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Abstract - The growing demand for efficient and reliable energy storage systems has led to increased research and development 

in the field of advanced control strategies. This research evaluates and compares the effectiveness of advanced control strategies 

such as Proportional and Integral controller (PI), Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System 

(ANFIS) for energy storage systems employing a DC-DC bi-directional converter. ANFIS control combines the strengths of fuzzy 
logic and neural networks to provide a hybrid approach, particularly appealing for its adaptability and capacity to handle 

complex and uncertain operational environments. Energy storage systems have emerged as vital components in modern energy 

management, and they play a pivotal role in addressing renewable energy intermittency, enhancing grid stability, and efficiently 

managing energy demands. At the heart of these systems lies the DC-DC bi-directional buck/boost converter, which plays a 

critical component in enabling bidirectional energy transfer between the storage system (lead acid battery) and the DC source. 

This research employs a simulation-based methodology for a comprehensive evaluation and comparison of these control 

strategies. The aim is to provide valuable insights into the accuracy, stability, control complexity and suitability of various 

control approaches in optimizing the operation of such systems.  

Keywords - Energy Storage Systems, PI, DC-DC Bi-directional converter, Control strategies, Efficiency, Stability, Robustness, 

Simulation, Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System.

1. Introduction 
The growing demand for efficient and reliable energy 

storage systems has led to increased research and development 

in the field of advanced control strategies. These systems often 

rely on DC-DC bi-directional converters to manage energy 

flow and make the choice of control strategy critical for their 

optimal operation. This study compares different advanced 

control strategies to assess their performance in energy storage 
systems with DC-DC bi-directional converters. Energy 

Storage Systems play a pivotal role in modern energy 

management which presents the capability to store surplus 

energy in intermediate forms such as thermal, compressed air, 

electro-mechanical and other mediums.  

The Battery Energy Storage Systems (BESS) stand out as 

a technologically advanced means of storing energy in the 

form of electric charge. One of the key advantages of BESS is 
its versatility, as it is not constrained by geographical 

limitations, making it a highly adaptable solution for various 

applications [1]. Within the range of BESS technologies, 

lithium-ion batteries have garnered substantial attention and 

preference due to their favorable characteristics, including 

high energy density and relatively low self-discharge rates. 
This paper focuses on applying lithium-ion battery technology 

for simulation purposes by exploring the advanced control 

strategies for energy storage systems using DC-DC bi-

directional converters. 

The integration of renewable energy sources and the 

efficient utilization of electrical power have become 

increasingly critical in the contemporary scenery of energy 

management. The ever-growing demand for clean, reliable 

and sustainable energy solutions has led to a surge in research 

and development efforts aimed at advancing the control 

strategies employed in energy storage systems [2].  

The central to these endeavors is the utilization of DC-DC 
bi-directional buck/boost converters, which is pivotal in 

enabling bidirectional energy transfer between the energy 

storage system and its associated DC source. The converter’s 

ability to efficiently convert voltage levels and facilitate 

bidirectional power transfer is crucial for energy storage 

systems’ overall performance and effectiveness [3]. 

Conventional buck converters step down voltage levels, and 
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boost converters increase them. In PV applications, the input 

and output voltage levels will not neatly align with these 

traditional modes.  

Bidirectional buck/boost converters are engineered to 

handle situations where input and output voltage ranges 

overlap, accommodating diverse power sources and loads 
with varying voltage requirements [4]. Bidirectional 

buck/boost converters can able to maintain high efficiency 

during power conversion. They employ advanced control 

algorithms such as ANN and ANFIS aided by higher 

frequency switching techniques to regulate the output voltage 

accurately, even when the input and output voltages fluctuate 

or overlap [5]. 

PI control is a widely used and well-established control 

strategy in the realm of energy storage systems that employ 

DC-DC bi-directional converters [6]. PI control is well-known 

for its ability to maintain voltage regulation [7] and system 

stability. It continuously adjusts the converter’s operation 
based on the error signal, which is the difference between the 

desired and actual voltage, to ensure that the output voltage 

remains within the desired range [8].  

