one block, i.e., genesis block (G0)

also tagged as ‘J’ (Join block).

This split block (hb1) contains a hash of previous join
block, which holds for all split blocks preceded by the

immediate join block. Moving forward to hb2, it is also a

divided block with the tag ‘H’. hb2 is created because the split-

chain-length = 2; the current blockchain state is ‘split’. In this

case, hb2 has no immediate previous join block, but another

split block, hb1, precedes it.

In this case, it cannot store the previous join blocks hash;

instead, it stores the previous higher blocks hash as its current

blocks hash is ‘H’; in the case of lb2, it stores the hash of

previous lower blocks hash as its current tag is ‘L’. This is

how the block tag property determines whether it is in higher
or lower split chains.

3.5. Adding SPJ Block Algorithm

Input :

 Latest Block: The current block of split-join blockchain

to be confirmed.

 Blockchain Parameters: Parameters and settings of the

blockchain.

Output :

 New Block: Update the ledger of Split-Join blockchain by

appending the latest block.

Begin
Step 1 :

 Fetch the latest block details from the split-join

blockchain.

 Read the details of current blockchain state, block-type,

and block-tag.

Step 2 :

 Append the block based on the latest confirmed block

type.

Case 1 :

If latest-block-type = “Genesis” then

 Update the block parameters

 Change the block-chain-state to “split-state”

 Add current block tag based on mining pool (‘H’/’L’)

 Check if from higher-mining-pool then set current block
tag =‘H’

 Check if “from lower-mining-pool” then current block

tag =‘L’

 Add previous block hash.

 Append the block to the existing split-join ledger.

Case 2 :

If latest-block-type = “Split” then

 Check the latest block-tag committed to ledger.

 If tag value is (‘H’ / ‘L’), then Update current block-tag

based on Mining Pool Type.

 Check If the split-chain-length > 0 then

 Check If previous block-tag is ‘G’ or ‘J’.

 Decrease the split-chain-length of current split-chain

(‘H’/’L’) by 1, Until it becomes zero ‘0’.

 Check If split-chain-length is equal to ‘0’.

 Change the current blockchains state to “join-state.”

 Append the Block to the spit-join ledger.

Case 3 :

If latest-block-type =“Join” then

 Change the blockchain-state = “split-state”

 Update current blocks tag based on mining pool (‘H’/’L’)

 If from higher-mining-pool then set current block tag

=‘H’

 Else If “from lower-mining-pool” then set Current block

tag =‘L’

 Add the previous block hash from latest blocks hash.

 Append the Block to the split-join ledger.

End

3.6. Algorithm Complexity

When the most recent block is the genesis block or the

join block, the difficulty of adding a block to the split-join
ledger is O (1). However, when the most recent committed

block is a split block, the complexity of the process depends

on several parameters, including the length of the split chain,

the state of the blockchain, and the information about the

blocks that came before it.

3.7. Searching a Transaction in SPJ Ledger

All transactions in the latest join block committed to the

genesis block can be searched, and any transaction can be

verified throughout the ledger. The transactions are also

labelled with either ‘l’ or ‘h’ to indicate whether the

transaction is included in the higher or lower split chain.

Vemula Harish et al. / IJECE, 11(3), 31-40, 2024

37

Table 1. Performance, scalability and finality of blockchain platforms

Aspect
Hyperledger

Fabric
Bitcoin Ethereum IOTA Split-Join

Purpose
Permissioned,

enterprise use

Digital

currency
Smart contracts

Internet of

Things (IoT)

For enterprise as well as public

blockchains

Performance High Low Moderate High High

Scalability
Scalable with

modular design

Limited

(due to

PoW)

Working on

scalability solutions

(EIP 1559, ETH 2.0)

Scalable
Scalable with parallel

processing

Finality

Can be configured

(e.g., immediate

or eventual)

Eventual

(PoW)
Eventual (PoS) Immediate

Eventual, (all transactions are

final till the latest join block,

which is confirmed)

It helps improve search performance by eliminating

unnecessary comparisons. i.e., if a transaction is included in a

higher split-chain, it avoids searching in lower split-chain,

reducing the significant number of comparisons.

4. Results and Discussion
Traditional blockchain platforms process the block of

transactions serially, i.e., the second block is created only after

completing the first block. Parallel processing of blocks is not

supported due to its decentralized nature; serial processing of

blocks of transactions is a performance bottleneck; it impacts

the scalability of the underlying blockchain platform. Split-

join blockchain allows blockchains to process transactions

parallelly and significantly improve the scalability.

