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Abstract - This research introduces an Adaptive Fog Computing Framework (AFCF) aimed at enhancing the efficiency and 

scalability of IoT ecosystems through blockchain technology integration, addressing task allocation, resource management, and 

task offloading challenges within fog and cloud computing paradigms. Employing simulations, the study utilized task distribution 

strategies, blockchain stability assessment, and cloud server workload management, demonstrating the framework’s capacity to 

maintain performance across diverse IoT settings. Quantitative results revealed a cent percent success rate in task processing, 

with a balanced load distribution at 50% and an average task complexity of 6.47893 in arbitrary units. The system demonstrated 
a latency of 48.479 milliseconds and a throughput of 2.469697 tasks per timestep, showcasing high scalability (97.8%) and 

energy efficiency (15.774194 in arbitrary efficiency units), emphasizing the AFCF’s robustness in varied tasks and resource 

dynamics. The study concludes the AFCF’s potential for real-world IoT applications, highlighting its implications for future 

research and practical deployment, underscoring its contribution to fog and cloud computing literature and paving the way for 

further exploration into adaptive computing frameworks. 

Keywords - Fog computing, IoT ecosystem, Blockchain technology, Task allocation, Resource management, Task offloading,  

Simulation, Cloud computing, Edge computing, Data integrity, Scalability. 

1. Introduction 
In the contemporary digital landscape, the proliferation of 

the Internet of Things (IoT) has ushered in an era of 

transformative connectivity, where everyday objects 

intercommunicate vast data streams, heralding new 

automation and analytics opportunities across sectors. This 

evolution, however, presents significant challenges, notably in 

processing speed and data management [1] due to the 

immense volume and velocity of data from IoT devices [2].  

Traditional cloud computing models with centralized data 

processing increasingly face bottlenecks, including latency, 

bandwidth limitations, and centralized processing challenges. 

Against this backdrop, fog computing, with its decentralized 

architecture processing data closer to its source, emerges as a 

strategic solution, promising timely and efficient responses 

essential for real-time IoT applications. The introduction of 

the Adaptive Fog Computing Framework (AFCF) in this 

paper aims to overcome these limitations, providing a 

balanced, secure, and scalable infrastructure tailored to the 
dynamic needs of IoT ecosystems. By decentralizing data 

processing and enhancing computational power near the 

network’s edge [3], the AFCF addresses critical IoT 

challenges, including improved data management, enhanced 

security, and reduced latency, setting the stage for a detailed 

exploration of its design principles and transformative 

potential for IoT infrastructure [4]. 

The study articulates significant challenges faced by 

existing IoT systems, primarily stemming from the limitations 

of conventional cloud computing models in handling the vast 

data volumes generated by IoT devices. These challenges 
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include inadequate data handling capacities and latency issues 

that can severely impair real-time data processing capabilities. 

Such limitations are not merely obstacles but represent critical 

challenges confronting existing architectures, often 

exacerbated by security vulnerabilities and scalability 

concerns.  

The current systems fall short in several key areas, 

notably their inability to process large volumes of data at the 

edge, a deficiency in real-time analytics, and insufficient 

mechanisms to ensure data integrity across distributed 

networks. These gaps highlight the pressing need for a 

framework that is not only more responsive but also capable 

of intelligent decision-making and autonomy in dynamic 

environments, underscoring the imperative for adaptive and 

intelligent frameworks. These frameworks must discern and 

respond to fluctuating data streams and workloads while 

anticipating future demands, marking a clear innovation 

imperative to develop solutions that can learn, adapt, and scale 
without compromising performance or security. 

This research aims to introduce an Adaptive Fog 

Computing Framework (AFCF) that adeptly manages the 

computational and storage demands of IoT devices. The key 

insights revolve around the framework’s capability to balance 

the load across fog nodes and cloud servers dynamically, the 

strategic offloading of tasks based on complexity, and the 

integration of blockchain technology to fortify data integrity 

and security. The core insights of this research are 

encapsulated in the following points: 

1. Dynamic Load Balancing: The framework ensures that 
computational tasks are distributed equitably among fog 

nodes, preventing any single node from becoming a 

bottleneck, thereby enhancing system reliability and 

efficiency. 

2. Strategic Task Offloading: By assessing task complexity, 

the system intelligently decides whether to process data 

locally on fog nodes or offload it to the cloud, optimizing 

resource utilization and reducing latency. 

3. Blockchain Integration: Incorporating blockchain 

technology within the AFCF provides a secure and 

immutable ledger for transactions, enhancing data 

security and trust in a distributed network. 
4. Resource Optimization: The AFCF employs algorithms 

that dynamically adjust resources in response to 

fluctuating demands, ensuring optimal performance 

without resource wastage. 

5. Scalability and Flexibility: Designed with scalability in 

mind, the framework can accommodate an increasing 

number of IoT devices and adapt to various application 

requirements. 

6. Real-World Viability: The simulation results in point 

towards the practical applicability of the AFCF in real-

world scenarios, signaling its readiness for deployment in 
industrial settings. 

The Adaptive Fog Computing Framework (AFCF) 

introduced in this research represents a cutting-edge synthesis 

of modern technological innovations and architectural 

designs. It aims to blend the benefits of both fog and cloud 

computing to enhance IoT systems.  

Featuring a layered architecture, it ensures smooth 
integration across IoT devices, fog nodes, and cloud services, 

designed not only to meet current but also future IoT demands. 

This dynamic and resilient system is tailored to adapt to 

changing data patterns and network structures.  

The subsequent sections will detail the AFCF’s 

methodology, including its technical framework, simulation 

setup, and performance indicators, followed by an analysis of 

empirical findings that shed light on its operational efficiency 

and practical value. Concluding remarks will summarize the 

study’s contributions to IoT and fog computing scholarship, 

recognizing limitations and suggesting avenues for further 

exploration, positioning the AFCF as a foundational model for 
future computing infrastructures. 

2. Background 
The advent of the Internet of Things (IoT) has redefined 

the boundaries of connectivity, leading to an intertwined web 

of devices and data streams. This intricate fabric of digital 

communication has brought forth an array of computational 
challenges and opportunities.  

The background section of this paper embarks on a 

journey through the evolutionary landscape of IoT 

ecosystems, tracing the arc from the inception of connected 

devices to the current epoch where data is king [5]. It explores 

the paradigmatic shift towards fog computing as a salient 

response to the burgeoning data management needs.  