Meanwhile, PI control may not always be the optimal 

choice in scenarios with highly nonlinear dynamics or rapidly 

changing operating conditions. In such cases, more advanced 

AI-based control strategies like sliding mode control, Fuzzy 

logic control [9], ANN and ANFIS can potentially outperform 

the PI controller by adapting to these complexities more 

effectively [10]. One of the primary applications of ANN in 

BESS is the estimation and control of the State-of-Charge 
(SoC). Accurate SoC estimation is crucial for optimizing the 

battery’s performance and extending lifespan [11].  

Based on historical data, ANN control is employed in 

BESS to perform real-time energy management, making 

decisions about when to charge and discharge the battery. 

ANN is known for its ability to adapt and learn from data, 

making it suitable for BESS control in dynamic and uncertain 

environments. They can adjust control strategies based on 

changing input voltage, load profiles and battery health [12].  

ANFIS is a hybrid control system that combines fuzzy 

logic and neural networks. It utilizes fuzzy inference rules to 

model complex, non-linear systems and the learning 
capabilities of neural networks to adapt to changing 

conditions. This unique combination makes ANFIS well-

suited for the dynamics in input voltage, loads and the 

uncertain nature of BESS operations [13]. ANFIS controllers 

can optimize battery charging and discharging strategies, 

which helps extend the lifespan of batteries and maintain their 

performance over time [14]. 

The existing literature lacks a comprehensive assessment 

and comparison of advanced control strategies, specifically PI, 

ANN and ANFIS, applied to bi-directional DC-DC 

buck/boost converters in energy storage systems. While the 

importance of energy storage systems is recognized in 

managing renewable energy intermittency and enhancing grid 

stability, there is a gap in understanding the suitability, 

adaptability and effectiveness of these control strategies in 
optimizing the operation of such converters.  

The increasing demand for efficient and reliable energy 

storage systems necessitates a deeper exploration of advanced 

control strategies for bi-directional DC-DC buck/boost 

converters. The lack of a comprehensive evaluation and direct 

comparison of PI, ANN and ANFIS controllers in the context 

of these converters poses a challenge in selecting the most 

suitable control approach. Addressing this gap is crucial for 

ensuring optimal bidirectional energy transfer between 

storage systems, like lead-acid batteries and DC sources. This 

research aims to bridge this gap by providing valuable insights 

into the accuracy, stability, and control complexity of different 
control strategies, contributing to energy storage systems’ 

effective design and performance analysis. 

The scope of this research encompasses a comprehensive 

analysis and comparison of advanced control strategies for 

energy storage systems that utilize DC-DC bi-directional 

converters. Specifically, it focuses on evaluating the 

performance and effectiveness of three main control 

strategies: PI, ANN, and ANFIS controllers. The research 

aims to provide valuable insights into converter efficiency, 

stability, robustness, suitability, and control complexity.  

This research tries to find a comprehensive understanding 
of how PI, ANN and ANFIS control strategies perform in the 

context of energy storage systems using DC-DC bi-directional 

converters. The findings will contribute to the knowledge base 

in the field of energy management, which can assist 

researchers, engineers and practitioners in making informed 

decisions regarding the selection of control strategies for their 

specific energy storage system applications. The graphical 

outline of the proposed work is shown in Figure 1.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Graphical outline of projected work 
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2. Methodology 
Integrating battery storage systems with bidirectional 

DC-DC converters has gained significant prominence in 
pursuing sustainable energy solutions and efficient power 

management. This research undertakes a comprehensive 

investigation into such systems’ intricate design and control. 

The primary objective of this study is to develop an optimized 

energy management system capable of efficiently regulating 

the charge and discharge of a battery system within a 220V 

DC link environment.  

The methodology follows a step-by-step approach, with 

each stage playing a vital role in determining the project’s 
ultimate success. These stages are disparate components and 

likely interconnected facets of a holistic strategy that 

combines theoretical analysis and practical implementation 

for a robust battery storage system. The following stages are 

the step-by-step approach of this research. 