Blockchain technologies are designed with different

objectives and operational paradigms, catering to various

application domains. Hyperledger fabric [21] is a

permissioned framework for enterprise applications, while

Bitcoin focuses on digital transactions with limited scalability.

Ethereum extends to smart contracts, IOTA [22] for IoT, and

split-join blockchain for enterprise and public blockchains.

Fig. 8 Split-join ledger where split-chain-length = 1

Each platform addresses specific needs, such as

transaction efficiency, scalability, and finality; compared to

split join blockchain, the performance, scalability, and finality

features of blockchain platforms are outlined in Table 1.

Figure 8 shows the split-join ledger architecture with a split-

chain-length is 1, i.e., the blockchain state will change from
split-state to join-state after creating a single block in split-

chain, H1, H3 and H5 are part of higher split-chain and L1, L3

and L5 are part of lower split-chain, after creating H1, L1 it is

joined at J2, H1 and L1 are parallel blocks that contain same

block number with different block labels (l/h). The total

number of blocks confirmed till the Join Block (JBi) is given

as Tb where ‘i’ is the block number.

𝑇𝑏𝑛 =∑𝐽𝐵𝑖 + (
𝐽𝐵𝑖

2
) + 1

𝑛

𝑖=0

To better understand the advantage of using a split-join

framework, let us consider the example that there are 12

blocks confirmed in traditional blockchain, the block size is

100, where each block can accumulate 100 transactions

maximum within a given period ‘t’; let us assume t=10

minutes. The total number of blocks created is 12, and the time
taken to develop these blocks is 120 Minutes, confirming the

completion of 1200 transactions. Here, traditional blockchain

cannot scale beyond the limitations due to serial processing of

transactions and complex consensus mechanisms.

Due to public consensus, we cannot reduce the block

creation time to a minimal value in Bitcoin-like blockchains;

in such cases, split join blockchain helps us process a greater

number of transactions within the same period. The total

number of blocks created in the split-join ledger is given by.

Block JBi = 12, JBi should be a join-block because

transactions are only confirmed till the latest join-block is
committed to the split-join ledger; upon substituting the JBi

value, we get.

G0

H1

L1

H3

L3

J2

H5

L5

J4 J6

Vemula Harish et al. / IJECE, 11(3), 31-40, 2024

38

𝑇𝑏𝑛 = ∑ 12 + (
12

2
) + 1𝑛

𝑖=0

𝑇𝑏𝑛 = 19

The split-join framework can process 19 blocks within

120 minutes, and the maximum number of transactions it can

process is 1900. As the blockchain grows, the number of
transactions that can be processed improves significantly.

Table 2. Number of blocks in traditional vs Split-join with SPL = 1

Block

Creation

Time in

Minutes

Number of Blocks

Committed in

Traditional

Blockchain

Number of Blocks

Committed in

Split-Join

Blockchain

10 2 4

10 4 7

10 8 13

10 12 19

10 20 31

10 50 76

10 100 151

10 200 301

10 400 601

10 500 751

10 1000 1501

Fig. 9 Traditional vs Split-join blockchain

Figure 9 shows that as the blockchain is growing, there is

a significant impact on the number of blocks created within
the same period compared to traditional blockchain platforms;

irrespective of the blockchain performance or efficiency in

transaction processing, this framework will allow blockchains

to scale big enough to process more transactions.

Fig. 10 Ledger with split-chain-length is 2

Consider the split-chain-length is 2, and then the total
number of blocks is confirmed until the join-block ‘JBi’ is

given as Tbn.

𝑇𝑏𝑛 = ∑ 𝐼𝐵𝑛 + ((
𝐽𝐵𝑖−3

3
) ∗ 5)𝑛

𝑖=0

IBn is given as the Initial number of blocks created until

the first join block (J3) is created, i.e., ‘6’ in Figure 10 above,

for example, to calculate the number of blocks committed till
join block-6 where SPL=2 then Tbn =11.

𝑇𝑏𝑛 = ∑ 6 + ((
6−3

3
) ∗ 5)𝑛

𝑖=0

Table 3. Number of blocks in traditional vs Split-join with SPL = 2

Block

Creation

Time in

Minutes

Number of Blocks

Committed in

Traditional

Blockchain

Number of Blocks

Committed in Split-

Join Blockchain

10 3 6

10 6 11

10 9 16

10 12 21

10 48 81

10 99 166

10 201 336

10 399 666

10 501 836

10 999 1666

From the Figure11, it is evident that the total number of

blocks committed to the split-join ledger has increased

significantly compared to Figure 10; expanding the split chain

length allows more parallel blocks to be processed.