This section also delves into the pivotal role of task 

allocation and the revolutionary impact of blockchain 

technology on IoT security and integrity. It concludes with an 

examination of scalability in the ever-expanding IoT networks 

and highlights the research gaps that catalyze the need for 

innovation [6]. 

2.1. Evolution of IoT Ecosystems 

The Internet of Things (IoT) has evolved significantly, 

necessitating solutions for security, privacy, and data analysis 
challenges [7, 8]. Combining blockchain and AI within IoT 

systems enhances data security, trust, and analysis 

capabilities. Alternative approaches include developing end-

to-end security models for IoT ecosystems and studying 

competition among multi-platform IoT ecosystems [8].  

Additionally, exploring horizontal integration in IoT 

business models across industries offers new opportunities for 

comprehensive solutions. These diverse strategies collectively 

shape the future of IoT and its impact on various sectors. 
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2.2. The Rise of Connected Devices 

The proliferation of interconnected devices has had a 

profound impact across various domains, encompassing 

healthcare, engineering, and communication. In the context of 

pandemic management, there is the exploration of employing 

connected devices and social machines to implement 
predictive, preventive, and personalized medicine [9]. In the 

realm of engineering, there’s been a proposal to apply Multi-

Tuned Mass Damper Inerter (MTMDI) systems to adjacent 

high-rise buildings, serving as an unconventional seismic 

protection strategy, underlining the influence of connected 

devices on structural safety and performance.  

Furthermore, the field of communication engineering has 

witnessed the development of smart glasses and other 

wearable smart devices, which are increasingly integrating 

with other devices through diverse communication 

technologies [10]. The proliferation of these connected 

devices has also resulted in a surge in data volumes, 
necessitating the adoption of fog computing for time-critical 

control applications and the application of reinforcement 

learning to optimize network pathways while ensuring reliable 

transmission times.  

The interconnected nature of these devices has not only 

brought about a revolution in various industries but has also 

introduced new challenges and opportunities for innovation. 

As the number of connected devices continues to burgeon, 

their influence on various facets of society is expected to 

become even more pronounced. 

2.3. Data Deluge: Challenges in the IoT Landscape 
The Internet of Things (IoT) has resulted in a substantial 

increase in data volume, presenting challenges across various 

sectors. Within the telecommunications industry, IoT 

applications generate vast quantities of data, ranging from 

terabytes to petabytes daily. This data surge has necessitated 

the utilization of Big Data Analytics (BDA) to extract 

actionable insights from telecom big data [11].  

Similarly, in the realm of smart cities, there’s a growing 

focus on edge-AI-enabled video analytics, owing to its 

transformative potential. This technology enables IoT devices 

with constrained resources to shift compute-intensive AI tasks 

to network edge servers, offering enhanced latency and 
bandwidth efficiency. The applications of video analytics in 

smart cities encompass security, surveillance, transportation, 

traffic management, healthcare, education, sports, and 

entertainment [12]. 

2.4. The Paradigm Shift from Centralized to Distributed 

Computing 

The transition from centralized to distributed computing 
has been primarily motivated by the growing demand for 

high-bandwidth and low-latency applications bolstered by 

advancements in communication and computational 

capabilities of embedded devices [13, 14]. This shift has 

reverberated across various domains, encompassing network 

coding, edge computing, and the Internet of Things (IoT). Key 

facets of this paradigm shift include: 

1. Device-to-Device Communications: A novel paradigm in 

network coding known as instantly decodable network 
coding has arisen, offering a trade-off between 

performance and complexity. In device-to-device 

communication networks, devices expedite the recovery 

of missing data packets by exchanging network-coded 

packets. 

2. Edge Mesh: This emerging computing paradigm 

delegates decision-making tasks to edge devices within 

the network rather than funneling all data to a centralized 

server. Data and computational tasks are distributed 

through a mesh network of edge devices and routers, 

delivering advantages such as distributed processing, low 

latency, fault tolerance, enhanced scalability, improved 
security, and privacy. 

3. Distributed Edge Computing: The demand for high 

bandwidth in conjunction with low-latency applications 

has precipitated the shift from centralized cloud 

computing to distributed edge computing. This 

transformation has a substantial impact on the design of 

network interconnects and the fundamental network 

attributes necessary to fully enable 5G and beyond. 

4. Computing Paradigm Shift: Over the past five years, a 

noteworthy shift from centralized to distributed 

computing has transpired. While timesharing and batch 
systems still find utility, the dominant model of large 

mainframes has ceded ground. Networks have 

democratized computing power, accessibility, and cost, 

extending beyond centralized computer facilities, with 

personal computers opening up computing to a wider user 

base. 

5. The transition from centralized to distributed computing 

offers a host of advantages, including heightened 

performance, reduced complexity, and increased 

adaptability. These advancements are particularly 

pertinent for critical applications demanding heightened 

reliability, real-time processing, support for mobility, and 
context awareness. 

2.5. The Emergence of Fog Computing 

In the realm of computing paradigms, fog computing, 

also known as edge computing, emerges as a concept that 

extends the capabilities of distributed computing, notably 

cloud computing, to the network’s edge. Fog computing 

delivers information, processing, storage, and application 

services directly to end-users, drawing inspiration from real-

time applications such as smart grids, intelligent traffic signals 

in vehicular networks, and programmable networks [15]. It 

addresses several challenges associated with traditional cloud 
computing, including unreliable latency, a lack of mobility 

support, and the need for location awareness.  
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A comparative analysis between fog computing and 

cloud computing underscores their distinctive attributes. 

While both offer similar services, they diverge significantly in 

terms of location, latency, and scalability. Cloud computing 

predominantly relies on centralized data centers, whereas fog 

computing pushes computing services to the network’s edge, 
proximate to end-users.  

This proximity affords fog computing an advantage in 

terms of reduced latency, facilitating faster response times 

compared to cloud computing, which may encounter delays 

due to data transmission limitations. Furthermore, fog 

computing has the potential to alleviate scalability bottlenecks 

that can plague cloud-based systems, as it actively manages 

and reduces data traffic load towards the central cloud [16]. 

1. The advantages of fog computing in the context of 

Internet of Things (IoT) systems are noteworthy. First 

and foremost, it significantly reduces latency, ensuring 

rapid response times for IoT devices by processing data 

locally at the network’s edge. Additionally, fog 

computing enhances the Quality of Service (QoS) in IoT-

based systems through efficient offloading algorithms, 

thereby improving the overall experience for end-users. 