2.1. Selection of Battery Rating 

The suitability of a battery for a renewable energy system 
depends on various factors, including the system’s specific 

requirements, the available technology and budget 

considerations. The most commonly used battery storage 

technologies are lead-acid and lithium-ion batteries. Lead-acid 

batteries are one of the most established and cost-effective 

options for renewable energy systems. They are suitable for 

off-grid backup power applications but have limitations in 

cycle life and energy density.  

Lithium batteries come in various chemistries like 

lithium-ion (Li-ion) and lithium polymer (LiPo) batteries, 

with a nominal voltage of 3.7 volts per cell [15]. Lithium-ion 

batteries have gained popularity in recent years due to their 
high energy density, longer cycle life and faster charge and 

discharge capabilities.  

The nominal current discharge characteristics curve of a 

lithium-ion battery covers more nominal area than that of a 

lead-acid battery, implying that the lithium-ion battery offers 

a higher energy density and potentially better performance in 

terms of capacity and power output, as shown in Figure 2.  

A 24V, 150AH Li-ion battery has been implemented in 

this work in view of its advantages and suitability. The battery 

current (Ibat) for a 24V, 150Ah battery can be calculated using 

Ohm’s law, which states that current is equal to voltage 
divided by resistance. The relationship in the context of a 

battery (very low battery resistance) is shown in Equation 1, 

𝐼𝑏𝑎𝑡 =
𝑄

𝑡
    (1) 

Where, Q is the charge (AH), and t is the time (hours). 

 

In this case, the battery current is 150A (t = 1hour). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 
Fig. 2 Nominal current discharge characteristics of Li-ion and lead acid 

batteries 

2.2. Design of Proposed Bidirectional DC-DC Buck/Boost 

Converter 
The bidirectional DC-DC buck/boost converter is at the 

heart of energy transfer within the projected system. The most 

critical step is designing the converter elements, such as 

switches, inductors, and capacitors. The converter is designed 

by considering efficiency, voltage regulation and response to 

fluctuations. The functional circuit diagram of the bi-

directional DC-DC buck/boost converter is shown in Figure 3. 

The duty cycle (D) is key for controlling the output 

voltage of the converter. The duty cycle less than 1 is for a 

buck converter (step-down), while it is greater than 1 for a 

boost converter (step-up). The duty cycle of the DC-DC 
converter is calculated as given in Equation 2, 

𝐷 =
𝑉𝑏𝑎𝑡

𝑉𝑖𝑛
 (2) 

The desired peak-to-peak inductor current ripple current 
is calculated by considering 20% of ripples in battery current, 

which is given in Equation 3, 

∆𝐼𝐿 = 0.2 ∗ 𝐼𝑏𝑎𝑡  (3) 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Operating circuit of bidirectional DC-DC buck/boost converter 
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The value of inductor (L) is calculated by using the 

Equation 4, 

𝐿 =
𝑉𝑖𝑛_𝑚𝑖𝑛∗(1−𝐷)

(𝑓∗∆𝐼𝐿)
 (4) 

Where, 𝑉𝑖𝑛_𝑚𝑖𝑛  is 𝑉𝑖𝑛  and f = 100KHZ. The desired input 

voltage ripple is calculated using Equation 5, 

∆𝑉𝐿1 = 0.01 ∗ 𝑉𝑖𝑛  (5) 

The input filter capacitance and output capacitance are 

calculated by using Equations 6 and 8, respectively, 

𝐶𝐼𝑁 =
(𝐼𝑏𝑎𝑡∗𝐷)

(∆𝑉𝐿1∗𝑓)
 (6) 

The desired output voltage ripple is calculated using 

Equation 7, 

∆𝑉𝐿2 = 0.01 ∗ 𝑉𝑏𝑎𝑡  (7) 

𝐶𝑂𝑈𝑇 =
(𝐼𝑏𝑎𝑡∗(1−𝐷))

(∆𝑉𝐿2∗𝑓)
 (8) 