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10 11 12

N
o
 o

f
B

lo
ck

s
C

o
n
ti

n
u
ed

Time Duration

Block Creation

Number of Blocks Committed in Traditional Blockchain

Number of Blocks Committed in Split-Join Blockchian

Split-Join Ledger

hb1 hb2 hb4 hb5

lb1 lb2 lb4 lb5

G0 Jb3 Jb6

Vemula Harish et al. / IJECE, 11(3), 31-40, 2024

39

Fig. 11 Traditional vs Split-join blockchain

4.1. Overhead Analysis of Split-Join Blockchain

Compared to the traditional blockchains, this framework

adds a load balancer to process the transactions in parallel to

avoid overloading one of the split chains, whereas the other is

free. This also eliminates duplicate transactions in mining

pools, it forwards the transactions by verifying that it does not
exist in any of the mining pools. However, the transactions of

higher and lower split chains are verified later by miners while

confirming the subsequent blocks. This adds little overhead to

the existing functionality but solves the issues of double

spending and avoids intentional, repeated transaction

submissions to mislead the underlying system. The proposed

system resolves the forks immediately by selecting one of the

miners as a winner using a lottery-based mechanism instead

of accepting the most extended chain principle, which ignores

the transactions included in the small chain. This model will

significantly improve the blockchain network’s overall
scalability and performance at negligible overhead.

4.2. Split-Join Blocks

Using the split-join architecture, the following blocks are

created. The Genesis block is designated as G and numbered

as ‘0’. Afterwards, two split blocks are created with the same

block number ‘1’, but their ‘Tag’ property distinguishes them

as belonging to a higher or lower split chain. Finally, block 2

is the joining block, labelled J. Join blocks are responsible for

approving the transactions of previous split blocks.

BlockNumber: 0

Data: {“data”:”}

BlockType: “Genesis”
Previous Hash: ““

Hash: “0”

Tag: “G”

BlockNumber: 1

Data: {“amount”:503,”from”: “John”,”to”:”Smith”}

BlockType: “Split”

PreviousHash: “0”

Hash:

“00ab6fb6dd6c19a4c19dc978d8b100656cee99c80e7d

bfdd0d4fe868493dfee0”

Tag: “H”

BlockNumber: 1

Data: {“amount”:100,”from”:”Alice”,”to”:”Bob”}

BlockType: “Split”

PreviousHash: “0”

Hash:

“0007b1eb93cc48095c7b90ce3767de7b233d7172ab1

576174451d254e37ef484”

Tag: “L”

BlockNumber: 2

Data: {“amount”:5000,”from”:”Alice”,”to”:”John”}

BlockType: “Join”

Hash:
“001ee6e4702f0704c809188f7577b7f964f281e28e9fd

b71e029cd63e2d74f0b”

Tag: “J”

PreviousLowerBlockHash:”0007b1eb93cc48095c7b9

0ce3767de7b233d7172ab1576174451d254e37ef484”

PreviousHigherBlockHash:”00ab6fb6dd6c19a4c19dc

978d8b100656cee99c80e7dbfdd0d4fe868493dfee0”

5. Conclusion
Split-join framework provides a new solution to the

scalability issues of blockchain. Public and private blockchain

platforms can adopt it because it does not change any of the

existing features of blockchain technology. It enhances the

performance of underlying blockchain platforms significantly.

Furthermore, it proposed a solution to avoid duplicate

transactions in forks using load-balancer component and avoid

the overloading issue of sharding-based blockchain platforms,

reducing the overall complexity by avoiding the unnecessary

forks while creating the blocks using a lottery-based
mechanism. Thus, the proposed framework allows

blockchains to scale without compromising features and

boosts performance.

It is recommended to use split-chain-length limited to one

or two to avoid unnecessary overhead on join blocks while

approving the transactions included in split-chains. In future,

this work could be further extended by enhancing the

framework features, fine-tuning the architectural components

and adopting best practices to boost the scalability and

performance of blockchain.