Scalability is another strength, as fog computing 

efficiently accommodates the growing number of IoT 

devices by managing and reducing data traffic load 
towards the central cloud. Finally, fog computing is a 

cost-effective solution, reducing the need for extensive 

infrastructure and network resources by processing data 

locally at the network’s edge, ultimately leading to 

substantial cost savings. 

2. In summary, fog computing represents a promising 

technology for IoT systems, offering distinct advantages 

over traditional cloud computing, such as reduced 

latency, enhanced QoS, scalability, and cost-

effectiveness, making it a pivotal player in the evolving 

landscape of distributed computing [17]. 

2.6. IoT Data Management and Processing 
In the realm of IoT applications, real-time data processing 

assumes a critical role by facilitating swift decision-making 

and responsive actions. Several paramount requirements for 

real-time data processing in IoT are evident: IoT devices 

amass substantial volumes of real-time data, necessitating 

processing and analysis to derive meaningful insights that 

inform decision-making processes. Real-time data analysis is 

imperative for monitoring and optimizing diverse IoT 

applications, spanning domains such as building energy 

management, manufacturing, and healthcare.  

Safeguarding the integrity and privacy of IoT data looms 
large as a significant concern, given its sensitive nature and 

susceptibility to security threats. Techniques such as Trusted 

Execution Environment (TEE) and end-to-end data 

encryption mechanisms emerge as viable measures to uphold 

data privacy. The management of data at the edge introduces 

both opportunities and challenges within IoT applications: 

Edge computing accelerates data processing by gathering and 

analyzing data closer to its source, thus curtailing latency and 

augmenting responsiveness. Given the typically constrained 

storage capacity of IoT devices, edge-based data management 
serves to diminish reliance on cloud-based storage, which may 

raise security and privacy apprehensions.  

Edge computing furnishes the capability for real-time 

data processing, an indispensable feature for numerous IoT 

applications, including intelligent building management and 

healthcare. Nonetheless, managing data at the edge can 

introduce novel security and privacy quandaries, potentially 

exposing sensitive data to unauthorized access or malicious 
exploits. Techniques such as blockchain and smart contracts 

can be enlisted to bolster data security and integrity. Data 

analytics emerges as a pivotal cog in the machinery of IoT 

applications: Real-time data collection by IoT devices 

mandates subsequent processing and analysis to distill 

valuable insights conducive to informed decision-making.  

Data analytics encompasses the processing and scrutiny 

of IoT data, extracting valuable insights and patterns that 

underpin the optimization of various IoT applications and 

enhancement of user experiences. As with other facets of IoT 

data management, ensuring the security and privacy of IoT 
data remains a foremost concern, given its sensitivity and 

vulnerability to threats. Techniques such as Trusted Execution 

Environment (TEE) and end-to-end data encryption 

mechanisms can be deployed to preserve data privacy. 

Effective data management strategies are pivotal in the realm 

of IoT, encompassing facets like data aggregation, storage, 

and dissemination. These strategies ensure data accuracy, 

consistency, and accessibility to authorized users [18]. 

The domains of real-time data processing, edge-based 

data management, and data analytics hold pivotal roles in the 

realm of IoT applications. Addressing challenges such as data 

security, latency reduction, and responsiveness enhancement 
while harnessing opportunities are pivotal imperatives in the 

effective management and processing of IoT data. Techniques 

including blockchain, smart contracts, and edge computing 

serve as valuable tools in navigating these challenges and 

capitalizing on the opportunities presented by the burgeoning 

field of IoT data. 

2.7. Task Allocation and Load Balancing 

In distributed systems, including Internet of Things (IoT) 

networks, the concepts of task allocation and load balancing 

play pivotal roles. Task allocation strategies involve the 

judicious assignment of tasks to various nodes within the 
network. At the same time, load balancing aims to distribute 

the computational workload evenly across these nodes to 

prevent the undue burdening of any single node. The efficient 

implementation of task allocation and load balancing 
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mechanisms holds great significance for IoT performance, 

particularly in terms of diminishing processing latency and 

enhancing overall quality of service. Recent research 

endeavors have delved into these critical aspects: 

1. In the context of multi-UAV-aided Mobile Edge 

Computing (MEC) systems, there is an exploration into 
joint optimization of task offloading, resource allocation, 

and load balancing. 

2. Software-defined networks are benefitting from load 

balancing strategies, where researchers have devised 

enhancements to the whale optimization algorithm to 

achieve improved load distribution. 

3. An enhanced butterfly optimization algorithm is 

proposed to address load-balancing concerns with a 

specific focus on reducing latency. 

4. To optimize MEC systems with multiple service 

providers, a two-layer task offloading scheme is 

introduced, contributing to efficient task allocation. 
5. Energy-efficient task offloading, load balancing, and 

resource allocation strategies are investigated in the 

context of mobile edge computing-enabled IoT networks. 

6. These studies introduce a range of algorithms and 

optimization techniques aimed at enhancing task 

allocation and load balancing within distributed systems. 

The ultimate objective is to mitigate latency issues and 

elevate the quality of service, making them invaluable 

contributions to the realm of IoT network performance. 

2.8. Blockchain Technology in IoT 

Blockchain technology, often associated primarily with 
cryptocurrencies such as Bitcoin, represents a decentralized 

and distributed ledger system that securely manages data 

across a network of nodes. Beyond its role in digital 

currencies, blockchain offers a range of advantages, including 

heightened security, transparency, and trustworthiness, with 

applications extending into diverse industries, including the 

Internet of Things (IoT) [19].  

The integration of blockchain technology holds the 

potential to substantially bolster the security of IoT networks 

by effectively addressing key challenges related to data 

privacy, authentication, and trust. Several ways in which 

blockchain can enhance IoT security are as follows: 

Data Privacy: Blockchain’s decentralized architecture 

and data distribution across multiple nodes establish 

formidable barriers against unauthorized access or tampering 

with sensitive information in IoT networks. This robust data 

protection mechanism safeguards against cyber threats and 

maintains data integrity within IoT ecosystems. 

Authentication: Blockchain can play a pivotal role in 
creating unassailable, tamper-proof identities for IoT devices, 

ensuring that only authorized devices can gain access to 

network resources. This authentication safeguard is 

instrumental in thwarting unauthorized access and upholding 

overall IoT security. 

Trust: The transparency and security inherent in 

blockchain technology lay the foundation for trust between 

IoT devices and users. By providing a secure and transparent 

platform for data storage and exchange, blockchain fosters 
confidence in IoT networks, thus encouraging wider adoption 

and utilization. 