2.2.1. Switching Component Selection 

The switching components are selected based on the 

following criteria. The forward voltage drops across the diode 

(Vf_diode = 0.5). The maximum input voltage during boost 
mode is calculated as given in Equation 9 by assuming the 

voltage stress (Vds_max) on the switch is equal to Vin_max, 

𝑉𝑖𝑛_𝑚𝑎𝑥 =
𝑉𝑖𝑛

(1−𝐷)
 (9) 

The safety margin for voltage stress on the switch 

(Vds_safe_margin) = 0.1 * Vin_max. The actual voltage stress on the 

switch is given in Equation 10, 

𝑉𝑑𝑠_𝑠𝑤𝑖𝑡𝑐ℎ = 𝑉𝑖𝑛_𝑚𝑎𝑥 + 𝑉𝑓_𝑑𝑖𝑜𝑑𝑒 + 𝑉𝑑𝑠_𝑠𝑎𝑓𝑒_𝑚𝑎𝑟𝑔𝑖𝑛  (10) 

Converter efficiency = 𝑃𝑜𝑢𝑡 /𝑃𝑖𝑛 (11) 

The calculations of the proposed bidirectional DC-DC 

buck/boost converter were done using the above-mentioned 

equations listed in Table 1. 

Table 1. Bidirectional DC-DC buck/boost converter specifications 

S. No. Parameters Values 

1 Ibat 150AH 

2 Switching Frequency 100KHZ 

3 L 6.53333e-05 H 

4 CIN 7.43802e-05 F 

5 COUT 5.56818e-03 F 

6 Vds_switch 272.13 V 

2.3. PI Control 
PI control is a classic control algorithm. It will be 

implemented to regulate the bidirectional DC-DC converter’s 

operation and ensure the battery current and voltage align with 

the desired reference values. The PI controller begins by 

measuring the battery current. It then compares this measured 

current to the desired output current. Finally, it adjusts its 

settings to generate a control signal that maintains a consistent 

output current for the input voltage of the converter changes 

[16]. 

2.4. ANN Model 

Closed-loop control of 24V, 150AH battery storage 

system using Artificial Neural Networks (ANNs) is an 
innovative approach that leverages the power of machine 

learning to optimize the performance of battery systems. In 

this setup, the battery current and SOC are utilized as inputs 

to the ANN, with the target or output as the duty cycle, which 

determines the charging or discharging rate of the battery.  

Gathering historical data on battery current, SOC, and 

corresponding duty cycles is crucial for training the ANN 

model. The obtained historical data is used to train the ANN. 

The objective is to enable the network to learn the 

relationships between battery current, SOC and the optimal 

duty cycle. The training process involves adjusting the 
weights and biases of the network to minimize the difference 

between the predicted duty cycle and the actual duty cycle 

from the training data. The ANN model of this particular work 

is created using the SIMULINK platform, as shown in Figure 

4. 

The difference between the predicted and actual duty 

cycles is calculated using a loss function. The loss function 

quantifies the error between the predicted and actual values. 
The weights and biases were adjusted based on the gradient of 

the loss function with respect to these parameters. This step is 

performed using the Levenberg-Marquardt optimization 

method.  

The Levenberg-Marquardt algorithm is an optimization 

algorithm commonly used for solving nonlinear least squares 

problems. It’s named after the mathematicians Kenneth 

Levenberg and Donald Marquardt, who independently 

proposed the method. The goal is to adjust the model’s 

parameters to minimize the difference between the observed 

data and the model predictions.  

The Levenberg-Marquardt algorithm iteratively adjusts 

the model parameters to minimize the sum of the squares for 

the differences between the observed and predicted values. A 

well-behaved error histogram with errors centered around zero 
indicates that the model has predicted accurate predictions, as 

shown in Figure 5. The training, validation and testing data for 

the ANN model are shown in Figure 6. When R=1, it indicates 

the predicted data is closer to or the same as the actual data.  
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Fig. 4 Structure of ANN 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Error histogram 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Training, validation and test data 

 
 

 

 

 

 

 
 

 Fig. 7 SIMULINK model of ANN 
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The mean squared error is obtained as 1.6450e-10 with a 

minimum gradient of 9.99e-8. This proves that the developed 

ANN model behaves well in the desired application. 