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10 11

N
o
 o

f
B

lo
ck

s
C

o
n
ti

n
u
ed

Time

Block Creation

Number of Blocks Committed in Traditional Blockchain

Number of Blocks Committed in Split-Join Blockchian

Vemula Harish et al. / IJECE, 11(3), 31-40, 2024

40

References
[1] Satoshi Nakamoto, A Peer-to-Peer Electronic Cash System, Bitcoin.org, pp. 1-9, 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] N’guessan Patrice Akoguhi, and M. Bhavsingh, “Blockchain Technology in Real Estate: Applications, Challenges, and Future

Prospects,” International Journal of Computer Engineering in Research Trends, vol. 10, no. 9, pp. 16-21, 2023. [CrossRef] [Publisher

Link]

[3] Thien Huynh-The et al., “Blockchain for the Metaverse: A Review,” Future Generation Computer Systems, vol. 143, pp. 401-419, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[4] Zibin Zheng et al., “An Overview on Smart Contracts: Challenges, Advances and Platforms,” Future Generation Computer Systems, vol.

105, pp. 475-491, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[5] Mohammed Adam Kunna Azrag et al., “A Novel Blockchain-Based Framework for Enhancing Supply Chain Management,” International

Journal of Computer Engineering in Research Trends, vol. 10, no. 6, pp. 22-28, 2023. [CrossRef] [Publisher Link]

[6] Cong T. Nguyen et al., “Proof-of-Stake Consensus Mechanisms for Future Blockchain Networks: Fundamentals, Applications and

Opportunities,” IEEE Access, vol. 7, pp. 85727-85745, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[7] Ayushi Singh et al., “A Survey of Blockchain Technology Security,” International Journal of Computer Engineering in Research Trends,

vol. 6, no. 4, pp. 299-303, 2019. [Publisher Link]

[8] Gavin Wood, “Ethereum: A Secure Decentralised Generalised Transaction Ledger,” Ethereum Project Yellow Paper, pp. 1-41, 2014.

[Google Scholar] [Publisher Link]

[9] Anshika Bhalla, Top Cryptocurrencies with their High Transaction Speeds, Blockchain Council, 2024. [Online]. Available:

https://www.blockchain-council.org/cryptocurrency/top-cryptocurrencies-with-their-high-transaction-speeds/

[10] Abdelatif Hafid, Abdelhakim Senhaji Hafid, and Mustapha Samih, “A Novel Methodology-Based Joint Hypergeometric Distribution to

Analyze the Security of Sharded Blockchains,” IEEE Access, vol. 8, pp. 179389-179399, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[11] Qin Wang et al., “SoK: Diving into DAG-Based Blockchain Systems,” arXiv, pp. 1-38, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[12] Lang Li, Dongyan Huang, and Chengyao Zhang, “An Efficient Dag Blockchain Architecture for IoT,” IEEE Internet of Things

Journal, vol. 10, no. 2, pp. 1286-1296, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Zicheng Wang, Bo Cui, and Wenhan Hou, “A Dynamic Load Balancing Scheme Based on Network Sharding in Private Ethereum

Blockchain,” 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, USA, pp. 362-367,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Canlin Li et al., “Achieving Scalability and Load Balance across Blockchain Shards for State Sharding,” 2022 41st International

Symposium on Reliable Distributed Systems (SRDS), Vienna, Austria, pp. 284-294, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[15] Zhongteng Cai et al., “Benzene: Scaling Blockchain with Cooperation-Based Sharding,” IEEE Transactions on Parallel and Distributed

Systems, vol. 34, no. 2, pp. 639-654, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[16] Hiroki Watanabe et al., “Enhancing Blockchain Traceability with DAG-Based Tokens,” 2019 IEEE International Conference on

Blockchain (Blockchain), Atlanta, USA, pp. 220-227, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[17] D. Bhanu Sravanthi, and P. Venkata Krishna, “Digital Railway Ticketing Using Ethereum and Smart Contracts,” International Journal of

Computer Engineering in Research Trends, vol. 10, no. 4, pp. 167-171, 2023. [CrossRef] [Publisher Link]

[18] Xun Xiao, “Accelerating Tip Selection in Burst Message Arrivals for DAG-Based Blockchain Systems,” IEEE Transactions on Services

Computing, pp. 1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[19] Jia Kan, Shangzhe Chen, and Xin Huang, “Improve Blockchain Performance Using Graph Data Structure and Parallel Mining,” 2018 1st

IEEE International Conference on Hot Information-Centric Networking (HotICN), Shenzhen, China, pp. 173-178, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[20] Huma Pervez et al., “A Comparative Analysis of DAG-Based Blockchain Architectures,” 2018 12th International Conference on Open