Smart Contracts: Blockchain’s capability to facilitate 

smart contracts-self-executing agreements triggered by 

predefined conditions can streamline and automate various 

processes within IoT networks. This automation extends to 

tasks like data exchange, payments, and device interactions, 

enhancing efficiency and security [20]. 

Integration with other Technologies: Blockchain can be 

effectively integrated with emerging technologies such as 

artificial intelligence and federated learning. This synergy 

addresses challenges related to privacy preservation, large-

scale data management, and computational demands in IoT 

networks. Industries like vehicular networks and healthcare, 

in particular, stand to benefit from this collaborative approach.   

Blockchain technology holds the potential to significantly 

bolster the security of IoT networks by furnishing a 

decentralized, transparent, and reliable platform for data 

management and exchange. In doing so, it adeptly tackles 
primary IoT challenges, including data privacy, 

authentication, and trust, while opening up new horizons for 

various industries and applications [21]. 

2.9. Scalability Concerns in IoT Networks 

IoT networks grapple with a multitude of scalability 

challenges, encompassing various dimensions like energy 

efficiency, security, and network performance. The ensuing 

sections delve into diverse approaches aimed at mitigating 

these challenges: 

 Scaling IoT: A Multidimensional Challenge: IoT 

networks confront an array of hurdles, including 

heterogeneity, scalability, and energy efficiency 

concerns. While conventional methods such as Software 

Defined Networking (SDN) prove effective for larger-

scale IoT implementations, they can be inefficient for 

smaller-scale applications, prompting the exploration of 

alternative solutions. 

 Addressing Scalability with Fog Computing: Fog 

computing emerges as a promising strategy for 
combatting scalability issues within IoT networks. This 

approach entails the processing and analysis of data at the 

network’s edge, diminishing the necessity for extensive 

data transmission to the cloud and resulting in improved 

response times. 
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 Future Trends: Scalable Architectures for Expanding IoT 

Networks: As the expanse of IoT networks continues to 

burgeon, novel architectures and technologies are under 

scrutiny to ensure scalability and resource optimization. 

These forthcoming trends encompass: 

 Dynamic Virtual IoT Networks: A nimble mechanism 
that empowers users to dynamically reconfigure 

communication flows between sensors and actuators 

based on data traffic loads and optimal routing [22]. 

 Blockchain-Enabled IoT Networks: Blockchain 

technology is harnessed to bestow secure management, 

authentication, and access control upon IoT devices, thus 

enhancing data integrity and privacy. 

 Energy-Efficient Clustering Protocols: Solutions such as 

Enhanced Multitier Energy-Efficient Clustering Protocol 

Integrated with Internet of Things (EMEECP-IOT) 

address energy efficiency challenges in IoT-constrained 
Wireless Sensor Networks (WSN) [23]. 

 Lightweight Heterogeneous Multihomed Networks: A 

model tailored to contend with the complex heterogeneity 

network landscape in smart cities, facilitating the 

coexistence of diverse IoT applications and technologies 

[24]. 

 Blockchain-Based Security and Scalability Solutions: 

The utilization of hyperledger fabric, an enterprise-grade 

permissioned distributed ledger framework, as a means to 

resolve security and scalability issues within IoT 

networks. These imminent trends collectively aim to 
surmount the challenges faced by IoT networks 

concerning scalability, energy efficiency, and security. In 

doing so, they aspire to ensure seamless connectivity and 

efficient resource utilization across various applications 

and environments. 

2.10. Research Gap and Need for Innovation 

In the realm of IoT, the pace of technological 

advancement is relentless, yet it often outstrips the capabilities 

of current infrastructures and systems. As we navigate through 

the complex tapestry of interconnected devices and ever-

growing data, it becomes clear that existing solutions are 

struggling to keep up.  

This section aims to scrutinize the current landscape, 

pinpointing the limitations and inefficiencies that hinder 

progress. 

2.10.1. Surveying the Current Landscape: Limitations of 

Existing Solutions 

A meticulous examination of the prevailing systems 

reveals a series of constraints ranging from inadequate data 

handling capacities to latency issues that can cripple real-time 

data processing. These limitations are not mere stumbling 

blocks but are critical challenges that existing architectures 

face, often compounded by security vulnerabilities and 
scalability concerns. 

2.10.2. Identifying the Gaps: Where Current Systems Fall 

Short 

The gaps in current systems manifest in several key areas: 

the inability to process large volumes of data at the edge, a 

lack of real-time analytics, and insufficient mechanisms to 

ensure data integrity across distributed networks. These 
shortcomings underscore the pressing need for a framework 

that is not only more responsive but also capable of intelligent 

decision-making and autonomy in dynamic environments. 

2.10.3. The Imperative for Adaptive and Intelligent 

Frameworks 

The exigencies of modern IoT applications demand 

frameworks that are both adaptive and intelligent. Such 

systems must not only discern and respond to fluctuating data 

streams and workloads but also anticipate future demands. 

The innovation imperative is clear: to develop solutions that 

can learn, adapt, and scale without compromising on 

performance or security. It is within this context that the next 
generation of fog computing frameworks must be conceived 

ones that embody flexibility, intelligence, and foresight. 

The background section has laid a comprehensive 

foundation, illustrating the trajectory of IoT growth and the 

accompanying computational complexities. It has illuminated 

the transformative role of fog computing in addressing the 

limitations of centralized data processing models. By 

dissecting the nuances of task allocation and load balancing, 

it sets the stage for the necessity of robust frameworks capable 

of adaptive management.  

The exploration of blockchain technology has 
underscored its potential as a linchpin for security within IoT 

networks. Finally, the discussion on scalability has 

accentuated the imperative for frameworks that can flex and 

evolve with the IoT landscape. This backdrop forms the 

bedrock upon which the subsequent sections will build, 

presenting the proposed Adaptive Fog Computing Framework 

as a beacon of innovation in the IoT domain. 

3. Proposed System  
The proposed AI-driven Adaptive Fog Computing 

Framework (AFCF) represents a paradigm shift in handling 

IoT-driven data and computational challenges. At its core, the 

AFCF integrates cutting-edge technologies such as machine 

learning, reinforcement learning, and blockchain to create a 

multi-tiered, efficient, and secure computing environment.  

This innovative framework is specifically designed to 

address the critical needs of latency-sensitive applications in 

the IoT domain, offering a unique blend of local and cloud 

computing through intelligent task offloading, dynamic 
resource allocation, and robust decentralized coordination. 