Implement the trained ANN in the closed-loop control system 

where the battery current and SOC are continuously monitored 

and fed into the ANN. The ANN then predicts the optimal duty 
cycle for the current operating conditions. The SIMULINK 

model of the developed ANN for this particular work is shown 

in Figure 7. 

2.5. ANFIS Model 

ANFIS model is employed to predict the dynamic 

behavior of the 24V, 150AH battery storage system, which 

involves training the ANFIS model using input-output data 
from the system. Input parameters include battery current and 

SOC. The duty cycle is an output parameter of the ANFIS 

model that controls the on/off duration of the converter 

switches, which effectively regulates the energy flow between 

the battery and the DC link. The ANFIS controller 

continuously monitors the battery state and adjusts the duty 

cycle based on its learned knowledge, ensuring that the battery 

operates within desired voltage and current limits. 

This ANFIS model is developed using 9 fuzzy sets for 

both battery current (Ibat) and SOC, which is described as 

follows: 

Layer 1 - Fuzzification Layer: Fuzzify the battery current 

and SOC using Gaussian or other membership functions. Let 

fi, j represent the membership grade for the ith fuzzy set of the 

jth input variable.  

𝑓𝑖,𝑗 = µ𝐴𝑗(𝑥𝑖) 

Where x1 indicates battery current and x2 indicates SOC. 

Layer 2 - Rule Layer: Determine the rule strengths (wi, j) 

connecting fuzzy sets of battery current and SOC since we use 

9 fuzzy sets for each input (9 rules for each combination of 

battery current and SOC fuzzy sets). 

𝑤𝑖,𝑗 = 𝑅𝑢𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑟𝑢𝑙𝑒 𝑖 

Layer 3 - Normalization Layer: Normalize the rule 

strengths to ensure they sum up to 1. 

𝛼𝑖,𝑗 =
𝑤𝑖,𝑗

∑ 𝑤𝑖,𝑗
81
𝑖=1

 

Layer 4 - Consequent Layer: Determine the consequent 

parameters (p and q) based on the input variables and rules. 

𝑝𝑖,𝑗 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝐴𝑖  𝑓𝑜𝑟 𝑟𝑢𝑙𝑒 𝑗 

𝑞𝑖,𝑗 = 𝑣𝑎𝑟𝑖𝑒𝑛𝑐𝑒 𝑜𝑓 𝐴𝑖  𝑓𝑜𝑟 𝑟𝑢𝑙𝑒 𝑗 

Layer 5 - Output Layer: The final output (y) represents 

the duty cycle of the bidirectional DC-DC converter. 

𝑦 = ∑ (
81

𝑖=1
𝛼𝑖,𝑗

1

1 + (
𝑥𝑖 − 𝑝𝑖,𝑗

𝑞𝑖,𝑗
)2

) 

The structure of the ANFIS model, including the above-
explained five stages, is shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 8 ANFIS structure 

2.5.1. Training 

The ANFIS model is trained using a dataset with known 

input-output pairs in this stage. Adjust the parameters (𝑤𝑖,𝑗 , 

𝑝𝑖,𝑗 , 𝑞𝑖,𝑗) through a learning algorithm to minimize the 

difference between the predicted duty cycle and the actual 

duty cycle. The training data set of the specific ANFIS model 

trained in this work is simulated, as shown in Figure 9. The 

ANFIS Surface Viewer in MATLAB provides several 
advantages for understanding and analyzing the behavior of 

an Adaptive Neuro-Fuzzy Inference System (ANFIS) model, 

as shown in Figure 10.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

  

Fig. 9 Training data set for the specific ANFIS model 
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Fig. 10 Surface view of simulated ANFIS model 

The Surface Viewer offers a visual representation of the 

response surface of the ANFIS model. This visualization helps 

users intuitively understand how the system’s output changes 
with variations in input variables. The ANFIS Surface Viewer 

is a valuable tool for exploring, validating, and fine-tuning 

ANFIS models. 