Source Systems and Technologies (ICOSST), Lahore, Pakistan, pp. 27-34, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[21] Omar Levano-Stella, Jonardo L. Lerios, and Mohamed Remaida, “A Blockchain-Based Approach for Securing IoT Devices in Smart

Homes,” International Journal of Computer Engineering in Research Trends, vol. 10, no. 10, pp. 8-15, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[22] Wellington Fernandes Silvano, and Roderval Marcelino, “Iota Tangle: A Cryptocurrency to Communicate Internet-of-Things

Data,” Future Generation Computer Systems, vol. 112, pp. 307-319, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.22362/ijcert.v10i9.861
https://www.ijcert.org/index.php/ijcert/article/view/861/771
https://www.ijcert.org/index.php/ijcert/article/view/861/771
https://doi.org/10.22362/ijcert.v10i9.861
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Thien+Huynh-The%2C+Blockchain+for+the+metaverse%3A+A+review&btnG=
https://www.ijcert.org/index.php/ijcert/article/view/861/771
https://doi.org/10.1016/j.future.2019.12.019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+overview+on+smart+contracts%3A+Challenges%2C+advances+and+platforms&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X19316280
https://doi.org/10.22362/ijcert/2023/v10/i06/v10i0604
https://www.ijcert.org/index.php/ijcert/article/view/874
https://doi.org/10.1109/ACCESS.2019.2925010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Proof-of-stake+consensus+mechanisms+for+future+blockchain+networks%3A+fundamentals%2C+applications+and+opportunities&btnG=
https://ieeexplore.ieee.org/document/8746079
https://www.ijcert.org/index.php/ijcert/article/view/458
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=G+Wood%2C+Ethereum%3A+A+secure+decentralised+generalised+transaction+ledger&btnG=
https://cryptodeep.ru/doc/paper.pdf
https://doi.org/10.1109/ACCESS.2020.3027952
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+methodology-based+joint+hypergeometric+distribution+to+analyze+the+security+of+sharded+blockchains&btnG=
https://ieeexplore.ieee.org/document/9209957
https://ieeexplore.ieee.org/document/9209957
https://doi.org/10.48550/arXiv.2012.06128
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SoK%3A+Diving+into+DAG-based+blockchain+systems&btnG=
https://arxiv.org/abs/2012.06128
https://arxiv.org/abs/2012.06128
https://doi.org/10.1109/JIOT.2022.3206337
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+efficient+dag+blockchain+architecture+for+iot&btnG=
https://ieeexplore.ieee.org/document/9888757
https://doi.org/10.1109/COMPSAC54236.2022.00057
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Dynamic+Load+Balancing+Scheme+Based+on+Network+Sharding+in+Private+Ethereum+Blockchain&btnG=
https://ieeexplore.ieee.org/document/9842677
https://doi.org/10.1109/SRDS55811.2022.00034
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Achieving+Scalability+and+Load+Balance+across+Blockchain+Shards+for+State+Sharding&btnG=
https://ieeexplore.ieee.org/document/9996899
https://doi.org/10.1109/TPDS.2022.3227198
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Benzene%3A+Scaling+blockchain+with+cooperation-based+sharding&btnG=
https://ieeexplore.ieee.org/document/9983501
https://doi.org/10.1109/Blockchain.2019.00036
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+blockchain+traceability+with+DAG-based+tokens&btnG=
https://ieeexplore.ieee.org/document/8946176
https://doi.org/10.22362/ijcert/2023/v10/i04/v10i0404
https://www.ijcert.org/index.php/ijcert/article/view/10
https://doi.org/10.1109/TSC.2024.3357130
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+Tip+Selection+in+Burst+Message+Arrivals+for+DAG-based+Blockchain+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/10412117
https://doi.org/10.1109/HOTICN.2018.8606020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=mprove+blockchain+performance+using+graph+data+structure+and+parallel+mining&btnG=
https://ieeexplore.ieee.org/document/8606020
https://doi.org/10.1109/ICOSST.2018.8632193
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comparative+analysis+of+DAG-based+blockchain+architectures&btnG=
https://ieeexplore.ieee.org/document/8632193
https://doi.org/10.22362/ijcert/2023/v10/i10/v10i102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Omar+Levano-Stella%2C+A+Blockchain-based+Approach+for+Securing+IoT+Devices+in+Smart+Homes&btnG=
https://www.ijcert.org/index.php/ijcert/article/view/870
https://doi.org/10.1016/j.future.2020.05.047
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Iota+Tangle%3A+A+cryptocurrency+to+communicate+Internet-of-Things+data.&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X19329048