The AFCF is designed to optimize task offloading and 

resource allocation in a decentralized fog computing 



A. MallaReddy et al. / IJECE, 11(3), 160-175, 2024 

166 

environment, particularly for latency-critical IoT applications. 

It integrates advanced technologies such as Machine Learning 

(ML), Reinforcement Learning (RL), and blockchain to 

enhance performance, scalability, and reliability. 

3.1. Conceptual Diagram Explanation 

The conceptual diagram of AFCF presents a multi-
layered architecture comprising IoT devices, Fog Nodes, and 

a cloud server interconnected by a decentralized blockchain 

network. 

 

 

 

 

 

 

 

 

 
Fig. 1 Proposed system architecture 

3.1.1. IoT Devices Layer 

The IoT devices layer forms the foundational tier of the 

AFCF. It comprises a multitude of Internet of Things (IoT) 

devices, each embedded with sensors and computational 

resources. These devices are typically distributed across 

various physical locations and are integral to data collection 

and initial processing tasks. 

Functionality 

 Task Generation: Each Iot device i  in the set I =
{i1, i2, … , in} is capable of generating tasks Ti. 

 Task Characteristics: A task t  generated by device i , 

denoted as ti, has specific attributes such as complexity 

cti
 and priority pti

. 

 Complexity Measurement: The complexity cti
 of a task 

can be quantified on a predetermined scale, say 1 to 10, 

where 10 represents high complexity. 

 Priority Assessment: The priority pti
 maybe categorized 

into levels like “High”, “Medium”, and “Low”, impacting 

the task’s processing urgency. 

 

Data Flow 

 Offloading Decision: Each task ti  is evaluated for 

offloading, where the decision function D(ti) determines 

whether to process the task locally, at the fog node, or the 

cloud server. 

 Mathematical Expression for Offloading Decision: 

 D(ti) = {

 Local,  if cti
≤ θL

 Fog Node,  if θL < cti
≤ θF

 Cloud Server,  if cti
> θF

 

 Here, θL  and θF  are complexity thresholds defining the 
boundaries for local processing, fog node processing, and 

cloud server processing. 

Conceptual Integration in AFCF 

 The IoT devices layer is critically linked to the 

subsequent fog nodes layer and cloud server layer 

through a data and task offloading pipeline. 

 Its design ensures that each IoT device operates 

optimally within its resource constraints while 

contributing to the overarching goals of efficiency and 
responsiveness in the AFCF. 

3.1.2. Fog Nodes Layer 

The fog nodes layer serves as an intermediate processing 

tier in the AI-driven Adaptive Fog Computing Framework 

(AFCF). It consists of a network of fog nodes, each endowed 

with specific computational and storage capacities. This layer 

acts as a bridge between the IoT devices layer and the cloud 

server layer, optimizing data processing close to the data 

source. 
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Functionality 

Task Offloading: Decision Function: Each fog node f ∈
F, where F = {f1, f2, … , fm}, determines whether to process 

incoming tasks locally or offload them to the cloud. 

Mathematical Expression 

Let O(ti, f) be the offloading decision function for the 

task ti at fog node f. 

O(ti, f) = {
 Local,  if cti

≤ Rf − Lf

 Cloud Server,  otherwise 
 

Here, cti
 is the complexity of the task ti, Rf  is the 

resource capacity of fog node f and Lf is its current load. 

Resource Allocation: Dynamic Adjustment via RL: The 

resource capacity Rf  of each fog, node is dynamically 

adjusted based on workload and historical data using 

reinforcement learning algorithms. 

Resource Update Rule:  Rf
(new )

= Rf
(old )

+ ΔR, where ΔR 

is the adjustment made based on the RL algorithm’s output. 

Data Flow 

 Tasks from IoT devices are received at fog nodes. 

 Based on the decision function O, tasks are either 

processed locally at the fog nodes or offloaded to the 

cloud server. 

 This process optimizes the use of computational 

resources and reduces latency by processing data closer 

to its source. 

Conceptual Integration in AFCF 

 The fog nodes layer is critical for reducing the load on 

the cloud server, providing faster response times, and 

maintaining data processing even when cloud 
connectivity is limited. 

 It also plays a vital role in balancing the computational 

load across the network, ensuring efficient utilization of 

resources. 

3.1.3. Cloud Server Layer 

The cloud server layer represents the apex of the AI-

driven Adaptive Fog Computing Framework’s (AFCF) 

hierarchical structure. It is a centralized computational entity 

characterized by its extensive and scalable computing 

resources. 

Mathematical Model 

Let’s define the cloud server layer using formal notations: 

Cloud Server Definition 

 The cloud server, denoted as C, is a singular entity with a 
high computational capacity. 

 Let C = {cres , cproc }  where cres  represents the resource 

capacity and cproc represents the processing capability. 

Functionality 

Task Processing 

 The cloud server is responsible for handling tasks TC 
offloaded from fog nodes. 

 Let TC = {t1, t2, … , tk} be the set of tasks offloaded to the 
cloud server. 

 Each task t ∈ TC is characterized by ct, its computational 
complexity. 

Complex Task Management 

 The cloud server specializes in processing tasks that 

exceed the processing capabilities of the fog nodes. 

 For a task t, if ct > threshold  fog , it is redirected to the 

cloud server. 

Data Flow 

Offloading Mechanism 

 Tasks are offloaded from fog nodes to the cloud server 

based on specific criteria. 

 The offloading decision can be mathematically 

represented as: 

O(t, f, C) = {
C,  if ct >  threshold 

fog 

f,  otherwise 
 

Here, O(t, f, C) represents the offloading function for a 

task t  from a fog node f  to the cloud server C  or local 

processing at the fog node. 

Conceptual Integration in AFCF 

 The cloud server layer is the backbone for handling 

computation-intensive tasks in the AFCF. 

 It ensures that even when tasks are too complex for fog 

nodes, they are efficiently managed without 

compromising the system’s overall performance. 

 This layer also serves as a fallback and balancing 

component, preventing the overloading of fog nodes and 

maintaining system stability. 

Mathematical Representation of Task Processing 

Processing Capacity Utilization 

 The utilization of the cloud server’s processing capacity 
can be represented as: 

- UC =
∑  t∈TC

 ct

cres 

× 100% 

Here, UC indicates the percentage utilization of the cloud 

server’s resources. 
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3.2. Blockchain Network 

The blockchain network in the AI-driven Adaptive Fog 

Computing Framework (AFCF) is a pivotal module that 

underpins the system’s integrity and reliability. It functions as 

a decentralized ledger, systematically recording transactions 

and decisions across the network. 