The minimal training Root Mean Square Error (RMSE) is 

too low (5.92434e-08), as observed from the training of the 

ANFIS model. The minimum RMSE is 3.18539e-06, and the 

maximum RMSE of 5.92434e-08 was observed during the 

AFIS training process, as shown in Figure 11. The value of 

RMSE of training error shows the accuracy of ANFIS when 

compared with other control techniques. 

Test data of the fuzzy inference system is shown in Figure 
12. It shows the instantaneous values of output (D) for 

different instantaneous values of input parameters. 

Convergence occurs when the duty cycle values stabilize and 

reach a relatively constant level. This indicates that the fuzzy 

inference system has learned the underlying patterns in the 

training data. It shows how well the fuzzy inference system 

generalizes to unseen data and patterns in the duty cycle over 

iterations during testing. 

 

 

 

 
 

 

 

 

 

 

 

 
 

 
Fig. 11 Training error 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Fig. 12 Test data 

2.6. 220V DC Link 

The final stage of the research involves the establishment 

of a 220V DC link. This 220V DC link serves as the backbone 
for efficient power distribution, interconnecting the 

bidirectional converter, battery system, and load, forming the 

complete power management system. 

The combined efforts within these stages aim to deliver a 

robust and adaptable battery storage system with the capability 

of efficiently managing energy flow and ensuring reliable 

power supply. As the research progresses through each stage, 

it will focus on integration, performance optimization, and the 

successful realization of a sustainable and versatile energy 

management solution. The SIMULINK model of 

PI/ANN/ANFIS enabled closed-loop control of bi-directional 
dc-dc buck/boost converter for 24V, 150AH Lithium-ion 

battery is shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 Fig. 13 Overall, the SIMULINK model of PI/ANN/ANFIS enabled 

closed-loop control 

3. Results and Discussions 
The simulation-based performance analysis of the bi-

directional DC-DC buck/boost converter employing different 

advanced control strategies such as Proportional and Integral 

Controllers, Artificial Neural Networks, and Adaptive Neuro-
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Fuzzy Inference Systems yields valuable insight into their 

performance in energy storage systems. The following results 

and discussions provide a comprehensive understanding of the 

stability, accuracy, robustness and control complexity of each 

control strategy. Results of the observed parameters, such as 

battery charging/discharging current, battery voltage, State of 
Charge (SOC) and voltage stress across the inductor for both 

buck and boost modes, provide a critical insight into the 

performance of the bi-directional DC-DC converter.  

The analysis of these parameters is essential for 

understanding the behavior of the converter under different 

operating conditions. The analysis is made with ANFIS 

control strategy because of its higher accuracy and stability, 

which is then compared with PI and ANN control strategies. 
During charging/buck mode, the battery reference voltage is 

set for 75, 45, 30 and 15 amperes at the time intervals of 0.2, 

0.5 and 0.8 seconds, respectively, as shown in Figure 14. The 

battery voltage is almost constant during charging with a 

limited rise in magnitude, as shown in Figure 14.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 14 Battery voltage and charging current during buck mode using 

ANFIS control 

 

 

 

 
 

 
 

 

 

 

 
 

 

 

 
Fig. 15 State of charge during buck mode using ANFIS control 

The SOC of the battery during charging is the rising 

manner, as shown in Figure 15. The voltage stress across the 

inductor is a crucial consideration for the converter’s design 

and operation. In both buck and boost modes, the voltage 

stress across the inductor should be within acceptable limits to 

ensure the reliability and longevity of the components. The 
observed stress across the Inductor is 195V, as shown in 

Figure 16, which is higher in the other two methods. 

In the buck mode, the converter steps down the voltage 

and the battery charging current is observed to be within the 

expected range. The buck mode is characterized by efficient 

charging as the converter adjusts the voltage to match the 

battery requirements.  

SOC is a critical parameter directly influencing the 
battery’s performance and lifespan. Observing SOC in both 

buck and boost modes provides insights into how well the 

converter manages energy transfer between the battery and the 

DC source.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 Fig. 16 Voltage stress across inductor using ANFIS control 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 Fig. 17 Battery voltage and discharging current during boost mode 

using ANFIS control 
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Maintaining SOC within the desired range is essential for 

optimizing battery performance and ensuring longevity. The 

analysis of SOC helps assess the effectiveness of the control 

strategies in regulating the charging and discharging 

processes. During dis-charging mode, the battery current is 

negative; the reference currents are -75, -45, -30 and -15 
amperes at the time intervals of 0.2, 0.5 and 0.8 seconds, 

respectively, as shown in Figure 17.  

The SOC of the battery is observed in a reducing manner, 

as shown in Figure 18. The observation and analysis of battery 

charging/discharging current, battery voltage, SOC and 

voltage stress across the inductor provide a comprehensive 

understanding of the modified bi-directional DC-DC 

converter’s performance in both buck and boost modes. 

 

 

 

 
 

 

 

 

 

 

 

 

 
 
 

Fig. 18 State of charge during boost mode using ANFIS control 

Table 2. Comparison of battery voltage and current during buck/boost 

modes 

Control 

Strategy 

Vbat 

(Buck) 

Ibat 

(Buck) 

Vbat 

(Boost) 

Ibat 

(Boost) 

PI 22.6V 73.7A 22.8V -72.3A 

ANN 23.7V 74.6A 23.2V -74.1A 

ANFIS 24V 74.9A 23.4V -74.4A 

The comparison of battery voltage and current during 

buck/boost modes using PI, ANN and ANFIS control 

strategies is shown in Table 2. All control strategies (PI, ANN, 
ANFIS) maintain relatively close battery voltage levels with 

ANFIS slightly higher at 24V in the buck mode. In the boost 

mode, ANFIS yields the highest voltage at 23.4V, followed 

closely by PI and ANN. In the buck mode, ANFIS achieves 

the highest charging current at 74.9A. In the boost mode, it 

demonstrates the highest discharging current at -74.4A. These 

results suggest that the ANFIS control strategy performs 

favorably in both charging and discharging modes by 

achieving higher battery voltage and current compared to PI 

and ANN. The study focused on parameters such as battery 

charging/discharging current battery voltage, State of Charge 

(SOC), and voltage stress across the inductor in both buck and 

boost modes. The analysis is conducted using the ANFIS 

control strategy for its higher accuracy and stability, 

comparing results with PI and ANN control strategies. During 

charging/buck mode, the converter efficiently adjusted the 

voltage, resulting in a nearly constant battery voltage and a 

rising SOC. 

4. Conclusion 
This research has comprehensively analysed advanced 

control strategies for energy storage systems employing DC-

DC bi-directional converters. The growing demand for 

efficient and reliable energy storage solutions necessitates a 

thorough understanding of control strategies to optimize the 

operation of these systems. The study compared three main 

control strategies Proportional and Integral Controller, 

Artificial Neural Network, and Adaptive Neuro-Fuzzy 

Inference System. The evaluation revealed that PI control is a 
well-established strategy that effectively maintains voltage 

regulation and system stability. However, its limitations in 

handling highly nonlinear dynamics or rapidly changing 

operating conditions underscore the need for more advanced 

control strategies. ANN is known for its adaptability and 

learning capabilities particularly excels in State-of-Charge 

estimation. 

On the other hand, ANFIS is a hybrid control system 

which combines the strengths of fuzzy logic and neural 

networks to handle complex, non-linear systems and adapt to 

changing conditions, making it well-suited for the dynamic 

and uncertain nature of energy storage system operations, 

which is proved in this study. The research emphasizes the 

importance of choosing the appropriate control strategy based 

on the specific requirements and characteristics of the energy 

storage system. Advanced strategies like ANN and ANFIS 

offer enhanced adaptability and performance in dynamic and 

uncertain environments.  

The findings of this study contribute valuable insights 

into the accuracy, stability, control complexity and suitability 

of these control approaches. Furthermore, the research 

highlights the significance of DC-DC bi-directional 

converters in energy storage systems, specifically focusing on 

their role in enabling bidirectional energy transfer between the 

storage system and the DC source. The outcomes of this study 

are expected to guide researchers, engineers and practitioners 
in making informed decisions regarding the selection of 

control strategies for their specific energy storage system 

applications. 
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