 

 

 

Fig. 3 Blockchain network 

3.2.1. Mathematical Model 

To describe the blockchain network mathematically, we 

use the following notations and structures: 

3.2.2. Blockchain Definition 

Let B = {b1, b2, … , bn} be the blockchain, where each bi 

is a block in the chain. Each block bi contains a set of records 

or transactions Tbi
. 

3.2.3. Block Structure 

A block bi  in the blockchain can be defined as bi =
{Tbi

, H(bi−1), H(bi)}. Here, Tbi
 is the set of transactions in the 

block bi, H(bi−1) is the hash of the previous block, and H(bi) 

is the hash of the current block. 

3.2.4. Functionality 
Transaction Recording 

 Each transaction or decision t ∈ Tbi
 recorded in the 

blockchain is an immutable record of an action taken 

within the AFCF. 

 Transactions include data transfers, task offloading 

decisions, resource allocation changes, etc. 

Ensuring Data Integrity 

 The integrity of data in the blockchain is maintained 

through cryptographic hashes. 

 For each block bi, the hash function H ensures that any 
alteration of the block’s content will result in a different 

hash, thus detecting tampering. 

Decentralization and Security 

 The decentralized nature of the blockchain, spread 

across multiple nodes in the AFCF, enhances security 
and reduces the risk of centralized failure or attacks. 

3.2.5. Data Flow 

Blockchain Update Mechanism 

 When a new transaction or decision is made within the 

framework, a new block bnew  is created and appended 

to the blockchain. 

 This can be mathematically expressed as B = B ∪
{bnew }. 

3.2.6. Conceptual Integration in AFCF 

 The blockchain network serves as the backbone for trust 

and verification within the AFCF. 

 It provides a transparent and tamper-proof mechanism for 

recording the history of all interactions and decisions, 

which is crucial for auditability and trust in distributed 

environments. 

3.2.7. Mathematical Representation of Blockchain Integrity 

Blockchain Integrity Check: The integrity of the 
blockchain can be verified by ensuring that for each 

consecutive block pair (bi, bi+1), H(bi) in bi+1  matches the 

computed hash of bi. 

Mathematically, ∀bi, bi+1 ∈ B , if H(bi) = H′(bi)  in 

bi+1, then integrity holds. 

3.3. Submodules of AFCF 

The conceptual diagram illustrates the intricate 

submodules of the AI-driven Adaptive Fog Computing 

Framework, each uniquely contributing to the system’s 

robustness and efficiency. These submodules, including the 

Predictive Task Offloading Engine, Resource Allocation and 

Scheduling System, Decentralized Coordination Mechanism, 
and Self-Evolving Feedback Loop, are ingeniously integrated 

to optimize task processing and resource management in IoT 

environments. 

3.3.1. Predictive Task Offloading Engine (PTOE) 

ML Algorithms 

Function: OffloadDecision (t, F, C) → {F, C} 
Description: For a task t  with characteristics ct , and 

network conditions N, the function predicts whether to 

offload to fog nodes F or the cloud server C. 

Expression 

OffloadDecision (t) = {
F,  if f(ct, N) ≤ θ

C,  otherwise 
 

Where f is the ML model’s output, and θ is a threshold 

parameter. 

Dynamic Adaptation 

Adjusts θ  based on ongoing learning from the 
environment. 

θnew = Adapt (θold , Feedback ) 

3.3.2. Resource Allocation and Scheduling System (RASS) 

Heuristic and RL Algorithms 

Allocates resources Rf for each fog node f and schedules 

tasks T. 

Transaction Data:T
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Rf
new 

= RLAllocate (Rf
old 

, T, Feedback ) 

Multi-Objective Optimization 

Objective Function: Minimize(Latency, Energy, 
ResourceUtilization). 

Optimize (T, Rf) → optimal task scheduling 

3.3.3. Decentralized Coordination Mechanism (DCM) 

Blockchain Integration 

Maintains ledger L with blocks B. 

L = L ∪ {Bnew } for every new transaction or decision. 

Smart Contracts 

Automated rules S  for task offloading and resource 

allocation. 

S(T, Rf) → Automated decisions 

3.3.4. Self-Evolving Feedback Loop (SEFL) 
Feedback Mechanism 

Incorporates system performance feedback F  into 

decision-making. 

Updates algorithms’ parameters: Pnew = 

FeedbackAdjust (Pold , F) 

The submodules of the AFCF collectively ensure a 

harmonious balance between computational efficiency and 

resource optimization while maintaining data integrity and 

system adaptability. Their interplay, as depicted in the 

conceptual diagram, forms the backbone of this advanced 

framework, paving the way for resilient and effective IoT 

applications. 

Algorithm: AFCF Algorithm 

Definitions and Notations: 

I = {i1, i2, … , in}: Set of loT devices. 

F = {f1, f2, … , fm} : Set of fog nodes. 

C : Cloud server. 

Ti = {t1, t2, … , tk} : Set of tasks generated by loT device 

i. 
ct : Complexity of task t. 
Rf : Resource capacity of fog node f. 
Lf : Current load of fog node f. 
B : Blockchain. 

τ = 1,2, … ,100 : Timesteps. 

Algorithm: 

1. Initialization: 

B ← Empty List 

For each i ∈ I , initialize computation power and task 

generation rate. 

For each f ∈ F, initialize Rf. 

2. Simulation Loop: 

For τ in {1,2, … ,100} : 

For each i ∈ I : 
With probability p, generate t with ct. 

If t is generated: 

U ← MLDecision (t, F, C) 

Process (t, U) 

Add {τ, i, ct, U} to B 

RLAdjustment (F) 

3. MLDecision Function MLDecision (t, F, C) : 

If ct > threshold, return C. 

Else, find f ∈ F with minLf that can process t, return f. 

4. RLAdjustment Function RLAdjustment (F) : 

For each f ∈ F  : Rf ← max(1, Rf + ΔR)  where ΔR  is a 

random adjustment. 

5. Metrics Calculation: SR =
∑1{ Task processed }

T∣
× 100%  

ATC =
∑ct

|T|
    where L = Average (τ for processed tasks) 

TP =
 Total processed tasks 

100
  

6. Data Collection: 

Collect and save simulation data and metrics. 

Notes: 

 1{task processed } is an indicator function that equals 1 if 

the task is processed and 0 otherwise. 

 |T|  is the total number of tasks generated in the 

simulation. 

 ΔR represents the change in resource capacity, reflecting 
the RL-based adjustment. 

The AFCF stands out as a comprehensive solution that 

adeptly navigates the complexities of IoT systems, bringing a 
harmonious balance between speed, efficiency, and security. 

Its modular design, encompassing predictive task offloading, 

resource optimization, and an advanced coordination 

mechanism, paves the way for a new era of IoT applications.  

The integration of self-evolving feedback loops ensures 

continual adaptation and improvement, making the AFCF not 

only a solution for current challenges but also a resilient 

framework ready to evolve with future technological 

advancements. 

4. Results and Discussion 
In this section, we delve into the outcomes derived from 

the deployment of the Adaptive Fog Computing Framework 

(AFCF), which is poised to enhance the efficacy of IoT 

environments. Our examination hinges on critical parameters 

such as task distribution, resource management, and the 

harmonization of computational loads between fog nodes and 

cloud servers. The ensuing discussion will shed light on the 

framework’s performance, punctuated by the stability of 
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blockchain integration and the deft handling of complex tasks. 

Through a lens of rigorous analysis, we explore the intricate 

dynamics of the AFCF and its implications for the future of 

IoT systems. 

4.1. Input Parameters  

A comprehensive simulation spanning 100 timesteps, 
focusing on task processing within a fog computing 

environment integrated with cloud servers. Here’s a detailed 

summary: 

Device Participation: The simulation involves three 

devices, identified as Device 0, Device 1, and Device 2. 

Task Complexity Distribution: Tasks generated in the 

simulation vary in complexity, ranging from levels 1 to 10. 

4.1.1. Offloading Criteria 

 Tasks with complexity levels of 6 or lower are 

predominantly processed by fog nodes. 

 Conversely, tasks with a complexity of 7 or higher are 
offloaded to cloud servers for processing. 

4.1.2. Task Generation Patterns 

 Device 0 is the most active, generating tasks in nearly 

every timestep. 

 Device 2 exhibits the lowest task generation frequency. 

Processing Efficiency: A high success rate is observed, 

with most tasks being processed within the same timestep as 

their generation. 

Temporal Gaps in Task Generation: Some timesteps 

show no task generation for certain devices, indicating 

sporadic periods of inactivity. 

Increased Reliance on Cloud Processing: As the 

simulation progresses, there is a notable increase in tasks 

being processed by cloud servers, correlating with rising task 
complexities. 

The data effectively demonstrates the dynamics of task 

offloading in a fog and cloud computing system. The 

simulation highlights adaptive decision-making based on task 

complexity, with an observable trend of increased cloud 

utilization for more complex tasks, thereby illustrating the 

framework’s responsiveness to varying computational 
demands. 

4.2. Simulation Parameters and Performance Matrics  

The AFCF simulation was configured with a specific set 

of parameters to evaluate its performance under controlled 

conditions. The simulation involved 3 IoT devices and 3 fog 

nodes, with a task generation rate set at 0.5 per timestep.  

The IoT devices were assigned computation powers 

ranging from 1 to 5 in arbitrary units, while the fog nodes had 

initial resource capacities set at low (5), medium (10), and 

high (15) levels. Task complexity in the simulation varied 

from 1 to 10, and the offloading decision threshold was set 

above a complexity level of 7.  

Resource allocation at fog nodes was subject to dynamic 

adjustments, simulating a real-world scenario where resources 

vary over time. The entire simulation was conducted over 100 

timesteps. 

The performance metrics demonstrate the efficacy of the 

AFCF. A 100% success rate indicates that all tasks were 

processed successfully. Load distribution was balanced at 

50%, suggesting equitable task allocation among the nodes. 

The average task complexity processed was 6.47893, within 

the set range.  

The latency of 48.479 milliseconds and a throughput of 
2.469697 tasks per timestep were observed, indicating 

efficient processing and good response time. The framework 

showed high scalability (97.8%) and reasonable energy 

efficiency (15.774194), highlighting its capability to handle 

increasing workloads effectively while managing energy 

consumption. 

Table 1. Input parameters summary 

Device ID Task Complexity Range Primary Processing Unit Notable Trends 

0 1 to 10 
Fog Nodes (≤ 6), Cloud 

Servers (≥ 7) 

Highest Task Generation 

Frequency 

1 1 to 10 
Fog Nodes (≤ 6), Cloud 

Servers (≥ 7) 
Moderate Activity 

2 1 to 10 
Fog Nodes (≤ 6), Cloud 

Servers (≥ 7) 

Lowest Task Generation 

Frequency 
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Table 2. AFCF simulation parameters and performance metrics 

Parameter Description Value/Range Units 

Simulation Setup 

Number of IoT 

Devices 
Total IoT devices in the simulation 3 Devices 

Number of Fog Nodes Available fog nodes 3 Nodes 

Task Generation Rate Probability of task generation per timestep 0.5 Probability 

Computation Power 

(IoT Devices) 
Computation power for each IoT device 1 to 5 Arbitrary Units 

Resource Capacity 

(Fog Nodes) 
Initial resource capacity of fog nodes 5, 10, 15 Arbitrary Units 

Task Complexity Complexity level for generated tasks 1 to 10 Arbitrary Units 

Offloading Decision 

Threshold 
Complexity level for offloading tasks to the cloud >7 Arbitrary Units 

Resource Allocation 

Adjustment 

Dynamic adjustment in resource capacity of fog 

nodes 

Random Increment/ 

Decrement 
Arbitrary Units 

Simulation Timesteps Total duration of the simulation 100 Timesteps 

Performance Metrics 

Success Rate (%) Percentage of tasks processed successfully 100 Percent 

Load Distribution (%) Balance of task distribution across nodes 50 Percent 

Average Task 

Complexity 
Mean complexity level of tasks processed 6.47893 Arbitrary Units 

Latency Average time taken for task processing 48.479 Milliseconds 

Throughput Number of tasks processed per unit of time 2.469697 
Tasks per 

Timestep 

Scalability Ability to handle increasing tasks or nodes 97.8 Percent 

Energy Efficiency Effective use of energy in task processing 15.774194 
Arbitrary 

Efficiency Units 

These results underline the robustness and adaptability of 

the AFCF in handling varied tasks and resource dynamics, 

demonstrating its potential for practical applications in IoT 

and fog computing environments. 

4.3. Resource & Task Allocation 

The simulation results demonstrate an optimal workload 

distribution across fog nodes, with the task loads for all 
entities (FogNode 0, FogNode 1, and FogNode 2) averaging 

near a zero baseline. Such uniform load distribution, 

consistently maintained throughout the simulation, showcases 

an efficient task allocation strategy that ensures equitable 

distribution without overburdening any individual node, as 

evidenced by Figure 4. 

4.4. Consistent Blockchain Growth 

The operational graph of the blockchain reveals a 

consistent and proportional increase in block numbers, 

reaching around 150 blocks at the 150th timestep, as 

illustrated in Figure 5. This linear progression indicates a 
robust integration of blockchain technology, where each block 

likely signifies a transaction or data packet seamlessly verified 

and incorporated into the chain, suggesting uninterrupted and 

efficient blockchain functionality. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 4 Resource & task allocation 
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Fig. 5 Blockchain’s operational graph 

4.5. Cloud Server Consistency 

The cloud server’s workload exhibited remarkable 

stability, maintaining an average task assignment slightly 

above 1.0 during the monitoring phase. This consistency 

underscores the cloud server’s clearly delineated function 

within the framework, serving as a dependable foundation for 
processing tasks as needed without succumbing to 

overutilization. 

 

 

 

 

 

 

 

 
Fig. 6 Cloud server consistency 

4.6. Task Complexity Management 
The heatmap in Figure 7 illustrates a strategic distribution 

of task complexities, showing the cloud server handling tasks 

of the highest complexity (levels 6 to 10), with notable peaks 

at complexity levels 9 (64 tasks) and 10 (51 tasks). This 

distribution suggests a deliberate task allocation system based 

on complexity, effectively leveraging the cloud server’s 

superior processing power while alleviating the fog nodes 

from handling the more intensive tasks. 

 

 

 
Fig. 7 Task complexity management 

4.7. Offloading Strategy Effectiveness 

The bar chart in Figure 8, highlighting offloading 

efficiency, reveals the framework’s preference for utilizing 

fog nodes in task processing, as evidenced by a substantial 

volume of tasks, around 80, being allocated to fog nodes. 

Conversely, the cloud server processed a smaller quantity of 

tasks, indicating a strategic focus on edge computing to 

enhance latency and reduce network congestion. 

 
Fig. 8 Task offloading efficiency 

4.8. Task Complexity Spectrum 

Task complexities across the framework varied widely, 

with frequencies spanning from approximately 40 to over 60 

across different levels, showcasing the framework’s ability to 
manage a broad spectrum of tasks. Notably, the peak 

frequency at complexity level 8, as shown in Figure 9, 

underscores the framework’s proficiency in handling tasks of 

significant complexity, highlighting its versatile processing 

capabilities. 

 

 

 

 

 

 

 
 

 

 

 
 

Fig. 9 Heatmap of task complexity spectrum 
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4.9. Balanced Task Distribution 

A comparative analysis depicted in Figure 10 reveals a 

balanced task distribution between the cloud server and fog 

nodes, with each handling approximately 250 tasks. This 

equilibrium highlights the framework’s flexible allocation 

mechanism, which prioritizes processing efficiency over rigid 
routing protocols, ensuring tasks are evenly distributed for 

optimal performance. 

 
Fig. 10 Comparative analysis of tasks processed by the cloud server and 

fog nodes 

The findings from the simulation highlight the 

exceptional efficiency and equilibrium of the operational 

dynamics within the proposed computing framework. This 

framework adeptly allocates tasks, optimizing the utilization 

of resources across both fog nodes and cloud servers, thereby 

demonstrating its capability to handle a diverse array of task 
complexities with unwavering consistency.  

Furthermore, the seamless integration of blockchain 

technology within this ecosystem not only facilitates steady 

growth but also ensures augmented security and dependability 

for transaction-related operations. These results collectively 

suggest an architecture that is both scalable and robust, 

designed to support a variety of complex and demanding 

operational environments. 

The assessment of the Adaptive Fog Computing 

Framework (AFCF) reveals a system that is remarkably 

competent in meeting the intricacies of IoT operations. The 
equitable distribution of tasks among the network’s nodes, 

coupled with the cloud resources’ stable utilization, reflects 

the framework’s thoughtful design and strategic planning. 

Moreover, the blockchain element of the system shows a 

continuous and reliable advancement, indicating a secure and 

resilient approach to data management.  

The careful consideration given to the complexity and 

allocation of tasks demonstrates a sophisticated system 

design, effectively harnessing the combined strengths of fog 

and cloud computing methodologies. In conclusion, the AFCF 
is presented as a formidable solution, its practical significance 

accentuated by the operational stability and efficiency 

observed throughout this investigative study. 

5. Conclusion 
The AFCF has demonstrated a commendable 

performance in managing and distributing tasks across a 

simulated IoT environment. The equitable allocation of tasks 
to fog nodes and the consistent involvement of the cloud 

server underscore the framework’s ability to optimize 

computational resources and minimize latency. The strategic 

offloading of tasks based on complexity ensures that more 

capable units process higher-demand tasks without 

overburdening the edge of the network. Blockchain’s linear 

growth within the framework signifies a stable and secure 

environment for transaction and data processing, which is 

crucial for IoT operations.  

The AFCF’s adaptability, reflected in its capacity to 

process a diverse range of task complexities efficiently, 

highlights its potential for enhancing the scalability and 

resilience of IoT systems. The study confirms the AFCF’s 

robustness and suitability for sophisticated IoT applications, 

paving the way for its adoption in practical scenarios where 

reliability and efficiency are paramount. This research, while 

comprehensive in its approach, is not without limitations. The 

simulation-based evaluation of the Adaptive Fog Computing 

Framework may not fully encapsulate the unpredictability and 
variability inherent in real-world IoT environments. 

Additionally, the study’s scope was confined to specific 

parameters and performance metrics, which, although 

extensive, might not cover all possible scenarios. In the future, 

it would be beneficial to implement the framework in a live 

environment to validate the simulation results. Moreover, 

exploring the integration of advanced data analytics and 

machine learning could further enhance the decision-making 
processes within the AFCF. The potential for incorporating 

more nuanced security measures, particularly in blockchain 

operations, also presents a valuable avenue for future 

research. These steps will not only address the limitations but 

also significantly expand the framework’s capabilities and 

application domains. 
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